
Con~prehens ive Exam: Software Systems (60 points) Autumn 1991

1. (30 points total) Concurrfncy

(a) (7 points) Synchronization can l>e implemented using Dekker's a.lgori t hm. Lam-
port's algorithm.. etc. assuming that BCCI has designed the machine with atomic
read and write operations (so a read operation never returns the result of a partial
write). Thus. the machine can still be useful but they should market the machine
according to the costs of this approach. Sarnely. the machine would be best with
fewer processors (ideally 3) to simplify the Dekker's implementation. -4150. the
machine would be best with applications with low-con tent ion locks because of
the cost of contention on locks. and even the cost of acquiring the locks with-
out contention. (The extreme is to use the machine just for multi-programming.
when only the operating system executes with coupled parallelism.) Of course. all

,

this assumes that the Bulgarians dont surprise us by announcing they provided
a -splity compare-and-swap instruction like in the MIPS RH)OO. For the future.
you advise them t-o provide hardware support for locking to support fine-gain
concurrency. but no fancy hardware semaphores. etc. (assuming you think that is
a danger). Their omission does affect whether processes do busy-waiting. because
typical read-modify-write operations simply efiiciently support busy-waiting. P r c ~
cess blocking is implemented by the operating system.

(b) A read-only proc& can run into problems in a mrietg of ways. even if there
is only one writer. For example? it might be report generator needs to balance
income and expense statements. An update during its scan of the data could
produce inconsistent results. On the other hand. Smidley might implement a
singlylinlied list out of memory records that are either free or in the list. A
record can be i n k e d as a single write (after initialization) and removed with a
single write. The updater can also increment a generation number for the data
structure SO the reader processes can determine if the data structure might have
changed during their access, and then simply redo the operation if so. Another
good example k having the writer update a shadow copy of a data structure and
then replace the real data structure with the shadow copy in one atomic write to a
pointer, for instance. Answers to the first part that include faking multiple writers,
such as having the readers ssk another process t o do the writes. are considerable
suboptimal because they indicate a lack of appreciation of common readers/single
writer codicts, which are important.. Answers to the second part that basically
have Smidlej- implementing synchronization (in the sen& of causing readers to
wait) are also suboptimal bexause they clearly do not recognize the wide range of
scenarios in which blocking can be avoid altogether.

(c) Paula, Hoare has the signaler suspend, the signaled acquire the monitor lock
immediately. and the signaler then resume as soon at the signaled had blocked
again or left the monitor. Thus. the signaled process seems the state of the

monitor at the time of the signal. hut the signaler has to be careful when i t
resunles. Brinch-Hansen. in actually trying to implement this nightmare (which
Hoare ne\-er hot bered wi th) in Concurrent Pascal. required that the signal be the
last action taken I)y the signaler before leal-ing the monitor. But. Paula. just
like there are musicologists. and then there are those that produce hit records. in
practice. it is more common to implement monitors so as to reschedule the signaled
processes hut have them wait for the monitor lock. like all other processes. and in
particular wait until the signaler departs the monitor. Consequently. a signaled
process has to recheck the condition to ensure it is true. despite the original
intentions of Ton?. Hoare. Thus. the signal is a hint. not a guarantee. (This
reduces the coupling of the monitor mechanism to the scheduler. and reduces the
typical number of contest switches. all important things in practice.)

2. (20 points total) Virtual Memory

!a) The CPC' time is clearly 1.3 seconds per pass. \Vith LRC' and a sequential scan of
the data corresponding t.o a more or less sequential scan of the pages. one would
expect a page fault on each of the 3i..MO pages of data. for a c&t of 3iS seconds.
(Then is no overlap of CPU and disk transfer time because we assume we are
just brainlessly tripping across eaih missing page.) Thus, a scan in the simple
approach takes 390 seconds. A factor that might make this worst is the mapping
of the data onto pages. For example. imagine that the data is arranged as two
stripes across all the pages such that we cycle through all the pages twice per
timestep. (Sounds bad, but some vectoring processing data organizations do in
fact lead to such bad locality behavior!) -4-simple improvement on this approach
is to use an 'elevator' approach, where one scans back and fornard. so on each
scan, one only pages in the 'last" 50 megabytes of the sea. so the cost is 125
seconds for page-in plus 15 seconds CPU, for 110 seconds per timestep.

