’ Section \ Faculty \ Page ‘
’ Table of Contents \ \ 1 ‘
Analysis of Algorithms [Unknown] 2
Analysis of Algorithms solutions 4
Automata and Formal Languages [Unknown] 8
Automata and Formal Languages solutions 12
Computer Architecture solutions 14
Numerical Analysis [Unknown] 22
Numerical Analysis solutions 24
Software Systems [Unknown] 26
Software Systems solutions 29

Teste AD Selumens

Computer Science Department
Stanford University
Comprehensive Examination in Analysis of Algorithms

Autumn 1991

October 7, 1991

READ THIS FIRST!

1.

You should write your answers for this part of the Comprehensive Examination in
BLUE BOOKs. There are 4 problems in the exam; use a SEPARATE blue book for each
problem. Be sure to write your MAGIC NUMBER on the cover of every blue book that
you use.

The number of POINTS for each problem indicates how elaborate an answer is ex-
pected. The total number of points is 60, and the exam takes 60 minutes. This
“coincidence” can help you plan your time.

This exam is CLOSED BOOK. You may not use any notes, calculators, computers, or
outside help.

Show your work, since PARTIAL CREDIT will be given for incomplete answers.

OMNPS ™

\v\

Comprehensive Exam: Analysis of Algorithms (60 points) Autumn 1991
Please answer 3 out of 4 questions, If you attempt to answer all 4 questions,
. your grade will be the sum of the scores on the 3 best answers.

L.

N

(20 points total) Counting

A group of n people comes to a party, each person carrying a hat and an umbrella.
At the end of the party each person leaves with a hat and an umbrella, neither of
which is his. Notice that in order to find out the number of possibilities, we can check
all possible assignments of hats and umbrellas and count the number of appropriate
assignments. The problem with this approach is that it takes exponential time. Can
you come up with an approach that will allow us to compute the number of possibilities
in polynomial time ? For example, an expression like T%, i is an acceptable answer.
In other words, your answer should be a formula computable in polynomial time.

(20 points total)

Given a sequence of numbers a;,a3,...,8n, a subsequence is a sequence a;,, Gizy ..., Gi,,
where i; < ij,) for all 1 < j < k—1. You are given weights w(a;) > 0 associated with
each element of the given sequence. Describe an efficient algorithm to find an increasing
subsequence of maximum weight, where the weight of the subsequence @i, 8iy,. .., 8,
is defined as ©°%,, w(a;,). What is the running time of your algorithm? Explain.

(20 points total) :

An ordered 2-3 tree T is used to implement a dictionary, with each element in the
dictionary being assigned to a unique leaf in T'. Initially, T is empty. Then the sequence
of operations INSERT(a,), INSERT(a3), ..., INSERT(a,) is performed, where each of
the n! possible orderings of the elements a,,a3,...,a, is equally likely. Let A be the
height of T following these n insertions (recall that a tree consisting of a single vertex
has height 0).

(a) (15 points)
Give an exact formula for the maximum possible value of A (as a function of n).
(b) (5 points)
If n = 30, what is the expected value of A? [Hint: What are the minimum and
maximum possible values of A?]

(20 points total) Recurrence Relations

Given any constant ¢, where 0 < ¢ < 1, and any positive real number N, the function
T(N,c) is defined as follows:

TV, ={ ?VT;(cN,c)+N’ if N>1

if0<N<I1

(a) (10 points)

What is the asymptotic growth rate of T(N, 1/2) (to within a constant factor)?
(b) (10 points)

What is the largest value of ¢ such that T(N,c) = O(N?log N)?

O

O

Comprehensive Exam: Analysis of Algorithms
Autumn 1991

Problem 1: (20 points total) Counting
A group of n people comes to a party, each person carrying a hat and
an umbrella. At the end of the party each person leaves with a hat and
an umbrella, neither of which is his. Notice that in order to find out the
number of possibilities, we can check all possible assignments of hats
and umbrellas and count the number of appropriate assignments. The
problem with this approach is that it takes exponential time. Can you
come up with an approach that will allow us to compute the number
of possibilities in polynomial time ? For example, an expression like
n1 1 is an acceptable answer. In other words, your answer should be
a formula computable in polynomial time.

Answer: First, observe that there is no connection between umbrellas and
hats, and therefore it is sufficient to count the number of possibilities
to assign, say, hats, and square the result. Notice that although the
first person to leave has exactly n — 1 choices, the second person has
either n — 1 or n — 2 choices, depending on whether the first one has
grabbed the hat that belongs to the second one or not. Therefore. this
approach will lead to an exponential algorithm.

There are several valid approaches, and we will present two of them.
First, notice that we are looking for the number of permutations of n
elements that do not have fixed points. Let H(n) denote this number.
Total number of permutations on n elements is n!. Out of those, we
have H(n) permutations with no fixed points, (’l') H(n—1) permutations

with a single fixed point, (’2') H(n — 2) with exactly 2 fixed points, etc.

Hence, we have:
=Y (") H(i)
i=o \?

Using this formula, one can compute H(1), use it to compute H(2),
etc.

A different, somewhat cleaner way, is to use inclusion-exclusion. Let
Si denote the set of permutations that fix i. We would like to compute

{2

U,|Sil. In order to use inclusion-exclusion, we have to be sble to com-
pute the cardinality of intersection of r different sets Si. Given r places
that we want to fix, the cardinality of such intersection is (n—r)!, since
all the rest of the elements can be assigned arbitrary. There are (™
possible intersections associated with each r, and hence this leads to
the following formula:

H) = nt = 31 (") -

=1

Problem 2: (20 points total)

Given a sequence of numbers 81,82,...,8q, a subsequence is a sequence
@iys @i,y ..,8i,, Where i; < 4j4y foralll1 < j < k—1. You are given
weights w(a;) > 0 associated with each element of the given sequence.
Describe an efficient algorithm to find an increasing subsequence of
maximum weight, where the weight of the subsequence a;,, a;,, ..., a;,
is defined as 2;‘___1 w(a;,). What is the running time of your algorithm?
Explain.

