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Computer Science Department 
S tan  ford University 

Comprehensive Examination in Automata, Languages, and  
Mathematical Theory of Computation 

Autumn 1991 

October 7, 1991 

READ THIS FIRST! 

1. You should write your answers for this part of the Comprehensive Examination in 
BLUE BOOKS. There are four problems in the exam; use a SEPARATE blue book for 
each problem. Be sure to write your MAGIC NUMBER on the cover of every blue book 
that you use. 

2. Be sure you have all the pages of this exam. There are 3 pages. 

3. The number of POINTS for each problem indicates, how elaborate an answer is ex- 
pected. The total number of points is 60, and the exam takes 60 minutes. This 
"coincidence" can help you plan your time. 

4. This exam is OPEN BOOK. 
I 0 1. Show your work, since PARTIAL CREDIT will be given for incomplete answers. 

L~ 



Comprehensive: Autumn 1991 
Automata ,  Languages, and Mathematical Theory of Computat ion (60 points) 

Problem 1 (24 poinb). Conaider a programming language built up using wignment, composition, while, 
if and the local variable stakmeot 

begin new r; S  end 
Assume the obvious Hoare axioms 
Axiom 1: Assignment Axiom 

{ P I f l ~ l )  t := t { P )  

Rule 2: Composition Rule 

Axiom 3: if-then-else Rule 
{ ~ ~ e ) S l { 9 l 9  { P A ~ S ~  t q )  
{ p )  if e  &err Sl elst S2 f i  { q )  ' 

Rule 4: while Rule 
@ A ~ I S { P )  

{ p )  while e do S od { p  A -u) 

Rule 5: Consequence Rule 

and 
Rule 16: Variable Declaration Rule 

{ P A Y = w ) S l ~ / z l { q l  )~wygfir@,S,,) .  
{ p )  begin new 2; S end { q )  

together with a background theory T (cf. Rule 5). Two program P1 and P2 are said to provably satisfy the 
same triples ift for rll p, q: 

{ p I P l { q l  8 I- { p ) P 2 { 9 ) .  
We abbreviate this to P 1 -  PZ. Justify your =*us briedy in the following questions. 
la. (4 points). Clearly -- b ao quivalenu relation. Is it necessarily a congruence (i.e., do the progun- 

ming primitives (; while ...) preserve this relation)? 
1 b. (4 points). If P1- PZ then are they aecemarily quivaknt semantically (i-e., as m a p  from s ~ o n s  ~o 

stores) for all mod& of T! 

Are the following program - equivalent? 

l c  . (4 points). z not fiec in P. 
PI = begin new s; P; end 
P 2 = P  

Id. (1 points). t not fm in P 
PI = begin new z; 

t := 0; 
P; . 

if x = 0 tbco diverge fi; 
a d  

P2 = diverge 



le. (4 poinfs). 
P1 = begin new z; P [ + / y ] ;  y := r ;  end 
P2 = P 

where P is a program. 
I f .  ( 4  poinu). 

P1 = begin new z; begin new y; t := 0 ;  y := 0 ;  P [ t / z o ,  y / z l ] ;  end 
P2 = begin new t ;  begin new y; 2 := 0 ;  y := 0 ;  P[y / zo ,  r / z l ] ;  end 

Prob lem 2 (16 points). &low is text that defines the concept of ordered tree and the insert operation 
within the Boyer-Moore logic. The rhell principle is wed to introduce ao abetrut data type, OT. Elements 
of OT are either empty (ET) or constructed from r numeric label together with left and right subtrccs. 
A predicate 0RDERED.TREE is introduced to specify the elemenb of the OT rhell that ate ordered trees. 
Finally the INSERT function is defined and a theorem, 0RDERED.TREE.INSERT is conjectured. The 
theorem states that INSERT applied to a number and an ordered tree nturcu an ordered tree. 

2a. (4 poinb). Give at least 5 a~ioiiw assumed by the theorem prover 88 r consequence of the Shell 
Definition. 

2b. (6 points). S t r k  a just'ification that the theorem prover might w to accept the definitiocl of the . 

0RDERED.TREE predicate. 
2c. (6 poinb). Give an instance of the induction principle that could be wd by the theorem prover to 

prove 0RDERED.TREE.INSEKI'. 

Shell Definition. 

Add the shell OT of three arguments with bottom object ET, recognize? OTP, acceamm LT, LABEL, and 
RT, type restrictions (0NE.OF OTP), (0NE.OF NUMBERP), and (ONE.OF OTP), and default values 
ET, ZERO, ET. 

Definition. 

(ORDERED-TREE X) - - 
(IF (NOT (OTP X)) 

F 
(IF (EQUAL (ET) X) 

T 
(AND (0RDERED.TREE (LT X)) 

(ORD€RED.TREE (RT X)) 
(OR (EQUAL (LT X) (ET)) (LESSP (LABEL (LT X)) (LABEL X))) 
(OR (EQUAL (RT X) (ET)) (LESSP (LABEL X)) (LABEL (KT X)))))) 

Definition. 

(INSEKT L X) - - 
(IF (NOT (W XI) 

(ET) 
(IF (EQUAL (ET) X) 

(OT (ET) L (ET)) 
(IF (LESSP (LABEL X) L) 

(OT (LT X ) (LABEL X) (INSERT L (RT X))) 
(IF (LESSP L (LABEL X)) 

(OT (INSERT L (LT X)) (LABEL X) (WT X )) 
X)))) 

9 .  