(b) The obvious thing is to prepage and post-flush the pages as we use them. Simplis-
tically, that means we have 2 milliseconds per page-in and out and 37.500 pages.
so it takes 75 seconds for CPC' to page in pages. and 1-5 seconds to compute. so
90 seconds. However, the latency for page-in/out in 10 milliseconds it still takes
at least 37.3 seconds to complete page-ins for one scan. or 125 seconds using the
e l e \ ~ r trick. (Here, we assume that we can page-in and page-out concurrently.
else the times are doubled.) Thus, the page-aheadjbehind purely allows the CPU
time to be overlapped with the disk activity. but the elapsed time is the maximum
of the two. which is the disk in both cases. Clearly. this elapsed time would be
reduced if we could prepage multiple pages simultaneously, like if we had four in-
dependent disk channels, two simultaeous page-in and two for simultaneous page
out. Then. the disk latency is reduced to 7.3 seconds with the emlator approach.
and CPr time dominates, so a timestep is 90 seconds. A similar effect occun if
we can do multi-page transfers, with a single charge of 1 ms for initiating, one
charge for rotational latency, and double or whatever the transfer time. (There

are generally limits on the number of pages of contiguous transfer without a seek
or rot.ar ional delay though.) Clearly. that could get the disk 110 fully overlapped
{ri t h t l ~ e CPL' time a.5 well. There is at least one addir iona sc l~e~~le for mioinlizing
paging wit hout the elevator/reverse scan) but that is btvond what we collsider
here (Contact David Cheriton if interested.)

cc 1 .\ key real world factor not mentioned is seek time. which can be 10's of mil-
liseconds. so significant. U'i t hout significant locality. seek time could easily triple
t he disk a.ccess time. and thus triple the elapsed time for the timestep. .hot her
factor is the available 1/0 bandwidth. .As described above. the elapsed time with
4 chanaels is far less than one channel. The final other factor is contention with
other applications and system services running on the machine. which could place
additional competing demands on the memory. 110 bandwidth and CPC'. further
$10~-ing doan the esecut ion of the program. There is some effect bkause of paging
of the operating system data structures themselves. such as page tables. How-
ever. with any reasonable V M design. the page tables are a smallpercentage of
the size of the virtual rnemor?.. like 3 percent or less. so their overall effect should
be minimal. Also. the page tables for a read-ahead page are naturaily referenced
as part of the read-ahead. so one would not expect random. unpredictable page
faults from these structures either.

3. (20 points total) File Systems

(a) The key functions of a file system include file access (i.e. open. close. read. write)
implementation - the basic file abstract data type implementation - file data
buffering. disk allocation of space for files, file directory implementation. file pro-
tection, and facilities for backup and recovery. -4s part of the implementation,
there are generally heuristics and algorithms that recognize common file proper-
ties: such as most files are short, most files are read sequentially in total, and
most flles are short -lived.

(b) The &bit addressing allows one to address all files as part of this large address
space in theory (perhaps) but there are problems in practice. First, most fifes are
small but some are very large, and incrementally grow to a large size. like log files.
Locating gigab-ytes of .address space per tile could we up even a &-bit address
space, but less means that a file might have to change its name as it got bigger.
Second, users will want to identi@ files by character-string names anyway so there
still has to be a file directory system. This directory system or some additiond
mechanism would still be required to implement fde protection and security: which
is tgpically lacking from a virtual memory system (because only one address
space can access its segments, in the conventional model). Thirdly, there is an
evolution problem in practice. Some machines may have 64-bit addressing now,
but when will all have it? One could argue that the existing mechanisms in a
t5-pica1 virtual memoc mechanism for butfering (the page pool), disk allocation

and disk transfer can subsume that of the file system. but these tend to be the
same basic mechanisnls used in the file system. so one is considering a reduction
on software. not elimination of the techniques I have carefull!. studied. .\[oreover.
the trend is actually to have file systems mechanisms suI>sume virtual menlor!.
nlechanisms (including the unification of the file and page buffer pools) because
the file system mechanisms tend to be more powerfu!. Iq particular. one would
like to retain the file optimizations for read-ahead with sequential access. etc.
regards of whether you regard this as virtual memory system or file system. .4lso.
virtual memory systems have not conventionally provided facilities for persistent
storage in the area of backup and recovery. so file functionality there would also
he required. By the way. 64-bit addressing does not necessarily imply any changes
in the amount of data kept in physical memory. just that kept in virtual memory.
So. yes I misdd some great parties. but I still learned some important stuff!

(c) Himmel. too bad you were watching Sesame Street when the dudes at MITT were
developing llultics. which basically did all this stuff 20 years ago. It didnt ex-
actly catch on. did it? More seriously. many applications and programmers seem
to just prefer the stream r e a d l ~ i t e interface rather than a memory-mapped 1/0
interface to files. For one. it is safer because if your program goes wild. it is
less likely to corrupt the fle. One might view that it throws file access into the
memory allocation problem, and memory corruption bugs are some of the hardest
for programmers. Also. lots of 1/0 refers to things other than disk files, such as
terminals. pipes, communication lines. etc These object do not have convenient
fixed-size blocks that are compatible with the virtual memory page size (neces-
sarily). so these devices would have to be handled by a separate mechanism. a
major step back from the Vnix uniform 110 mechanisms. In general. history is
on my side: the idea of single-level store has been around for a long time. and
while not a failure completely. it has failed to displace the stream model of I/O.
and conceptual separation between virtual memory and secondary storage.