Answer: There was a confusion as to what does an “increasing subsequence”
mean. It means that the numbers and not weights are increasing. If one
tries to solve the problem where we require increasing weights in the
output subsequence, then it is easy to see that this problem is a special
case of the original problem (just set each number in the ‘sequence to
be equal to its weight). Therefore, we will present the solution to the
original problem.

The idea is to use dynamic programming. Instead of presenting an algo-
rithm to compute the optimum subsequence, we will concentrate on an
algorithm to compute the weight of the subsequence. It is straightfor-
ward to change this algorithm to compute the subsequence itself. The
following algorithm can be imroved, but we will ommit the optimiza-
tion issues and concentrate on the main ideas. Notjce that, without
loss of generality, we can assume that the input sequence includes only
numbers from 1 to n.

Let S; = a,,a,,...,aq; be the i-th prefix of the given sequence. Assume
that we have computed the maximum-weight increasing subsequence

2

O

for S;. Notice that this is not sufficient in urder to quickly compute the
maximum-weight increasing subsequence for Siy, ! The reason is that
it might be beneficial to use a non-optimum subsequence with respect
to S; in order to be able to use a; as well.

For each prefix S;, we will keep A(i,7), 1 < j < n, where A(t,j) is the
weight of the maximum-weight increasing subsequence out of prefix S;,
where the restriction is that the subsequence does not include elements
that are larger than ;.

Initialization of A(1,J) is trivial. Now, assume that we have computed
A(z,5) for some i and for all j. Consider k = a;y;. For all j < &,
existence of this element does not help us, and we just copy A(i+1,j) =
A(,j). Consider A(i + 1,k). We can add a;41 to the corresponding
sequence, and hence A(i + 1,k) = A(i, k) + w(ai4;). For all j > k, we
set A(t+ 1,7) = maz{A(s,7), A(i + 1,k)}.

The running time of this algorithm is O(n?) and it uses O(n) space,
since we need to keep only a single (current) column of A in memory.

Problem 3: (20 points total)

An ordered 2-3 tree T is used to implement a dictionary, with each ele-
ment in the dictionary being assigned to a unique leaf in T'. Initially, T
is empty. Then the sequence of operations INSERT(a,), INSERT(a,),
.-« INSERT(a,) is performed, where each of the n! possible orderings
of the elements a;,4a3,...,a, is equally likely. Let h be the height of
T following these n insertions (recall that a tree consisting of a single
vertex has height 0).

1. (15 points)
Give an exact formula for the maximum possible value of A (as a
function of n).

2. (5 points)
If n = 30, what is the expected value of A? [Hint: What are the
minimum and maximum possible values of A?)

Answer: A 2-3 tree is a tree in which each internal node has either 2 or 3

children, and every path from the root to a leaf is of the same length.

When an ordered 2-3 iree is used to implement a dictionary, the ele-
ments in the dictionary are stored in the leaves of the tree in ascending
order from left to right.

1.

(3]

. 4

llog;).

If the elements are inserted in increasing order, then following 2*
insertions T is a complete binary tree with height k. Therefore,
h 2 |log;n]. Furthermore, no 23 tree with n leaves has height
greater than |log; n| because all leaves are at the same ievel and
each internal node has degree at least 2, so h < llog, n].

Any 2-3 tree of height A bas at least 2 leaves and at most 3%
leaves. If A < 3 then 3* < 30, while if A 2 5 then 2% > 30.
Therefore, any 2-3 tree with 30 leaves has height 4.

Problem 4: (20 points total) Recurrence Relations
Given any constant ¢, where 0 < ¢ < 1, and any positive real number
N, the function T(N,c) is defined as follows:

o

Answer:

_J 2T(cN,ce)+ N? ifN>1
T(N"’)‘{m if0<N <1

. (10 points)

What is the asymptotic complexity of T(N,1/2) (to within a con-
stant factor)?

. (10 points)

What is the largest value of ¢ such that T(N, ¢) = O(N?log N)?

1. O(N?).
The values of the recursive calls form a geometrically decreasing
sequence. For example, if N > 4 then

T(N,1/2) 2T'(N/2,1/2) + N?
4T(N/4,1/2) + N?/2 + N?

= 8T(N/8,1/2) + N?/4+ N*/2 + N2.

O

Computer Science Department
Stanford University
Comprehensive Examination in Automata, Languages, and
Mathematical Theory of Computation
Autumn 1991

October 7, 1991

READ THIS FIRST!

1.

You should write your answers for this part of the Comprehensive Examination in
BLUE BOOKS. There are four problems in the exam; use a SEPARATE blue book for
each problem. Be sure to write your MAGIC NUMBER on the cover of every blue book
that you use.

Be sure you have all the pages of this exam. There are 3 pages.

The number of POINTS for each prob'lem indicates how elaborate an answer is ex-
pected. The total number of points is 60, and the exam takes 60 minutes. This
“coincidence” can help you plan your time.

This exam is OPEN BOOK.

Show your work, since PARTIAL CREDIT will be given for incomplete answers.

26

Comprehensive: Autumn 199}
Automata, Languages, and Mathematical Theory of Computation (60 points)

Problem 1 (24 points). Consider a programming language built Up using assignment, composition, while,
if and the local variable statement

begin new z; S end
Assume the obvious Hoare axioms

Axiom 1: Assignment Axiom

{plt/2]} z =1 {p}.