Theorem 0RDERED.TREE.INSEIYT. 
(IMPLIES (AND (NUMBERP L) (0RDERED.TREE X))  

(0RDERED.TREE (INSERT L X))) 

Problem 3 (10 points). A minimized deterministic finite state machine accepta all strings that contain a 
certain fixed string a of length L. What are the largest and smallcst number of states the machine might 
have? Justify your answer. 

Problem 4 (10 points). 
Consider the following program for finding a real-number approximation to the square root of a non- 

negataive real number r. 
z -0; 
v - mar(r, I); 
while c v do v - v/2; 

if (z + v ) l  r then z * z + v ;  
reiurn(z) 

4a. Write a specification that expresses what this program is doing. 
4b. Provide an inductive met t ion ,  well-founded set, and partial Function a d q u a k  for proving the total 

correctness of this program. It  is not oecesaary to give the proof. 



Comprehensive Solutions: Autumn 1991 
Automata, Languages, and Mathematical Theory of Compu tation (60 points) 

Problem 1 (24 poiota). (2 p b  for correct yeajoo aaswer; 2  p b  for correct reason]. 
l a .  Ye. Easily established by induction oo prooh (i.e., last rule used). 
lb .  No. P 1  is  z := 0; P 2  is while z > 0 do z := t - 1. 
l c .  Yes. Use Rule 16. 
Id. Yes. Use Rule 16 
le. No. 

y : = y + l  
t- {y = 0) P2 {y = 1) 
-,(k { y = ~ } P l { y = l ) )  

I f .  Yes. (Modulo missing 'ondn - a typo). Again use Rule 16. 

Problem 2 (16 points). 
2a. Axioms added include the following. 

(OR (EQUAL (cm I) r )  (EQUAL (or9 r )  r)) 
(OTP (OT I1 1 2  13))  
(OTP (En) 
E M  (EQUAL (OT I1 1 2  1 3 )  (ET) 1) 
(IHPLIES (AJD (o?p 1) (HOT (EQUAL I (ET)))) 

(EQUAL (OT (LT lo (LABKL 1) (Rt 1 ) )  XI) 
(INPLIES (OTP 11) (EQUAL (LT (OT x i  1 2  113)) 11)) 
(IltPLIES (IIUHEW 12)  (EQUAL (Ma (OT I1 X2 113)) 1 2 ) )  
(IMPLIES (OTP 13) (EQUAL (RT (OT ti 1 2  113)) ~ 3 ) )  
(INPLIES (OR (IOt  (OTP XI) 

(EQUAL x (€TI) 
(AID (JOT (rn 11)) (EQUAL x (OT I1 I2 X3)))) 

(EQUAL (LT 1) (ET))) 
(IIIPLIES (OR (am (OTP 1 ) )  

(EQUAL I (R)) 
(AID (lor ~IUMBW 12)) (EQUAL r (or x i  x2 13) 1) 

mu (LABE 1) (Zm) 1) 
( I n P L I E  (OR (OTP 1 ) )  

(EQUAL 1 (FT) 1 
(up (Ior (OTP 13)) (EQUAL I (m x i  12 X3)))) 

(EQUAL (1T 1) (Et))) 
(IM (rn TI) 
(107 (m PI) 
(IXPLIES (OTP X) (1QT (rD I))) ;; rD p r o t i o o a l y  i n t r o d u c e  r o c o g n i z e r  

2b. Them must be a w e l l - h d e d  relation r and a function l such that 
(IMPLIES ( U D  (QIP 1) (1OT (EQUAL X (€TI)) )  (r (B (LT XI (B 1;))) 
(IHPLIES ( A I D  (or9 X) (IQT (EQUAL X < € T I > ) >  <r (B (RT XI) (B XI>> 

are proveabk. Take l = COUIT, r = LESP. 

2c. Let (p L 1) = 
(IXPLIES (ABD (IUKBm L) (OBDEBB).TREE I ) )  

(0RDsasD.rasE ( I ISgur  L XI)) 
To instantiate the induction principal it hr d c i e n t  to find terrns q, r11,  rL1, 812, rL2 with at most 
L and I fret, a well-founded relation r ,  and a measure m meeting the conditions of the induction 
principle that 



( I I I P L I U  q (r (m rL1  8x1) (8  L X ) ) )  
( I I P L I S S  q (r (m rL2 8x2) (a L X I ) )  
( I IPLfSS  (DOT q) (p L XI )  
(IHPLIES ( A I D  q (p r L 1  s I1 )  (p st2 8x2)) (p L XI) 

are provable. This is satisfied by taking r and a as in 0 (m now ignoring ib first argument) and 

q = (Am (OTP x)  (DOT (EQUAL x (ET)))) 
rL1 = 8L2 = L 
8x1 = (LT X I  
812 = (RT X )  

Prob lem 3 (10 points). Distinct prefixes of i are inequivalent, so they must go to distinct s ta tu ,  requiring 
at  least L + 1 s t a b .  If the state encodes the longest prefix of s that is a suffix of the already-consumed 
input, L + 1 suffices. 

P rob lem 4 (10 points). 
Pa. (4 pts) 

{ r > O  A c>O)P{fi-c<z<fi). 

2b. [6 pts] The inductive assertion [3 pb] is given by 

and the well-founded aet and partial function [3 pts] are (N, <) a d  LfJ,  rapectivdy. 



Comprehcndvt Exam: Architaure (60 points) Autumn 1991 

1 .  (15 points total) lnrauction Set Design. 

