ol

Comprehensive Exam: Software Systems (60 points) Autumn 199}

1. (20 points total) Concurrency

machine would be best with applications with low-contention locks because of
the cost of contention on locks. and even the cost of acquiring the locks with.
out contention. (The extreme is to use the machine just for multi-programming.

a danger). Their omission does affect whether processes do busy-waiting. because
typical read-modify-write operations simply efficiently support busy-wa.iting. Pro-
cess blocking is implemented by the operating syvstem.

(b) A read-only process can run into problems in a variety of ways, even if there
is only one writer. For example, it might be report generator needs to balance
income and expense statements. An update during its scan of the data could-
produce inconsistent results. Op the other hand. Smidley might implement a
singly-linked list out of memory records that are either free or in the list. A

have Smidley implementing synchronization (in the sense of causing readers to
wait) are also suboptimal because they clearly do not recognize the wide range of
scenarios in which blocking can be avoid altogether.

(c) Paula, Hoare has the signaler suspend, the signaled acquire the monitor lock
immediately. and the signaler then resume as soon at the signaled had blocked
again or left the monitor. Thus, the signaled process seems the state of the

1

o

e

monitor at the time of the signal. but the signaler has to be careful when it
resumes. Brinch-Hansen. in actually trying to implement this nightmare (which
Hoare never hothered with) in Concurrent Pascal. required that the signal be the
last action taken by the signaler before leaving the monitor. But. Paula. just
like there are musicologists. and then there are those that produce hit records. in
practice. it is more common to implement monitors so as to reschedule the signaled
processes but have them wait for the monitor lock. like all other processes. and in
particular wait until the signaler departs the monitor. Consequently. a signaled
process has to recheck the condition to ensure it is true. despite the original
intentions of Tony Hoare. Thus. the signal is a hint. not a guarantee. {This
reduces the coupling of the monitor mechanism to the scheduler. and reduces the
typical number of context switches. all important things in practice.)

2. (20 points total) Virtual Memory

(a) The CPU time is clearly 15 seconds per pass. With LRU and a sequential scan of
the data corresponding to a more or less sequential scan of the pages. one would
expect a page fault on each of the 37.500 pages of data. for a cost of 373 seconds.
(There is no overlap of CPU and disk transfer time because we assume we are
just brainlessly tripping across each missing page.) Thus, a scan in the simple
approach takes 390 seconds. A factor that might make this worst is the mapping
of the data onto pages. For example. imagine that the data is arranged as two
stripes across all the pages such that we cycle through all the pages twice per
timestep. (Sounds bad, but some vectoring processing data organizations do in
fact lead to such bad locality behavior!) A simple improvement on this approach
is to use an “elevator™ approach, where one scans back and forward. so on each
scan, one only pages in the “last” 50 megabytes of the scan. so the cost is 125
seconds for page-in plus 15 seconds CPU, for 140 seconds per timestep.

(b) The obvious thing is to prepage and post-flush the pages as we use them. Simplis-
tically, that means we have 2 milliseconds per page-in and out and 37.500 pages.
so it takes 75 seconds for CPU to page in pages. and 13 seconds to compute. so
90 seconds. However, the latency for page-in/out in 10 milliseconds it still takes
at least 375 seconds to complete page-ins for one scan. or 125 seconds using the
elevator trick. (Here, we assume that we can page-in and page-out concurrently.
else the times are doubled.) Thus, the page-ahead/behind purely allows the CPU
time to be overlapped with the disk activity. but the elapsed time s the maximum
of the two. which is the disk in both cases. Clearly. this elapsed time would be
reduced if we could prepage multiple pages simultaneously, like if we had four in-
dependent disk channels, two simultaneous page-in and two for simultaneous page
out. Then. the disk latency is reduced to 75 seconds with the evalator approach.
and CPU time dominates, so a timestep is 90 seconds. A similar effect occurs if
we can do multi-page transfers, with a single charge of 1 ms for initiating, one
charge for rotational latency, and double or whatever the transfer time. (There

2

(¢)

paging (without the elevator/reverse scan) but that is bevond what we consider
here (Contact David Cheriton if interested.)

A Kkey real world factor not mentioned is seek time. which can be 10°s of mjl.
liseconds. so significant. W ithout significant locality. seek time could 2asily triple

be minimal. Also. the Page tables for a read-ahead page are naturaily referenced
as part of the read-ahead. so one would ot expect random, unpredictable page
faults from these structures either.

3. (20 points total) File Systems

(a)

(b)

The key functions of a file system include file access (i.e. open. close. read. write)
implementation — the basjc file abstract data type implementation — file data
buffering, disk allocation of space for files, file directory implementation. file pro-
tection, and facilities for backup and recovery. As part of the implementation-,
there are generally heuristics and algorithms that recognize common file proper-

Space can access its segments, in the conventional model). Thirdly, there is an
evolution problem in Practice. Some machines may have 64-bit addressing now,
but when will all have jt? One could argue that the existing mechanisms in a
typical virtyal memory mechanism for buffering (the Page pool), disk allocation

3

(¢)

and disk transfer can subsume that of the file system. but these tend to be the
saime basic mechanisms used in the file system. so one is considering a reduction
on software. not elimination of the techniques [have carefully studied. Moreover.
the trend is actually to have file systems mechanisms subsume virtual memory
mechanisms (including the unification of the file and page buffer pools) because
the file system mechanisms tend to be more powerful. In particular. one would
like to retain the file optimizations for read-ahead with sequential access. etc.
regards of whether you regard this as virtual memory system or file system. Also.
virtual memory systems have not conventionally provided facilities for persistent
storage in the area of backup and recovery. so file functionality there would also
be required. By the way. 64-bit addressing does not necessarily imply any changes
in the amount of data kept in physical memory. just that kept in virtual memory.
So. ves I missed some great parties. but I still learned some important stuff’

Himmel. too bad vou were watching Sesame Street when the dudes at MIT were
developing Multics. which basically did all this stuff 20 years ago. It didnt ex-
actly catch on. did it? More seriously. many applications and programmers seem
to just prefer the stream read/write interface rather than a memory-mapped I/0
interface to files. For one. it is safer because if your program goes wild. it is
less likely to corrupt the file. One might view that it throws file access into the
memory allocation problem, and memory corruption bugs are some of the hardest
for programmers. Also. lots of I/O refers to things other than disk files, such as
terminals. pipes, communication lines. etc These object do not have convenient
fixed-size blocks that are compatible with the virtual memory page size (neces-
sarily). so these devices would have to be handled by a separate mechanism. a
major step back from the Unix uniform I/O mechanisms. In general. history is
on my side: the idea of single-level store has been around for a long time. and
while not a failure completely. it has failed to displace the stream model of I/0.
and conceptual separation between virtual memory and secondary storage.

48