Rule 2: Composition Rule .
{p} $1i {r}, {r} 52 {g) .

{r}S1; 3 {q}

Axiom 3: if-then-else Rule
{pAe}Si{q}, {pA=e}Ssiq)
{P} if ¢ thea S, eise S3 A (g}

Rule 4: while Rule
{pAe}S{p})
{p} vhile ¢ do S od (p A =e}’

Rule 5: Consequence Rule
B=n {n}S{n} ¢a—q
{m}Ss {20}

and
Rule 16: Variable Declaration Rule

{pAy =w} Sly/z){q)
{p} begin new z; S end {q)

where y ¢ free(p, S, q).

together with a background theory T (¢f. Rule 5). Two programs P1 and P2 are said to provably satisfy the

same triples iff for all P q
F{p}P1{q} iff F {p}P2(y).
We abbreviate this to P] ~ P2. Justify your answers briefly in the following questions.
la. (4 points). Clearly ~ is an equivalence relation. Is it Decessarily a congruence (i.e., do the ptogram-
ming primitives (; while ...) preserve this relation)?
1b. (4 points). If P]1 ~ P2 then are they Decessarily equivalent semantically (i.e., as maps from stores to
stores) for all models of 77

Are the following programs ~ equivalent?

1c. (4 points). 2 not free in P.
Pl = begin new z; P; end
P2=p
1d. (4 points). z not free in P
P1 = begin new z;
z:=0;
P; .
if 2 = 0 then diverge fi;
end
P2 = diverge

27

le. (4 points).
P1 = begin new z; P{z/y}; y := z: end
P2=P
where P is a program.
1f . (4 points).
P1 = begin new z; begin new y; z := 0; y := 0; P[z/20, y/21]: end
P2 = begin new z; begin new y; z :=0; y := 0; Ply/20, z/z,); end

Problem 2 (16 points). Below is text that defines the concept of ordered tree and the insert operation
within the Boyer-Moore logic. The shell principle is used to introduce an abstract data type, OT. Elements
of OT are either empty (ET) or constructed from s numeric label together with left and right subtrees.
A predicate ORDERED.TREE is introduced to specify the elements of the OT shell that are ordered trees.
Finally the INSERT function is defined and a theorem, ORDERED.TREE.INSERT is conjectured. The
theorem states that INSERT applied to a number and an ordered tree returns an ordered tree.

2a. (4 points). Give at least 5 axioins assumed by the theotem prover as a consequence of the Shell

Definition.

2b. (6 points). State a justification that the theorem prover might use to accept the definition of the
ORDERED.TREE predicate.

2¢. (6 points). Give an instance of the induction principle that could be used by the theorem prover to
prove ORDERED.TREE.INSERT.

Shell Definition.

Add the shell OT of three arguments with bottom object ET, recognizer OTP, accessors LT, LABEL, and
RT, type restrictions (ONE.OF OTP), (ONE.OF NUMBERP), and (ONE.OF OTP), and default values
ET, ZERO, ET. '

Definition.
(ORDERED.TREE X)

(IF (NOT (OTP X))
F
(IF (EQUAL (ET) X)
T

(AND (ORDERED.TREE (LT X))
(ORDERED.TREE (RT X)) '
(OR (EQUAL (LT X) (ET)) (LESSP (LABEL (LT X)) (LABEL X)))
(OR (EQUAL (RT X) (ET)) (LESSP (LABEL X)) (LABEL (RT X))))))

Definition.
(INSERT L X)

(IF (NOT (OTP X))
(ET)
(IF (EQUAL (ET) X)
(OT (ET) L (ET))
(IF (LESSP (LABEL X) L)
(OT (LT X) (LABEL X) (INSERT L (RT X)))
(IF (LESSP L (LABEL X))
(OT (INSERT L (LT X)) (LABEL X) (RT X))
X))

2

2¢

Theotem ORDERED.TREE.INSERT.
(IMPLIES (AND (NUMBERP L) (ORDERED.TREE X))
(ORDERED.TREE (INSERT L X)))

Problem 3 (10 points). A minimized deterministic finjte state machine accepts all strings that contain a

certain fixed string s of length L. What are the largest and smallest number of states the machine might
have? Justify your answer.

Problem ¢ (10 points).
Consider the following program for finding a real-number approximation to the square root of a non-
negataive real number r.
2 ~0;
v — maz(r,1);
while e Sv do v — v/2;
f (24 v)? < r then Ze—z4y;
return(z)

4a. Write a specification that expresses what this program is doing.

4b. Provide an inductive assertion, well-founded set, and partial function adequate for proving the total
correctness of this program. It is not Recessary to give the proof. .

d

Comprehensive Solutions: Autumn 1991
Automata, Languages, and Mathematical Theory of Computation (60 points)

Problem 1 (24 points). [2 pts for correct yes/no answer; 2 pts for correct reason).
1a. Yes. Easily established by induction on proofs (i.e., last rule used).
1b. No. Plisz:=0; P2is whilez >0doz:=2-1.
1c. Yes. Use Rule 16.
1d. Yes. Use Rule 16

le. No.
y:=y+1
F {y=0)P2{y=1}
~(F {y=0}P1{y=1})
1f. Yes. (Modulo missing “end” — a typo). Again use Rule 16.

Problem 2 (16 points).
2a. Axioms added include the following.

