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Problem 1 

First we compute a = log, 3 and compare na it with n. In our case, n = S2(na+<) for sficiently 
small constant E .  Moreover, the "regularity conditionn is d e d ,  i.e. 3n/6 < /3n for a constant fi 
(for example, P = 314 works). Hence, we can conclude that T(n) = O(n). 

Problem 2 

Binary'relations on n elements have 1-to-1 correspondence with 0/1 n x n matrices. Entry Aij = 1 
if and only if (i, j) pair belongs to the relation. Symmetric means that A,, = Aji, and irreflexive 
means that the diagonal of A is 0. Hence, in order to determine a relation we need to set n(n - 1)/2 
entries in the matrix. There are 2n(n-1)/2 possibilities. 

Problem 3 

If the edge with reduced weight is in the tree, then there is nothing to do. If it is outside the tree, 
then adding it to the tree creates a cycle. To construct a new tree, we delete the largest weight edge 
on this cycle. This can be implemented in O(n) time. 

It remains to prove that the resulting tree is MST. We need a bit of notation. Let w denote 
the original edge weights and w' denote the new edge weights. Denote the deleted edge by el and 
the new edge by e2. Let T denote the original MST and let T' denote the computed MST, i.e. 
T' = T - el + e2. 

Assume there exists an MST T" where w' (TI') < w'(T1). Observe that Tt has to use e2, otherwise 
0 T is not MST. Consider the cycle that includes el and e2 in T + el. One of the edges, say e3, on 

this cycle is not in TI'. Add it to T" and remove e2. The weight of the resulting tree is at most 

w' (T") + w' (es) - w1(e2) I w'(T1) + w(el) - wt(e2) 
< wt(T) + w(el) - w1(e2) 

= w ( n  

Thus, we got a tree that does not use el, but which is cheaper than T, which is a contradiction. 

Problem 4 

Our data structure will be a complete b i i  tree with 2 f h a  leaves. Each no& of the tree holds a 
single number in addition to. the pointers to the parent and its children, and h c e  the total storage 
requirements are O(n). 

Given a point x E [l . . . n], to compute the value of the sum of the already revealed functions at 
z, we start at the leaf that corresponds to z and traverse the tree up, adding all the numbers that 
we encounter up to the root. Clearly, this takes O(depth) of the tree, i.e. O(1ogn). 

Assumewearegivenanew function that is1 fromltosardOfroms+l ton. Representsas 
a binary number with pog3 nl digits. 'Ikaverse the tree starting at the root, going l& if the digit is 
0 and going right if a digit is 1. Each fime we go right, we add 1 to the number stored at the left 
child of the current node. This takes O(depth) of the tree, i.e. O(1ogn). 



Problem 5 - - 

Observe that the question corresponds to probing an array of n elements where all elements up to 
k are 0 and the rest are 1. A crash corresponds to probe returning "1". 

5a Probe at i f i  for i = 1,2,. . ., until the first time a probe returns 1. T&s identifies a range 
i'fi 5 k < (i* + 1)fi for some is. Explore this range by linearly probii  i '6, ii'fi+l,. . .. 
Both stages of this strategy use at most O ( m  probes. 

5b Assume we are allowed q crashes. Probe the array at O(nl/q) equally spaced places, starting 
from 1, until the k t  time a probe returns 1. This idenMes a range of size O(nl-l/q) where k 
might be. Again, probe at most O(nl/q) equally spaced places, starting at the smallest index 
of the identified range, until the first 1 is found. This identi6es a range of size O(n1-2/q). 
Continue until the size of the range is O(nl/q). Search this range linearly. 

At each one of the q stages of this strategy we used O(nL/q) probes, and thus we used O(qnl/q) 
probes total. 

5c We will use the "admsay" argument. In other words, the adversary will let the algorithm 
probe, and decide on the value of k as it gues along. The only constraint is that this value 
should be consistent with all the answers to the probes. 

Initially, k is in the range of 1 to n. The algorithm has to issue probes that force the adversary 
to pick a spec& k. The algorithm can not temhab as long as the ad- has any freedom 
in picking k, since in this case the value of k returned by the algorithm wil l  not be correct. 

We say that a probe is of "type 1" if it is closer than fi to the -st index probed up until 
now. Probes Wow the maximum-probed index do not bring any new information and hence 
can be discarded. We classify the rest of the probes as %ype 2". 

As long as the algorithm uses "type 1" probes, the adversary returns 0. Note that each one 
of these probes can decrease the range of possible values for k by at most 6, and hence the 
algorithm needs at least at least O(& type 1 probes to decrease the range of possible values 
for k to below 6. 
Thus, if the number of probes is below Q(\/Ti), the algorithm malren at least one type 2 probe. 
As a response to the first such probe, the adversary returns 1. At this moment, the only 
restriction on k that the adversary has is that k is larger than the largest probed index that 
returned 0 and smaller than the index probed by the type 2 probe. From now on the only 
valid algorithm is to linearly probe this range. This is true because if the algorithm misses 
an index, say a, then the adversary sets k to i and returns 1 at the next probe. Hence, in this 
case, the total number of probes is O ( a .  