Your company currently produces a load/store processor. The table below lisw the insauc- 
tion distributions (along with the insaction latencies) for your most important application- 
SPICE. 

latency (cycles) frequency 
intALU 1 a 45% 
branch 2 5% 
load 2 27% 
store 1 8% 
FPadd 4 7% 
FPmult 6 8% 

(a) (3 poinu) What is the CPI of execution (CPIe) for this machine? 

ANSWER: CPIe = (0.45+0.08) + (0.05+0.27)2 + (0.0714 + (0.08)6 
= 1.93 cycles/instr 

(b) (2 points) Now the wonderful p u p  in the technology lab have provided the next 
generation of the chip with m m  transiston, and the M S I  people say drat they can 
use these transistors to reduce the latcncy of the FPadd to 2 cycles and the FRnult 
to 4 cycles. What is the new CPIe? 

ANSWER: CPIe = (0.45+0.08) + (0.05+0.27) 2 + (0.07) 2 + (0.08) 4 
= 1.63 cycles/instr 

(c) (2 points) What is the resulting speedup, assuming no change iri the cycle time? 

ANSWER: speedup = 1.93 / 1.63 = 1.18% faster 

(d) (Spoinu)SomeotbcrdaringMSIdcsignmin thecompanyclrimthattbey~use 
thetsmcexar&uxs toimplenrcnrsomc ~lew,cocapkx ins tNCtiOLUTbe)rctlim 
that the FP, intALU, and memory pat arc essenriany independeat h n c b d  units, 
and thus, can cpm in paralkL They suggest two new typa of iampctioar: (I) m 
inst~ctioa that perfams r F '  ud r R-R intALU opmtbq d (2) an inraPctloa 
that perfonns a ~rcp;-ritr-indirect bd/stotc md a R-8 intALU o p m h .  Tbe bot~om 
line is that 20% of the intALU operrrtiont can be collapsed with r W t m e  apaacioa 
and that 12% of the intALU opedoas can be collapsed with a FP o p m t h  Whu 
is the resulting CPIe of this technique? State any assumptions that you mrhe. 

ANSWER: CPIe = (0.45-0.20-0.12+0.08) /O. 68 + ( (0.05+0.27) /O. 68) 2 
+ (0.07/0.68) 4 + (0.08/0.68) 6 = 2.37 cycles/instr 

I 

1 



(e) (3 points) Again, assuming no change in the cycle time, which use of the exua 
transistors gives better performance (please show a speedup comparison)?. 

C 
ANSWER: speedup = 1.93(1) / 2.37(0.68) = 1 . 2 0 ~  faster 

t h e r e f o r e  (dl is b e t t e r  



(A, .  -,? 2. (20 points total) Memory System Design 

You've k e n  given a promotion to memory system designer, and yo& company h u  the 
following questions far you. 

(a) (4 points) The cumnt OS uses a 4KB page size. Your boss is thinking about doing 
the virtual address translation in parallel with the instruction cache (Icache) access 
so that she can build a physical cache (is. no flushes or PIDs necessary). The W I  
designers tell you that you can have an Icache with an associativity of at mdat 5 
ways. What is the biggest-sized, physical Icache that you can build? How many bits 
of virtual address (VA) arc used to index into this Icache if the block size is 8 wcxds 
(1 word = 32-bits)? 

ANSWER: MaxSize = 5 4KB = 20KB 
index  = 12 - 2 - 3 = 7 b i t s  

(b) (2 points) Your boss's boss is really interested in building a 64-bit processor, i.e. a 
processor with a flat 64-bit virmal address space. If you designed the Icache as a 
virtually-tagged cache, how many bits of the -bit virtual address arc kept in tbe 
tags if the dam portion of the Icache is 32KB in size and only 2-way set assa%tive? 

ANSWER: tag = 64 - 15 + 1 - 50 b i t s  

R (c) (8 poinu) I€ we kept a 9-bit PID and a valid bit in the tag along with tbe rut of 
L.-,' the v h a l  address, what percentage of the total Icache space is consumed by the tag 

array for a 32-bit VA and for a 64-bit VA? The data portion of the Icache is still 
32KB in size and 2-way set associative. Please count only bits, not aansistat, and 

. ignore control logic. 

ANSWER: set s i z e  = 32KB / (2  * 328) = 512 e n t r i e s  => 1024 t a g s  

32 -b i t  VA: t a g  b i t s  = 1024 * (18+9+1) = 28672 b i t s  
data b i t s  = 32K 8 = 262144 b i t s  

28672 / (28672+262144) = 9.9% overhead 

6 4 - b i t  VA: tag b i t s  = 1024 * (50+9+1) = 61440 b i t s  
d a t a  b i t s  = 32K * 8 .= 262144 b i t s  

61440 / (61440+262144) = 19.0% overhead 

(d) (4 pints) To fully support this &bit addressing, someone suggcc adding 64- 
bit insauctions to the insauction set arcbitecturc so that large immediatu an be 
generated quickly. A problem with &bit insauctions is that they can fall arms 
Icache line boundaries because instructions only have to be word-aligned. If the 
l a h e  miss noe is 2% the miss penalty is 12 cycks, and -1ity that a 64- 
bit instruction falls across an Icache boundary is 6% what is the average memory 
access time (AMAT) for fetching an instruction? Assume that r 32-bit a a W t  



instruction can k fetched in 1 cycle if you hit in the Icache and if you Q not emu 
a line boundary. 