(OR (EQUAL (OTP X) T) (EQUAL (OTP X) F))
(oTP (OT X1 X2 X3))
(oOTP (ET))
¥OT (EQUAL (OT Xt X2 13) (ET)))
(IMPLIES (AND (OTP X) (NOT (EQUAL X (ET))))
(EQUAL (OT (LT X) (LABEL X) (RT X)) X))
(INPLIES (OTP X1) (EQUAL (LT (OT X1 X2 X3)) X1))
(INPLIES (NUMBERP X2) (EQUAL (LABEL (OT X1 X2 13)) X2))
(INPLIES (OTP X3) (EQUAL (RT (OT X1 X2 X3)) X3))
(INPLIES (OR (¥OT (OTP X))
(EQUAL X (ET))
(AFD (NOT (OTP X1)) (EQUAL X (OT X1 X2 X3))))
(EQUAL (LT X) (ET)))
(IMPLIES (OR (NOT (OTP X))
(EQUAL X (ET))
(AND (NOT (NUMBERP X2)) (EQUAL X (OT X1 X2 X3))))
EQUAL (LABEL X) (ZERO)))
(IMPLIES (OR (NOT (OTP X))
(EQUAL X (ET))
(AND (NOT (OTP X3)) (EQUAL X (OT X1 I2 X3))))
(EQUAL (RT X) (ET)))
(¥0T (OTP T))
(¥0T (OTP F))
(INPLIES (OTP X) (NOT (r’ X))) ;; r’ previocusly introduce recognizer

2b. There must be a well-founded relation r and a function = such that

(IMPLIES (AND (OTP X) (BOT (EQUAL X (ET)))) (r (@ (LT X)) (m X)))
(INPLIES (AND (OTP I) (NOT (EQUAL X (ET)))) (r (a (RT X)) (= I)))
are proveable. Take a = COUNT, r = LESSP.
2c. Let (pL X) =
(IXPLIES (AND (NUMBERP L) (ORDERED.TREE X))
(ORDERED . TREE (INSERT L I)))
To instantiate the induction principal it is sufficient to find terms q, sX1, sL1, X2, sL2 with at most
L and I free, a well-founded relation r, and a measure m meeting the conditions of the induction
principle that

Y

(INPLIES q (r (a sL1 sl1) (a L 1)))
(INPLIES q (r (m sL2 512) (=L X))
(INPLIES (§OT 9 (p LX)
(IXPLIES (aND q (p sL1 sI1) (p sL2 sx2)) (pL X))
are provable. This is satisfied by taking r and m as in B (m now ignoring its first argument) and

Q9 * (AND (OTP X) (NOT (EQUAL X (ET))))

sLt = gl2 =
sX1 = (LT X)
812 = (RT X)

Problem 4 (10 points).
2a. [4 pts]
{r20A ¢>0}P{\/;-¢<z$\/;}.

2b. [6 pts] The inductive assertion (3 pts] is given by
(z<7) A (V< IHV) V (r=z24y = 1)}

and the well-founded set and partial function [3 pts] are (N, <) and L], respectively.

CoMPt:STEJ&
ARCHITECTURE.

O Comprehensive Exam: Architecture (60 points) Autumn 1991

1. (15 points total) Instruction Set Design.

Your company currently produces a load/store processor. The table below lists the instruc-
tion distributions (along with the instruction latencies) for your most important application—

SPICE.
latency (cycles) frequency
intALU 1 J 45%
branch 2 S%
load 2 27%
store 1 8%
FPadd 4 7%
FPmult 6 8%

(a) (3 points) What is the CPI of execution (CPle) for this machine?

ANSWER: CPle = (0.45+0.08) + (0.05+0.27)2 + (0.07)4 + (0.08)6
= 1.93 cycles/instr

O : (b) (2 points) Now the wonderful group in the technology lab have provided the next
generation of the chip with more transistors, and the VLSI people say that they can
use these transistors to reduce the latency of the FPadd to 2 cycles and the FPmult
to 4 cycles. What is the new CPle?

ANSWER: CPIe = (0.45+0.08) + (0.05+0.27)2 + (0.07)2 + (0.08)4
= 1.63 cycles/instr

(c) (2 points) What is the resulting speedup, assuming no change in the cycle time?
ANSWER: speedup = 1.93 / 1.63 = 1.18x faster

(d) (S points) Some other daring VLSI designers in the company claim that they can use
the same extra transistors to implement some new, complex instructions. They claim
that the FP, intALU, and memory port are essentially independent functional units,
and thus, can operate in parallel. They suggest two new types of instructions: (1) an
instruction that performs a FPop and a R-R intALU operation; and (2) an instruction
that performs a register-indirect load/store and & R-R intALU operation. The bottom
line is that 20% of the intALU operations can be collapsed with a load/store operation
and that 12% of the intALU operations can be collapsed with a FP operation. What
is the resulting CPle of this technique? State any assumptions that you make.

ANSWER: CPIe = (0.45-0.20-0.12+0.08)/0.68 + ((0.05+0.27)/0.68)2
O + (0.07/0.68)4 + (0.08/0.68)6 = 2.37 cycles/instr

1

(¢) (3 points) Again, assuming no change in the cycle time, which use of the extra
transistors gives better performance (please show a speedup comparison)?”

ANSWER: speedup = 1.93(1) / 2.37(0.68) = 1.20x faster
therefore (d) is better

d

8 : 2. (20 points total) Memory System Design

You've been given a promotion to memory system designer, and your company has the
following questions for you.

(a) (4 points) The current OS uses a 4KB page size. Your boss is thinking about doing
the virtual address translation in parallel with the instruction cache (Icache) access
s0 that she can build a physical cache (i.c. no flushes or PIDs necessary). The VLSI
designers tell you that you can have an Icache with an associativity of at most §
ways. What is the biggest-sized, physical Icache that you can build? How many bits
of virtual address (VA) are used to index into this Icache if the block size is 8 words
(1 word = 32-bits)?

