
Computer Science Department
Stanford University

Comprehensive Examination in Compilers
Autumn 1994

October 20, 1994

READ TBTS FIRST!

1. You should write your answers for this part of the Comprehensive Examination in a
BLUE BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue book
that you use.

2. Be sure you have all the pages of this exam. There are 2 pages.

3. This exam is OPEN BOOK. You may use notes, articles, or books-but no help &om
other sentient agents such as other humans or robots.

4. Show your work, since PABTIAL CREDIT d be given for incomplete answers. For
example, you can get credit for making a .reasonable start on a problem even if the
idea doesn't work out; you can also get credit for realizing that certain approaches

0
are incorrect. On a true/false question, you might get partial credit for explaiuing
why you thinlc something is true when it is actually false. But no partial credit can
be given if you write nothing.

..

. . CS Comprehensive Exam: Compilers (30 points)

1. (7 points) . , . . - .
Comments in the C programming language are introduced by the characters /* and ter-
minated by the characters */. They do not nest and they do not occur within string or
character literals. For each of the following regalar expressions, indicate whether or not the
expression describes precisely the set of all valid C comments. For those that do not, provide
a counterexample. Assume for conve~:mce that the character set is {* , / , a).

(a) /*(/la/*)'*/
(b) /*(al/)'*(*la(al/)'*)'/

(c) /*(aI/)**(*la(a//)**)**/

2. (8 points)

The following grammar generates all re& expressions over the alphabet {a, 6):

where '+' denotes 'or'. Unary * has highest precedence, fobwed by concatenation; disjunction
has the lowest precedence. All operators are left associative.

(a) Show that the grammar is ambiguous.

(b) Construct an equivalent unambiguous grammar that enforces the correct operator prece-
dence and associativity.

0
(c) Eliminate any left-recursive productions and productions with common prefixes fiom

your grammar in (b).

3. (4 points) What is meant by structud equivalence and name quivalence of types? Is one
more restrictive than the other? Is one easier for a compiler to check than the other?

4. (11 points) I
Suppose you are asked to extend the C programming language to allow overloading of aser-
defined functions, based on the number of formal parameters and their types.

Answer the following questions as bridy, yet clearly, as you can. We are more interested in
abstract operations (e.g., "store 2 in a table, along with its sizen) than in implementation
details (e.g., "for performance, implement the table with a doubly-linked list of AVL treesn).

(a) How can a compiler keep track of the parameters and their types? Desaibe what should
be recorded when a function declaration is processed.

(b) How tan a compiler determine which function to invoke in a procedure call? Describe
what and how idonnation can be retrieved when resolving a procedure call.

(c) Describe. .me errors that can occur as a result of. this language extension, and how a
compiler can detect them.