C 
ANSWER: AMAT = 1 + (0.02) (12) + (0.06) (1) = 1.30 c y c l e s  

(e) (2 points) This splitting increases the AMAT of the Icack, bat it also affects the 
virtual memory system. Assume your prarssor uses pages and 8 7LB, what is the 
ugly effect of these split insauctions? 

ANSWER: 2 TLB a c c e s s e s  are necessary f o r  sp1,it  f e t c h e s  that  
miss meaning that  a page f a u l t  can occur i n  the  middle 
o f  an ins truc t ion  miss. What do you do with t h e  f i r s t  
h a l f  o f  the ins truc t ion  f e t c h  i n  the meantime? 



3. (25 points total) Pipelining. 
The pipeline shown below has been designed to work at a very high clock rate. The 
pipeline ticks twice as fast as the memory latency, although the memory is pipelined so 
that it returns an item on every clock tick. The consequence is that both the instruction 
fetch and the memory loadlston operations have had to be split into two stages. 

IF1 - f i r s t  c y c l e  of i n s t r u c t i o n  f e t c h  
IF2 - second cyc le  of i n s t r u c t i o n  f e t c h  
R F  - i n s t r u c t i o n  decode and r e g i s t e r  f e t c h  
EX - ALUop OR'memory address c a l c u a t i o n  
M1 - f i r s t  c y c l e  of data  memory load  o r  s t o r e  
M 2  - second c y c l e  of da ta  memory load o r  s t o r e  
WB - write back r e s u l t  i n t o  register f i l e  

(a) (3 point) For such a high performance machine, is it a good idea to have the PC as 
one of the general purpose registers? If not, why not? 

ANSWER: I t  i s  not a goad idea  because it i n t e r f e r e s  w i t h  t h e  
a b i l i t y  t o  e f f i c i e n t l y  p i p e l i n e  t h e  machine. 

(b) (10 points) We arc considering the u&o£fb between the use of delayed branches 
and squashing branches. For the squashing branch case, assume that the machine 
executes along the not-taken path. If the branch is actually taken, then the write- 
back and memory operations corresponding m the incorrdy fetched instrucaons are 
suppressed For the m-squashing case, tbc following table gives the probabilities 
of filling the branch delay slots from code above the branch. If the probability that 
a branch is taken is 60%. which method do you recommend? Justify your decision 
quanti~vely. 

slot p r o b a b i l i t y  of f i l l  
1 75% 
2 25% 
3 5% 
4 2% 
5 1% 



( '  
ANSWER: (NOTE t h i s  answer i s  f o r  3 branch de lay  s l o t s ,  but 2 slot$-.f 
reasonable) 
CPI-branch-sq = fract ion  taken 4 + f r a c t i o n  not taken 1 - - - - 6  4-+ . 4  = 2 . 8  

CPI-branch-non-sq = 4 - (prob s l o t 1  f u l l  + prob s l o t 2  f u l l  - - 
+ prob z o t 3  G l l )  - 4 - ( . i s  + T25 + ,051 = 2 . 9 5  

Therefore, it  is b e t t e r  t o  have squashing branches. 



:) (6 points) Assuming that the processor has no hardware interlocks, rewrite the code 
sequence below inserting the necessary NOPs to avoid hazards. Assume that branches 
are not squashing. 

OR R5,R6 -> R7 
LD l(R1) -> R4 
ADD R1,RS -> RS 
A 3 D  R3, R4 -> R2 
ST R5 -> 2 (R1) 
ADD R7, R5 -> R4 
BEQ R2, RS, target 
AND Rl,R6 -> R1 

ANSWER: 
OR R5, R6 -> R7 
LD 1 (Rl) -> R4 
ADD R1, RS -> R5 
NOP 
ADD R3,R4 -> R2 
ST RS -> 2 (R1) 
ADD R7, RS -> R4 
BEQ R2, RS8 target 
NOP 
NOP 
NOP 
AND R1,R6 -> R1 

or, without any by-passing: 
OR RS,R6 -> R7 
LD 1 (Rl) -> R4 
ADD Rl, RS -> RS 
NOP 
NOP 
NOP 
ADD R3,R4 -> R2 
ST RS -> 2 (Rl) 
ADD R7,RS -> R4 
NOP 
NOP 

* 

BEQ RZ,RS,target 
NOP 



NOP 
NOP 
AND R l , R 6  -> R 1  

(d) (6 points) Reorganize the above code to use the fewest number of NOPs. 

ANSWER: 
LD 1 ( R 1 )  -> R 4  
OR R 5 0 R 6  -> R 7  
ADD R 1 ,  R S  -> R S  
ADD R 3 , R 4  -> R 2  
BEQ R Z , R S ,  target 
ST R 5  -> 2 ( R l )  
ADD R 7 ,  R S  -> R 4  
NOP 
AND R l , R 6  -> R 1  



Computer Science Department 
Stanford University 

Comprehensive Examination in Numerical Analysis 
Autumn 1991 

October 9, 1991 

READ THIS FIRST! 

1. You should write your answers for this part of the Comprehensive Examination in a 
BLUE BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue book 
that you use. 

2. The number of POINTS for each problem indicates how elaborate an answer is ex- 
pected. For example, an essay-type question worth 6 points or less doesn't deserve 
an extremely detailed answer, wen though a person can expound at length on just 
about any topic in computer science. 

3. . The total number of points is 30, and the exam takes 30 minutes. This "coincidencen 
can help you plan your time. 