ANSWER: MaxSize = S * 4KB = 20KB
index = 12 - 2 - 3 = 7 bits

(b) (2 points) Your boss’s boss is really interested in building a 64-bit processor, i.e. a
processor with a flat 64-bit virtual address space. If you designed the Icache as a
virtually-tagged cache, how many bits of the 64-bit virtual address are kept in the
tags if the data portion of the Icache is 32KB in size and only 2-way set associative?

ANSWER: tag = 64 - 15 + 1 = 50 bits

o (c) (8 points) If we kept a 9-bit PID and a valid bit in the tag along with the rest of
the virtual address, what percentage of the total Icache space is consumed by the tag
array for a 32-bit VA and for a 64-bit VA? The data portion of the Icache is sill

32KB in size and 2-way set associative. Please count only bits, not transistors, and
ignore control logic.

ANSWER: set size = 32KB / (2 * 32B) = 512 entries => 1024 tags

32-bit VA: tag bits = 1024 * (18+9+1) = 28672 bits
data bits = 32K * 8 = 262144 bits
28672 / (28672+4262144) = 9.9% overhead

64-bit VA: tag bits = 1024 * (50+9+1) = 61440 bits
data bits = 32K * 8 = 262144 bits)
61440 / (61440+262144) = 19.0% overhead

(d) (4 points) To fully support this 64-bit addressing, someone suggests adding 64-
bit instructions to the instruction set architecture so that large immediates can be
generated quickly. A problem with 64-bit instructions is that they can fall across
Icache line boundaries because instructions only have to be word-aligned. If the
Icache miss rate is 2%, the miss penalty is 12 cycles, and probability that a 64-
bit instruction falls across an Icache boundary is 6%, what is the average memory
access time (AMAT) for fetching an instruction? Assume that a 32-bit or a 64-bit

-

3

instruction can be fetched in 1 cycle if you hit in the Icache and if you do not cross

a line boundary.
ANSWER: AMAT = 1 + (0.02) (12) + (0.06) (1) = 1.30 cycles

(e) (2 points) This splitting increases the AMAT of the Icache, but it also affects the
virtual memory system. Assume your processor uses pages and a TLB, what is the
ugly effect of these split instructions?

ANSWER: 2 TLB accesses are necessary for split fetches that
miss meaning that a page fault can occur in the middle
of an instruction miss. What do you do with the first
half of the instruction fetch in the meantime?

Il

@

O

3. (25 points total) Pipelining.

The pipeline shown below has been designed to work at a very high clock rate. The
pipeline ticks twice as fast as the memory latency, although the memory is pipelined so
that it returns an item on every clock tick. The consequence is that both the instruction
fetch and the memory load/store operations have had to be split into two stages.

tbm———— ttme——— - ttm———— tbe———- ttom——— tpm———— ++
[IF1 | IF2 || RE ||l EX I M1 || M2 || WB ||
tbm———— ttm———— b ttmmm—- tébrrcm- ttmm—- $bmm——- ++

IF1 - first cycle of instruction fetch

IF2 - second cycle of instruction fetch

RF - instruction decode and register fetch

EX - ALUop OR memory address calcuation

M1 - first cycle of data memory load or store

M2 - second cycle of data memory load or store

WB - write back result into register file

(a) (3 point) For such a high performance machine, is it a good idea to have the PC as
one of the general purpose registers? If not, why not?

ANSWER: It is not a good idea because it interferes with the
ability to efficiently pipeline the machine.

(b) (10 points) We are considering the tradeoffs between the use of delayed branches
and squashing branches. For the squashing branch case, assume that the machine
executes along the not-taken path. If the branch is actually taken, then the write-
back and memory operations corresponding o the incorrectly fetched instructions are
suppressed. For the non-squashing case, the following table gives the probabilities -
of filling the branch delay slots from code above the branch. If the probability that
a branch is taken is 60%, which method do you recommend? Justify your decision

quantitatively.

slot probability of fill
1 75%

2 25%

3 5%

4 2%

S 1%

2.

ANSWER: (NOTE this answer is for 3 branch delay slots, but 2 slotg:;
reasonable)

CPI-branch-sq = fraction_taken * ¢ + fraction_not_taken * 1
= .6 "4+ .4=2.8

CPI-branch-non-sq = 4 - (Prob_slotl_full + prob_slot2_full
+ prob_slot3_full)
=4 - (.75 + .25 + .05) = 2.95

Therefore, it is better to have squashing branches.

@

(¢) (6 points) Assuming that the processor has no hardware interlocks, rewrite the code
sequence below inserting the necessary NOPs to avoid hazards. Assume that branches
are not squashing.

OR
LD
ADD
ADD
ST
ADD
BEQ
AND

RS,R6 -> R7
1(R1) -> R4
R1,RS =-> RS
R3,R4 -> R2
RS =-> 2(R1)
R7,RS -> R4
R2,PRS5,target
R1,R6 -> R1

ANSWER:

OR

LD

ADD
NOP
ADD
ST

ADD
BEQ
NOP
NOP
NOP

or,
OR
LD

NOP
NOP
NOP

NOP
NOP
BEQ
NOP

RS, RG -2 R7
1(Rl) -> R4
Rl, Rs -2 Rs

R3,R4 -> R2
RS -> 2(R1)
R-" R5 -2 R‘
R2,RS5,target

RI'RG -> Rl

without any by-passing:
RS,R6 -> R?
1(R1) -> R4
R1,RS -> RS

R3,R4 -> R2 ;
RS -> 2(R1) !
R7,RS -> R4

R2,RS,target

/4

C

NOP
AND R1,R6 =-> R1

(d) (6 points) Reorganize the above code to use the fewest number of NOPs.

