
Comprehcndvt Exam: Architaure (60 points) Autumn 1991

1 . (15 points total) lnrauction Set Design.

Your company currently produces a load/store processor. The table below lisw the insauc-
tion distributions (along with the insaction latencies) for your most important application-
SPICE.

latency (cycles) frequency
intALU 1 a 45%
branch 2 5%
load 2 27%
store 1 8%
FPadd 4 7%
FPmult 6 8%

(a) (3 poinu) What is the CPI of execution (CPIe) for this machine?

ANSWER: CPIe = (0.45+0.08) + (0.05+0.27)2 + (0.0714 + (0.08)6
= 1.93 cycles/instr

(b) (2 points) Now the wonderful p u p in the technology lab have provided the next
generation of the chip with m m transiston, and the M S I people say drat they can
use these transistors to reduce the latcncy of the FPadd to 2 cycles and the FRnult
to 4 cycles. What is the new CPIe?

ANSWER: CPIe = (0.45+0.08) + (0.05+0.27) 2 + (0.07) 2 + (0.08) 4
= 1.63 cycles/instr

(c) (2 points) What is the resulting speedup, assuming no change iri the cycle time?

ANSWER: speedup = 1.93 / 1.63 = 1.18% faster

(d) (Spoinu)SomeotbcrdaringMSIdcsignmin thecompanyclrimthattbey~use
thetsmcexar&uxs toimplenrcnrsomc ~lew,cocapkx ins tNCtiOLUTbe)rctlim
that the FP, intALU, and memory pat arc essenriany independeat h n c b d units,
and thus, can cpm in paralkL They suggest two new typa of iampctioar: (I) m
inst~ctioa that perfams r F ' ud r R-R intALU opmtbq d (2) an inraPctloa
that perfonns a ~rcp;-ritr-indirect bd/stotc md a R-8 intALU o p m h . Tbe bot~om
line is that 20% of the intALU operrrtiont can be collapsed with r W t m e apaacioa
and that 12% of the intALU opedoas can be collapsed with a FP o p m t h Whu
is the resulting CPIe of this technique? State any assumptions that you mrhe.

ANSWER: CPIe = (0.45-0.20-0.12+0.08) /O. 68 + ((0.05+0.27) /O. 68) 2
+ (0.07/0.68) 4 + (0.08/0.68) 6 = 2.37 cycles/instr

I

1

(e) (3 points) Again, assuming no change in the cycle time, which use of the exua
transistors gives better performance (please show a speedup comparison)?.

C
ANSWER: speedup = 1.93(1) / 2.37(0.68) = 1 . 2 0 ~ faster

t h e r e f o r e (dl is b e t t e r

(A, . -,? 2. (20 points total) Memory System Design

You've k e n given a promotion to memory system designer, and yo& company h u the
following questions far you.

(a) (4 points) The cumnt OS uses a 4KB page size. Your boss is thinking about doing
the virtual address translation in parallel with the instruction cache (Icache) access
so that she can build a physical cache (is. no flushes or PIDs necessary). The W I
designers tell you that you can have an Icache with an associativity of at mdat 5
ways. What is the biggest-sized, physical Icache that you can build? How many bits
of virtual address (VA) arc used to index into this Icache if the block size is 8 wcxds
(1 word = 32-bits)?

ANSWER: MaxSize = 5 4KB = 20KB
index = 12 - 2 - 3 = 7 b i t s

(b) (2 points) Your boss's boss is really interested in building a 64-bit processor, i.e. a
processor with a flat 64-bit virmal address space. If you designed the Icache as a
virtually-tagged cache, how many bits of the -bit virtual address arc kept in tbe
tags if the dam portion of the Icache is 32KB in size and only 2-way set assa%tive?

ANSWER: tag = 64 - 15 + 1 - 50 b i t s

R (c) (8 poinu) I€ we kept a 9-bit PID and a valid bit in the tag along with tbe rut of
L.-,' the v h a l address, what percentage of the total Icache space is consumed by the tag

array for a 32-bit VA and for a 64-bit VA? The data portion of the Icache is still
32KB in size and 2-way set associative. Please count only bits, not aansistat, and

. ignore control logic.

ANSWER: set s i z e = 32KB / (2 * 328) = 512 e n t r i e s => 1024 t a g s

32 -b i t VA: t a g b i t s = 1024 * (18+9+1) = 28672 b i t s
data b i t s = 32K 8 = 262144 b i t s

28672 / (28672+262144) = 9.9% overhead

6 4 - b i t VA: tag b i t s = 1024 * (50+9+1) = 61440 b i t s
d a t a b i t s = 32K * 8 .= 262144 b i t s

61440 / (61440+262144) = 19.0% overhead

(d) (4 pints) To fully support this &bit addressing, someone suggcc adding 64-
bit insauctions to the insauction set arcbitecturc so that large immediatu an be
generated quickly. A problem with &bit insauctions is that they can fall arms
Icache line boundaries because instructions only have to be word-aligned. If the
l a h e miss noe is 2% the miss penalty is 12 cycks, and -1ity that a 64-
bit instruction falls across an Icache boundary is 6% what is the average memory
access time (AMAT) for fetching an instruction? Assume that r 32-bit a a W t

instruction can k fetched in 1 cycle if you hit in the Icache and if you Q not emu
a line boundary.