4. This exam is OPEN BOOK. You may use notes, articles, or books-but no help from 

n other sentient agents such as other humans or robots. 
\, i 

5.  Show your work, since PARTIAL CREDIT will be given for incomplete cmswers. For 
example, you can get credit for making a reasonable start on a problem even if the 
idea doesn't work out; you can also get credit for realizing that certain approaches 
are incorrect. On a true/false question, you might get partial credit for explaining 
why you think something is true when it is actually false. But no partial credit can 
be given if ybu write nothing. 



Compnhenrive: Numerical Analyrh (SO pointr) Autumn 1991 

Problem I: 
(16 points). Linear Systems and Matrices. 

Consider the matrix 
4 -2 1 

(a) (3 points). Show that the LU factorization of A does not udst. Give necessary and 
suffiuent conditions for the LU factorization to exist. 

(b) (4 points). Show how a pennutation can be introduced to obtain a matrix B for which 
the LU factorization exists. Compute the LU factorization of this matrix 8. 

(c) (4 points). Show how the LU factorization cao be used to compute the third column of 
A" without computing A" completely. 

(d) (5 points). Suppose that the function f(z) was memmd'in 4 points with the following 
results: 

We want to approximate fir)  by ~ ( z )  = a + bz + u2 with the *ethod of l u r t  squares. 
Establish the mesponding linear system at equations and show that it does not pmem 
a solution. 

Problem 11: 

(14 points). Interpolation. 

(a) (5 points). Construct the polynomial 

of degree 2 which interpdates the function 

at  the poinu zo = O,zl = 3,t2 = 1. 

(b) (5 points). Give an uppu boand fot the interpolation emr 1 f (z) - n(z) l  on IO,l]. 

(c) ( I  points). Shw that the polynomial ~ ( z )  of d e g a  5 n inteaplating a hctio11 f (2) in 
~+lp&k;to< z ~ < * . . < Z ~  k d q ~ t .  



Autumn 1991 

Solution to the Numerical Analysis Examination 

I. 

a) The LU factorization doea not exist since the 2 x 2 submatrix 

ia singular. A necessary and sufficient condition is that dl the submatrices 
A& = ( ~ ~ ) ~ ~ i , j ~ ~  , k r 1 ,..., n are nonsingular. 

b) A permutation of the second and third row gives 

4 -2 1 
= [ - : , ] with the LO factorization 

c) The third column of A-I can be computed by solving the Linear system 
At = es which is equivalent to Bz = et.  This is done by solving the 
trianguh system L y  r el ,  and then Ut = y. 

d) 

The correspondmg b e a r  system is 

S i  a = 1, we have 
- 2 b + k  = -2 

. , 

-6 + e t 0 
b+e = 3 

The sccond and third equation lead to b = c = 3/2 but then the first 
equation ib not fulfilkd ( - 2  3 /2  + 4 312 # -2!). 



The interpolating plynomid is ~ ( z )  = f z3 - + 1. 

b) 

C )  Suppaw h and A are two p d y d a l s  hterpolatii f (s )  at the point. 
to < zl < . a .  < 2,. Then, =p,,-& t a p d y n d o f d e g m n  with 
n + 1 zem. Therefore, A i 0 and p,, f &. 



Computer Science Depart rnent 
Stanford University 

Comprehensive Examination in Software S y s t e m  

C 
Autumn 1991 

October 11, 1991 

READ THIS FIRST! 

1. You should write your answers for this part of the Comprehensive Examination in a 
BLUE BOOK. Be sure to write your MAGIC NUMBER 06 the cover of every blue book 
that you use. 

2. Be sure you have all the pages of this ex-. There are 2 pages. 

3. The number of POINTS for each problem indicates how elaborate aa answer is ex- 
pected. For arample, an essay-type question worth 6 points or less doan't deserve 
an extremely detailed answer, even though a person can expound at length on just 
about any topic in computer science. 

4. The total number of points is 60, and the exam takes 60 minutes. This "coincidence" 
cim help you plaa your time. 

5. This exam is OPEN BOOK. You may use notes, articles, or books-but no help from 
other sentient agents such as other humans or robots. 

6. Show your work, since PARTIAL CREDIT rill be given for incomplete answers. For 
example, you can get credit for making a reasonable start on a problem even if the 
idea doesn't work out; you can aIso get credit for realiziry that certain approaches 
are incorrect. On a true/false question, you might get partial credit for explaining 
why you think something is true when it is actually tk. But no partid credit can 
be given if you write nothing. 



Comprehensive Exam: Software Systems (60 points) Autumn 1991 
Note: If yo11 itr.c8 c.o~~viuc.tul yo11 ilc-tul to uttrk(* t u ~  ~~ \ \~ i i l~ l ) t i o i~  t o  ; I ~ I * W ( ~ I .  t l l (-  clti(.stit,ll. 

> t i l t  c u  yo11r t ~ ~ . ~ i i l l l ) t . i o i l (  s j  at\ \ ~ t * 1 1  i1.4 t 11(* illlk\V('r. 

Iil) 1 T poilltn4) B~l lgh~i i~ l  Coilll~lit(w k i.o11111111ili(.atio11 Ill(:. ! BCCI) IIH\ just ~)ro( l~i( . (~I  
i1 ~ l r r i l t i ~ ) r t n . t ~ ~ ~ r  rl~ircGinc* which 1iu.b an\. t.y1n8 of  il~cli\-isihl(* rceiul-iuoclify-\t-rit(* 
iuhtnlr.tiol~s. Jo111l 3IcnulitL. x wc*ll-liuowu c.olupilt.c*r c.ou~ilt.;t~lt. 11;~. (.lailll(*(l tlli~t 
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yo11 tvorlltl rc*t.on~ul(*u(l xucl why. 1n)t.h for t.kis luw-Liuc J U I ~  what tllc-y (lo in the- 
fiitiil-(*. iuc.liitliug any i.\%tic!s with seal<! wd applic-ationh. 