ANSWER:

LD 1(Rl) =-> R4

OR RS5,R6 ~> R7?

ADD R1,RS -> RS

ADD R3,R4 ~> R2

BEQ R2,RS5,target
ST RS =-> 2(R1l)

ADD R7,RS5 -> R4

NOP

AND R1,R6 -> Rl

15

Computer Science Department
Stanford University
Comprehensive Examination in Numerical Analysis
Autumn 1991

- October 9, 1991

READ THIS FIRST!

1.

You should write your answers for this part of the Comprehensive Examination in a
BLUE BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue book
that you use.

The number of POINTS for each problem indicates how elaborate an answer is ex-
pected. For example, an essay-type question worth 6 points or less doesn’t deserve
an extremely detailed answer, even though a person can expound at length on just
about any topic in computer science.

. The total number of points is 30, and the exam takes 30 minutes. This comcxdence

can help you plan your time.

This exam is OPEN BOOK. You may use notes, articles, or books—but no help from
other sentient agents such as other humans or robots.

Show your work, since PARTIAL CREDIT will be given for incomplete answers. For
example, you can get credit for making a reasonable start on a problem even if the
idea doesn’t work out; you can also get credit for realizing that certain approaches
are incorrect. On a true/false question, you might get partial credit for explaining
why you think something is true when it is actually false. But no partial credit can
be given if you write nothing.

35

Comprehensive: Numerical Analysis (30 points) Autumn 1991

Problem I: C
(16 points). Linear Systems and Matrices.

Consider the matrix
1
A=| - 0].
1

(a) (3 points). Show that the LU factorization of A does not exist. Give necessary and
sufiaent conditions for the LU factorization to exist.

W N e
W o= N

(b) (4 points). Show how a permutation can be introduced to obtain a matrix B for which
the LU factorization exists. Compute the LU factorization of this matrix B.

(¢) (4 points). Show how the LU factorization can be used to compute the third column of
A~! without computing 4-! completely.

(d) (5 points). Suppose that the function f(z) was measured in 4 points with the following
results:

z |~2]-110]1
f(2)]-1] 1T1T¢

We want to approximate f(z) by pz(z) = a + bz + cz? with the method of least squares.
Establish the corresponding linear system of equations and show that it does not possess O
a salution.

Problem II:
(14 points). Interpolation.

(a) (5 points). Construct the polynomial

Pi(z) = a2z’ + a1z + 0o
of degree 2 which interpalates the function

1

f(z) = 14=

at the points 20 = 0,2; = },2, = 1.
(b) (5 points). Give an upper bound for the interpolation error |f(z) — py(z)| on 0,1].

(c) (4 points). Show that the polynomial pa(z) of degree < n interpolating a function f(z) in
n+ 1points 29 < 2; < *++ < 2z, is unique.

O

36

Autumn 1991
Solution to the Numerical Analysis Examination
L '

a) The LU factorization does not exist since the 2 x 2 submatrix

we 3]

is singular. A necessary and sufficient condition is that all the submatrices
As = (8ij)1cijck » £ =1,....n are nonsingular.

b) A permutation of the second and third row gives

4 =2 1
B= [3 31] with the LU factorization
-2 1 0

1 4 =2 1
B= 3/4 1 0 9/2 1/4
-1/2 01 lo 0 1/2
¢) The third column of A~! can be computed by solving the linear system

Az = e3 which is equivalent to Bz = ¢;. This is done by solving the
triangular system Ly = ¢3, and then Uz = y.

d)
a~204+4c = -~}
a~-b+e = 1
a = 1
a+b+e = 4
The corresponding linear system is
1 -2 4 a -1
1 -1 1 b | = 1
1 0 0 ¢ = 1
1 11 ' 4
Since a = 1, we have
~20+4c = -2
~b+e = 0
b+e = 3

The second and third equation lead to & = ¢ = 3/2 but then the first
equation is not fulfilled (-2-3/2+ 4-3/2 # -2!).

37

n.
a)
ao = 1
+ la + ia = 2
a0 %1t 3% = ?
do + al + a’ - 5
et 1 | 1 5
501 + zdz = -§ - a = —la
a + a3 = -3 a = 5
The interpolating polynomial is py(z) = 22 -3z +1.
b)

1£(2) - pa(2)l €

B e

))zl -
max, 112)) ax lwa(2)]

@)= = el O

wy(z) = 2(z - -;-)(: =1), wy(z)=322-32+ 1

2
1 1 1 /1
Joax ea(z)l = lwz(§ z Vﬁ)l = ;\/ T

¢) Suppoee p, and f, are two polynomials interpolating f(z) at the points
29 <2y <::- < z,. Then, py = pp - fn is a polynomial of degree n with
n + 1 zeros. Therefore, jn =0 and p, = fs.

o

‘®

Computer Science Department
Stanford University
Comprehensive Examination in Software Systems
Autumn 1991

-~

October 11,' 1991

READ THIS FIRST!

1.

5.

You should write your answers for this part of the Cou_xprehensive Examination in a
BLUE BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue book
that you use.

Be sure you have all the pages of this exzm. There are 2 pages.

The number of POINTS for each problem indicates how elaborate an answer is ex-
pected. For example, an essay-type question worth 6 points or less doesn't deserve
an extremely detailed answer, even though a person can expound at length on just
about any topic in computer science.

The total number of points is 60, and the exam takes 60 minutes. This “coincidence”
can help you plan your time. ‘

This exam is OPEN BOOK. You may use notes, articles, or books—but no help from
other sentient agents such as other humans or robots.