C
ANSWER: AMAT = 1 + (0.02) (12) + (0.06) (1) = 1.30 c y c l e s

(e) (2 points) This splitting increases the AMAT of the Icack, bat it also affects the
virtual memory system. Assume your prarssor uses pages and 8 7LB, what is the
ugly effect of these split insauctions?

ANSWER: 2 TLB a c c e s s e s are necessary f o r sp1,it f e t c h e s that
miss meaning that a page f a u l t can occur i n the middle
o f an ins truc t ion miss. What do you do with t h e f i r s t
h a l f o f the ins truc t ion f e t c h i n the meantime?

3. (25 points total) Pipelining.
The pipeline shown below has been designed to work at a very high clock rate. The
pipeline ticks twice as fast as the memory latency, although the memory is pipelined so
that it returns an item on every clock tick. The consequence is that both the instruction
fetch and the memory loadlston operations have had to be split into two stages.

IF1 - f i r s t c y c l e of i n s t r u c t i o n f e t c h
IF2 - second cyc le of i n s t r u c t i o n f e t c h
R F - i n s t r u c t i o n decode and r e g i s t e r f e t c h
EX - ALUop OR'memory address c a l c u a t i o n
M1 - f i r s t c y c l e of data memory load o r s t o r e
M 2 - second c y c l e of da ta memory load o r s t o r e
WB - write back r e s u l t i n t o register f i l e

(a) (3 point) For such a high performance machine, is it a good idea to have the PC as
one of the general purpose registers? If not, why not?

ANSWER: I t i s not a goad idea because it i n t e r f e r e s w i t h t h e
a b i l i t y t o e f f i c i e n t l y p i p e l i n e t h e machine.

(b) (10 points) We arc considering the u&o£fb between the use of delayed branches
and squashing branches. For the squashing branch case, assume that the machine
executes along the not-taken path. If the branch is actually taken, then the write-
back and memory operations corresponding m the incorrdy fetched instrucaons are
suppressed For the m-squashing case, tbc following table gives the probabilities
of filling the branch delay slots from code above the branch. If the probability that
a branch is taken is 60%. which method do you recommend? Justify your decision
quanti~vely.

slot p r o b a b i l i t y of f i l l
1 75%
2 25%
3 5%
4 2%
5 1%

('
ANSWER: (NOTE t h i s answer i s f o r 3 branch de lay s l o t s , but 2 slot$-.f
reasonable)
CPI-branch-sq = fract ion taken 4 + f r a c t i o n not taken 1 - - - - 6 4-+ . 4 = 2 . 8

CPI-branch-non-sq = 4 - (prob s l o t 1 f u l l + prob s l o t 2 f u l l - -
+ prob z o t 3 G l l) - 4 - (. i s + T25 + ,051 = 2 . 9 5

Therefore, it is b e t t e r t o have squashing branches.

:) (6 points) Assuming that the processor has no hardware interlocks, rewrite the code
sequence below inserting the necessary NOPs to avoid hazards. Assume that branches
are not squashing.

OR R5,R6 -> R7
LD l(R1) -> R4
ADD R1,RS -> RS
A 3 D R3, R4 -> R2
ST R5 -> 2 (R1)
ADD R7, R5 -> R4
BEQ R2, RS, target
AND Rl,R6 -> R1

ANSWER:
OR R5, R6 -> R7
LD 1 (Rl) -> R4
ADD R1, RS -> R5
NOP
ADD R3,R4 -> R2
ST RS -> 2 (R1)
ADD R7, RS -> R4
BEQ R2, RS8 target
NOP
NOP
NOP
AND R1,R6 -> R1

or, without any by-passing:
OR RS,R6 -> R7
LD 1 (Rl) -> R4
ADD Rl, RS -> RS
NOP
NOP
NOP
ADD R3,R4 -> R2
ST RS -> 2 (Rl)
ADD R7,RS -> R4
NOP
NOP

*

BEQ RZ,RS,target
NOP

NOP
NOP
AND R l , R 6 -> R 1

(d) (6 points) Reorganize the above code to use the fewest number of NOPs.

ANSWER:
LD 1 (R 1) -> R 4
OR R 5 0 R 6 -> R 7
ADD R 1 , R S -> R S
ADD R 3 , R 4 -> R 2
BEQ R Z , R S , target
ST R 5 -> 2 (R l)
ADD R 7 , R S -> R 4
NOP
AND R l , R 6 -> R 1