(1)) i T 1n)iut.s) G m  Sxlli(ll~> a yollug? ~o~u(!wbat ovt*t'c-o~lfi(l~t~t ~)rogI'aIi~I~~(8r. t:liLi~lls 
that ht8 u t ~ ~ l s  uo s>-u(-krouizatiou iu the was(* of l ~ k s .  sc-~~lxpkonn. c8tr.. iu th(* rou- 
c.~~n-c*ut. progaxrr kt* is snting for yo11 b(!(:xi1w t.hc\r(* is only a siugic wTit(*r/~~pclat(* 
1,rt)c.m~ for rw41 s k m l  data stnlc%irrc - thc othrr p r o ( . ( w s  ji~st r(~a11/(111(!ry t h ~  
shmrrt clrttx stnlc:tam. Give au muuplc of Low Sulidlc!y c-au still gc8t hi~uwlf irr 
t ro~l l lc  if not c:at(:fill. WO w rxwlplc of x uon-trivial type of tric-k Lc 11dght k? 
lrsiug t.o u ~ d c  coucnncut opcrati(ms (:~rrmrt. 

I tr ) i 6 poiuts) Yo11 kxw the ylcasirrc of meeting Pallla .\b(li~l at x pamy. i u ~ l  cliu-ovcr 
to yoonr~s~irprisc that shc has htvu stt~dying c:ou~-iirrcut progri~~llxlling II~\~W(Y*II  hit 
r(u:orcls! Thcre is ouc tkiug skc is c:oufi~wl on i whi(:h she: prcwmls t.o ask ? ~ i r ) .  
.-How m z ~  sigudhg on a ('ondition t w i h l c  hsicic a monitor a n i d  rcsi~xuiug t h ~  
waiting pr(x:m.s h\idc the mouit<)r: so thcrc we  tlmltiplc pr(n:t%zics iu thc uronitor 
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c-cltlditiou is tnlc whcu it cntcrs tbc nuouitor*' . slc asks, c:q~lKiuing to tkc rcwlils 

* 
that yo11 arc iu the Pk.D. program at Stxuforct. -4s lrll look ou iu awe. what (lo 
yo11 SHY? 

2. (20 p i n t s  total) Virtual Memory Consider thc hiuiilllrtion of.n lrugcc w h d  tnnnel 
ou rr truipnw:~~~r'mlu:hinc uitk 100 Mcgalpcs of ~uctnoxy. (For thc p~ul>cm of t h h  
cli~cstion, rrsiunc dl thc mluory is awil&lc for appli(rrrtiou Wcl tlm (:(H~c S~%C 

is ucgligiblc:.) The shulntiou works by sc:wuiug met npfntiug thc a t i r e  n ~ c l  tiruucl 
state, rcpmuk?<i rus K mq&>tts of data, ou cwh t h e  step. S i l y ~ ~  that a pagc 
fairlt tr-ts 10 milliw:on(Ls, uith a page hi%c of 4 liik)bps: 8.3. ~ ~ l i l l i ~ ~ ~ ~ u d s  rotational 
lat.(*u<r~- a d  1.7 uliUso(:oncb trtrusfcr time (for rcmnci nand)crs). A ti~u(%tcp t&(s 
apprtmiuxtcly 1 sc!t:oud of  CPV ti111c for cat41 10 urcg~bj tm of ~.iu(1 timud ulthoi~t. 
page faI1lts. 

(a) (7 yoiuts) Cd(mlatc cstimatc of thc ( : l q ~ ~ ~ l  time per titucst.~p uith 1.50 ~~l txa l )~- t ( s  
of mk(hnnuc1, ~ ~ n u r i u g  a simple LRC sc-!!~~trc k i u g  n m l  iu tkc! \-irt.i~al nlolnol~ 

'b 

sysirn.  Dmrfi?~! my fr\t'tol~/~'i.si~~q)tiou~ that might yo11r mtilllatt:. 



3. i 20 1)oillt.s t.ot.a.1) File Systems Hi~lln~c-1 Snlilc-kly. a nclw lla\tc*m sti~tlcnt.. c-litiu~s t l~ii t  
tilc- .s\'stc*l~ls tux8 tot.al1y i~~(*lc*viu~t, for thc* fiit.ilrc- I)(*c.tiilw*. with 64I)it ~tll(lrc\sillg iu 
1)roi-cswns. wc8 ('HU filldly l~avc* t111(* siug1~-lc\'c*l storc8 s>?it(ltls. ~d li(*(*~) d l  ."ol)j(u-ts" . 
i~~c:liltliug Blc3 in thc \irtutd 111c11lox-y systcru. 1i)ilr roorln~mt.(: 1a11ghs Lc*xrtily at this. 
knowilly that )-oil nlistt(ul MIIU(* @(*at 11)arti(3 t-o st.ii(iy how file syst,(-111s work for this 
(*x~uI~. w(l now t LC tcc-kuology is oI)solctc*. Pilt t 11c*nl I~ot  h iu t. hcit pliu-c* I)y tl(wribing: 

(a) ( 7  p 0 i t s )  tkt! key filu(-tious of file syst(l111s. 