Show your work, since PARTIAL CREDIT will be given for incomplete answers. For
example, you can get credit for making & reasonable start on a problem even if the
idea doesn't work out; you can also get credit for realizing that certain approaches
are incorrect. On a true/false question, you might get partial credit for explaining
why you think something is true when it is actually false. But no partial credit can
be given if you write nothing.

42

~t

Comprehensijve Exam: Software S

Note: If von are couvineed
Ate Yonr assnuption(s) as well

You yee

as the answoer,

1. 020 poiuts tora]) Coneury ney

ta) (7 points) Brlgarian Coy

ystems (60 points)
to make ag asnmptiony ta ay

upnter & Comnmuication, Iue. (BCCI)

A wnltiprocessor machiye which lacks AV 1vpe of indivisible

structions, Johu Meredit
the whole thiug has to be
hecanse of the above omission. You age

b. a well-knowy compn
Srapped (&t the cost of umeh wastec

called

Autumn 1991

swer tlye qnestion.

has just produced

read-wodife-wiie e
ter cousnltant, s claimed that

I time and tmoney)

A asecoud opinjoy, Deseribe what

You would reconnnend ag why. both for this wachine and whe they do i the

future, iucluding any issies with scale

and applications.

(h) {7 poiuts) Gam Smidley, » Young, somoewhat overconfident Programnier. elaims

that Le needs po ssuchrouization i the
curreut program he is wTiting for yon b

sense of locks, scaph
CCRNSC there
' — the other processes i

shared data sthictures. Give ay example of how Smidley cay
and an example of a uon-trivia] type of trick he might be

{¢) (6 points) You have the
to yonr surprise that she bas beey studyving o

records! There js one

“"How rap sigualing on a ¢
waiting process inside the
(the signalor and the sign
condition is tre when it
“that You are in the PL.D

you say?

thing she is confy

2. (20 points total) Virtual Memory Counsid
Ou a nuiprocessor machine with 100 Moegabytes of ewmory. (For the purposes of this
question, assume al] the 10ewory is available for application data, ang the code size
is negligible.) The simmulation works by scauning and npdatiug the entire wind tunne]
State. represented as | megabytes of data,

approximately 1 second of CPU time £

page fanlts,

{(a) (7 points) Calenlate ay ostimate of the o

of windtnuue], assmning a simple LRT

system. Deseribe any

factons/ AsSMIptic

- Program at Staunford.

ores. ete. in the coye.
isouly a siugle writer/uapdate

15t read /query the

still get himself in

sed on (which she proceeds to ask yon),

er the sinmlation of a

udition variabje inside a monitor avoid resming the
wonitor, so there are umltiple processes iy the monitor
aled), while still assuring the signaled Process that the
euters the mounitor™ she asks, (‘xpla.ining to the roadies
As all look on iy awe, what do

large wind tunc]

on cach time stop, Suppose that a page
size of 4 kilobytes, 8.3, millisecouds rotational

* (for round unbers),
T cach 10 megabytes of wind tunnel withont

lapsed time per titestep with 150 1,

A timestep takes

scheme beiug nsed iy the virtua] memory
‘.

u~ that might affect ¥

Mr estimate,

'gabytes

®

43

@

(B (7 poiuts) Suppose your job was to speed up this program { without getting more
hardware). and that the operating svstemn provided virtnal wmewory contols to
prepage and flnsh out portious of the address space. How wonld vou (re)strmeture
the program to take advantage of these facilities. and what soit of perforumuee
wight von expeet -when doue? Assumie cach prepage and flush operation cost 1
willisecoud of CPU thwe to start /complete 1/0 transfers. ete.

(¢j (6 poiuts) Deseribe all the additional (real world) factors that might further linit
the perforinance to be below what seews reasonable from the basic munbers above,

3. 120 poiuts total) File Systems Hiunmel Smackly. a new Masters student. claims that
file systews are totally irrelevant for the fature beeanse. with 64-bit addressing in
processors. we can finally have true single-level store systes, and keep all “objects™,
including files in the virtnal wemory system. Your roowmmate langhs heartily at this.
knowing that you missed some great parties to stndy how file systems work for this
exa. and now the technology is obsolete. Put them both in their place by describing:

(a) (7 points) the key fanctions of file systems.

(bj (9 points) why the basic modules and technignes won't disappear just becanse of
64-bit addressing.

(¢) (4 points) why single-level store may not be the great salvation cven for users.
applications, cte. that Smackly claims, even if every machine converted to 64-bit
addressing tomorrow.,

(Note: you may answer this question as three separate parts. or as one cowbined
answer covering all at once.) ‘ '

ol

Comprehensive Exam: Software Systems (60 points) Autumn 199}

1. (20 points total) Concurrency

machine would be best with applications with low-contention locks because of
the cost of contention on locks. and even the cost of acquiring the locks with.
out contention. (The extreme is to use the machine just for multi-programming.

a danger). Their omission does affect whether processes do busy-waiting. because
typical read-modify-write operations simply efficiently support busy-wa.iting. Pro-
cess blocking is implemented by the operating syvstem.

(b) A read-only process can run into problems in a variety of ways, even if there
is only one writer. For example, it might be report generator needs to balance
income and expense statements. An update during its scan of the data could-
produce inconsistent results. Op the other hand. Smidley might implement a
singly-linked list out of memory records that are either free or in the list. A

have Smidley implementing synchronization (in the sense of causing readers to
wait) are also suboptimal because they clearly do not recognize the wide range of
scenarios in which blocking can be avoid altogether.