(bj  (9 points) why thc basic: ru~o(li~lcls w(t twlnicprcs wou't (lisnppcar just ba:ailw of 
6Cbit uklrtxsing. 

((.) ( 4  points) why siuglc-lc\d stx~rc may 11ot be the* p a t  ..4\ '~tic)n cvcn for 1 ~ ~ ~ 1 s .  

a.ppli(:atioust ctc. that S111~:kly c:lahust cv(!n if c\:cry m111~1:hhc (:onw~tcd t.o W l ~ i t  
iul(lrcx\iug tonlomow. 

(Sow: yo11 may W S W ~  this (li~csiiou HS thrw w p u a t c  parts. or as ouc combicct 
wsw(!r c:o\'orhg dl at ou(:c.) 



Con~prehens ive  Exam: Software Systems (60 points) Autumn 1991 

1. (30 points total) Concurrfncy 

( a )  ( 7  points) Synchronization can l>e implemented using Dekker's a.lgori t hm. Lam- 
port's algorithm.. etc. assuming that BCCI has designed the machine with atomic 
read and write operations (so a read operation never returns the result of a partial 
write). Thus. the machine can still be useful but they should market the machine 
according to the costs of this approach. Sarnely. the machine would be best with 
fewer processors (ideally 3) to simplify the Dekker's implementation. -4150. the 
machine would be best with applications with low-con tent ion locks because of 
the cost of contention on locks. and even the cost of acquiring the locks with- 
out contention. (The extreme is to use the machine just for multi-programming. 
when only the operating system executes with coupled parallelism.) Of course. all 

, 

this assumes that the Bulgarians dont surprise us by announcing they provided 
a -splity compare-and-swap instruction like in the MIPS RH)OO. For the future. 
you advise them t-o provide hardware support for locking to support fine-gain 
concurrency. but no fancy hardware semaphores. etc. (assuming you think that is 
a danger). Their omission does affect whether processes do busy-waiting. because 
typical read-modify-write operations simply efiiciently support busy-waiting. P r c ~  
cess blocking is implemented by the operating system. 

(b) A read-only proc& can run into problems in a mrietg of ways. even if there 
is only one writer. For example? it might be report generator needs to balance 
income and expense statements. An update during its scan of the data could 
produce inconsistent results. On the other hand. Smidley might implement a 
singlylinlied list out of memory records that are either free or in the list. A 
record can be i n k e d  as a single write (after initialization) and removed with a 
single write. The updater can also increment a generation number for the data 
structure SO the reader processes can determine if the data structure might have 
changed during their access, and then simply redo the operation if so. Another 
good example k having the writer update a shadow copy of a data structure and 
then replace the real data structure with the shadow copy in one atomic write to a 
pointer, for instance. Answers to the first part that include faking multiple writers, 
such as having the readers ssk another process t o  do the writes. are considerable 
suboptimal because they indicate a lack of appreciation of common readers/single 
writer codicts, which are important.. Answers to the second part that basically 
have Smidlej- implementing synchronization (in the sen& of causing readers to  
wait) are also suboptimal bexause they clearly do not recognize the wide range of 
scenarios in which blocking can be avoid altogether. 

(c) Paula, Hoare has the signaler suspend, the signaled acquire the monitor lock 
immediately. and the signaler then resume as soon at the signaled had blocked 
again or left the monitor. Thus. the signaled process seems the state of the 



monitor at the time of the signal. hut the signaler has to be careful when i t  
resunles. Brinch-Hansen. in actually trying to implement this nightmare (which 
Hoare ne\-er hot bered wi th )  in Concurrent Pascal. required that the signal be the 
last action taken I)y the signaler before leal-ing the monitor. But. Paula. just 
like there are musicologists. and then there are those that produce hit records. in 
practice. it is more common to implement monitors so as to reschedule the signaled 
processes hut  have them wait for the monitor lock. like all other processes. and in 
particular wait until the signaler departs the monitor. Consequently. a signaled 
process has to recheck the condition to ensure it is true. despite the original 
intentions of Ton?. Hoare. Thus. the signal is a hint. not a guarantee. (This 
reduces the coupling of the monitor mechanism to the scheduler. and reduces the 
typical number of contest switches. all important things in practice.) 

2. (20 points total) Virtual Memory 

!a) The CPC' time is clearly 1.3 seconds per pass. \Vith LRC' and a sequential scan of 
the data corresponding t.o a more or less sequential scan of the pages. one would 
expect a page fault on each of the 3i..MO pages of data. for a c&t of 3iS seconds. 
(Then is no overlap of CPU and disk transfer time because we assume we are 
just brainlessly tripping across eaih missing page.) Thus, a scan in the simple 
approach takes 390 seconds. A factor that might make this worst is the mapping 
of the data onto pages. For example. imagine that the data is arranged as two 
stripes across all the pages such that we cycle through all the pages twice per 
timestep. (Sounds bad, but some vectoring processing data organizations do in 
fact lead to such bad locality behavior!) -4-simple improvement on this approach 
is to use an 'elevator' approach, where one scans back and fornard. so on each 
scan, one only pages in the 'last" 50 megabytes of the sea. so the cost is 125 
seconds for page-in plus 15 seconds CPU, for 110 seconds per timestep. 

(b)  The obvious thing is to prepage and post-flush the pages as we use them. Simplis- 
tically, that means we have 2 milliseconds per page-in and out and 37.500 pages. 
so it takes 75 seconds for CPC' to page in pages. and 1-5 seconds to compute. so 
90 seconds. However, the latency for page-in/out in 10 milliseconds it still takes 
at least 37.3 seconds to complete page-ins for one scan. or 125 seconds using the 
e l e \ ~ r  trick. (Here, we assume that we can page-in and page-out concurrently. 
else the times are doubled.) Thus, the page-aheadjbehind purely allows the CPU 
time to be overlapped with the disk activity. but the elapsed time is the maximum 
of the two. which is the disk in both cases. Clearly. this elapsed time would be 
reduced if we could prepage multiple pages simultaneously, like if we had four in- 
dependent disk channels, two simultaeous page-in and two for simultaneous page 
out. Then. the disk latency is reduced to 7.3 seconds with the emlator approach. 
and CPr time dominates, so a timestep is 90 seconds. A similar effect occun if 
we can do multi-page transfers, with a single charge of 1 ms for initiating, one 
charge for rotational latency, and double or whatever the transfer time. (There 



are generally limits on the number of pages of contiguous transfer without a seek 
or rot.ar ional delay though.) Clearly. that could get the disk 110 fully overlapped 
{ri t h t l ~ e  CPL' time a.5 well. There is at least one addir iona sc l~e~~le  for mioinlizing 
paging wit  hout the elevator/reverse scan) but that is btvond what we collsider 
here (Contact David Cheriton if interested. ) 

cc 1 .\ key real world factor not mentioned is seek time. which can be 10's of mil- 
liseconds. so significant. U'i t hout significant locality. seek time could easily triple 
t he disk a.ccess time. and thus triple the elapsed time for the timestep. .hot her 
factor is the available 1/0 bandwidth. .As described above. the elapsed time with  
4 chanaels is far less than one channel. The final other factor is contention with 
other applications and system services running on the machine. which could place 
additional competing demands on the memory. 110 bandwidth and CPC'. further 
$10~-ing doan the esecut ion of the program. There is some effect bkause of paging 
of the operating system data structures themselves. such as page tables. How- 
ever. with any reasonable V M  design. the page tables are a smallpercentage of 
the size of the virtual rnemor?.. like 3 percent or less. so their overall effect should 
be minimal. Also. the page tables for a read-ahead page are naturaily referenced 
as part of the read-ahead. so one would not expect random. unpredictable page 
faults from these structures either. 

3. (20 points total) File Systems 

(a) The key functions of a file system include file access (i.e. open. close. read. write) 
implementation - the basic file abstract data type implementation - file data 
buffering. disk allocation of space for files, file directory implementation. file pro- 
tection, and facilities for backup and recovery. -4s part of the implementation, 
there are generally heuristics and algorithms that recognize common file proper- 
ties: such as most files are short, most files are read sequentially in total, and 
most flles are short -lived. 

(b)  The &bit addressing allows one to address all files as part of this large address 
space in theory (perhaps) but there are problems in practice. First, most fifes are 
small but some are very large, and incrementally grow to a large size. like log files. 
Locating gigab-ytes of .address space per tile could we up even a &-bit address 
space, but less means that a file might have to change its name as it got bigger. 
Second, users will want to identi@ files by character-string names anyway so there 
still has to be a file directory system. This directory system or some additiond 
mechanism would still be required to implement fde protection and security: which 
is tgpically lacking from a virtual memory system (because only one address 
space can access its segments, in the conventional model). Thirdly, there is an 
evolution problem in practice. Some machines may have 64-bit addressing now, 
but when will all have it? One could argue that the existing mechanisms in a 
t5-pica1 virtual memoc mechanism for butfering (the page pool), disk allocation 



and disk transfer can subsume that of the file system. but these tend to be the 
same basic mechanisnls used in the file system. so one is considering a reduction 
on software. not elimination of the techniques I have carefull!. studied. .\[oreover. 
the trend is actually to have file systems mechanisms suI>sume virtual menlor!. 
nlechanisms (including the unification of the file and page buffer pools) because 
the file system mechanisms tend to be more powerfu!. Iq particular. one would 
like to retain the file optimizations for read-ahead with sequential access. etc. 
regards of whether you regard this as virtual memory system or file system. .4lso. 
virtual memory systems have not conventionally provided facilities for persistent 
storage in the area of backup and recovery. so file functionality there would also 
he required. By the way. 64-bit addressing does not necessarily imply any changes 
in the amount of data kept in physical memory. just that kept in virtual memory. 
So. yes I misdd some great parties. but I still learned some important stuff! 

( c )  Himmel. too bad you were watching Sesame Street when the dudes at MITT were 
developing llultics. which basically did all this stuff 20 years ago. It didnt ex- 
actly catch on. did it? More seriously. many applications and programmers seem 
to just prefer the stream r e a d l ~ i t e  interface rather than a memory-mapped 1/0 
interface to files. For one. it is safer because if your program goes wild. it is 
less likely to corrupt the fle. One might view that it throws file access into the 
memory allocation problem, and memory corruption bugs are some of the hardest 
for programmers. Also. lots of 1/0 refers to things other than disk files, such as 
terminals. pipes, communication lines. etc These object do not have convenient 
fixed-size blocks that are compatible with the virtual memory page size (neces- 
sarily). so these devices would have to  be handled by a separate mechanism. a 
major step back from the Vnix uniform 110 mechanisms. In general. history is 
on my side: the idea of single-level store has been around for a long time. and 
while not a failure completely. it has failed to displace the stream model of I/O. 
and conceptual separation between virtual memory and secondary storage. 