(c) Paula, Hoare has the signaler suspend, the signaled acquire the monitor lock
immediately. and the signaler then resume as soon at the signaled had blocked
again or left the monitor. Thus, the signaled process seems the state of the

1

o

e

monitor at the time of the signal. but the signaler has to be careful when it
resumes. Brinch-Hansen. in actually trying to implement this nightmare (which
Hoare never hothered with) in Concurrent Pascal. required that the signal be the
last action taken by the signaler before leaving the monitor. But. Paula. just
like there are musicologists. and then there are those that produce hit records. in
practice. it is more common to implement monitors so as to reschedule the signaled
processes but have them wait for the monitor lock. like all other processes. and in
particular wait until the signaler departs the monitor. Consequently. a signaled
process has to recheck the condition to ensure it is true. despite the original
intentions of Tony Hoare. Thus. the signal is a hint. not a guarantee. {This
reduces the coupling of the monitor mechanism to the scheduler. and reduces the
typical number of context switches. all important things in practice.)

2. (20 points total) Virtual Memory

(a) The CPU time is clearly 15 seconds per pass. With LRU and a sequential scan of
the data corresponding to a more or less sequential scan of the pages. one would
expect a page fault on each of the 37.500 pages of data. for a cost of 373 seconds.
(There is no overlap of CPU and disk transfer time because we assume we are
just brainlessly tripping across each missing page.) Thus, a scan in the simple
approach takes 390 seconds. A factor that might make this worst is the mapping
of the data onto pages. For example. imagine that the data is arranged as two
stripes across all the pages such that we cycle through all the pages twice per
timestep. (Sounds bad, but some vectoring processing data organizations do in
fact lead to such bad locality behavior!) A simple improvement on this approach
is to use an “elevator™ approach, where one scans back and forward. so on each
scan, one only pages in the “last” 50 megabytes of the scan. so the cost is 125
seconds for page-in plus 15 seconds CPU, for 140 seconds per timestep.

(b) The obvious thing is to prepage and post-flush the pages as we use them. Simplis-
tically, that means we have 2 milliseconds per page-in and out and 37.500 pages.
so it takes 75 seconds for CPU to page in pages. and 13 seconds to compute. so
90 seconds. However, the latency for page-in/out in 10 milliseconds it still takes
at least 375 seconds to complete page-ins for one scan. or 125 seconds using the
elevator trick. (Here, we assume that we can page-in and page-out concurrently.
else the times are doubled.) Thus, the page-ahead/behind purely allows the CPU
time to be overlapped with the disk activity. but the elapsed time s the maximum
of the two. which is the disk in both cases. Clearly. this elapsed time would be
reduced if we could prepage multiple pages simultaneously, like if we had four in-
dependent disk channels, two simultaneous page-in and two for simultaneous page
out. Then. the disk latency is reduced to 75 seconds with the evalator approach.
and CPU time dominates, so a timestep is 90 seconds. A similar effect occurs if
we can do multi-page transfers, with a single charge of 1 ms for initiating, one
charge for rotational latency, and double or whatever the transfer time. (There

2

(¢)

paging (without the elevator/reverse scan) but that is bevond what we consider
here (Contact David Cheriton if interested.)

A Kkey real world factor not mentioned is seek time. which can be 10°s of mjl.
liseconds. so significant. W ithout significant locality. seek time could 2asily triple

be minimal. Also. the Page tables for a read-ahead page are naturaily referenced
as part of the read-ahead. so one would ot expect random, unpredictable page
faults from these structures either.

3. (20 points total) File Systems

(a)

(b)

The key functions of a file system include file access (i.e. open. close. read. write)
implementation — the basjc file abstract data type implementation — file data
buffering, disk allocation of space for files, file directory implementation. file pro-
tection, and facilities for backup and recovery. As part of the implementation-,
there are generally heuristics and algorithms that recognize common file proper-

Space can access its segments, in the conventional model). Thirdly, there is an
evolution problem in Practice. Some machines may have 64-bit addressing now,
but when will all have jt? One could argue that the existing mechanisms in a
typical virtyal memory mechanism for buffering (the Page pool), disk allocation

3

(¢)

and disk transfer can subsume that of the file system. but these tend to be the
saime basic mechanisms used in the file system. so one is considering a reduction
on software. not elimination of the techniques [have carefully studied. Moreover.
the trend is actually to have file systems mechanisms subsume virtual memory
mechanisms (including the unification of the file and page buffer pools) because
the file system mechanisms tend to be more powerful. In particular. one would
like to retain the file optimizations for read-ahead with sequential access. etc.
regards of whether you regard this as virtual memory system or file system. Also.
virtual memory systems have not conventionally provided facilities for persistent
storage in the area of backup and recovery. so file functionality there would also
be required. By the way. 64-bit addressing does not necessarily imply any changes
in the amount of data kept in physical memory. just that kept in virtual memory.
So. ves I missed some great parties. but I still learned some important stuff’

Himmel. too bad vou were watching Sesame Street when the dudes at MIT were
developing Multics. which basically did all this stuff 20 years ago. It didnt ex-
actly catch on. did it? More seriously. many applications and programmers seem
to just prefer the stream read/write interface rather than a memory-mapped I/0
interface to files. For one. it is safer because if your program goes wild. it is
less likely to corrupt the file. One might view that it throws file access into the
memory allocation problem, and memory corruption bugs are some of the hardest
for programmers. Also. lots of I/O refers to things other than disk files, such as
terminals. pipes, communication lines. etc These object do not have convenient
fixed-size blocks that are compatible with the virtual memory page size (neces-
sarily). so these devices would have to be handled by a separate mechanism. a
major step back from the Unix uniform I/O mechanisms. In general. history is
on my side: the idea of single-level store has been around for a long time. and
while not a failure completely. it has failed to displace the stream model of I/0.
and conceptual separation between virtual memory and secondary storage.

48

