Comprehensive Exam: Analysis of Algorithms
Autumn 1991

Problem 1: (20 points total) Counting
A group of n people comes to a party, each person carrying a hat and
an umbrella. At the end of the party each person leaves with a hat and
an umbrella, neither of which is his. Notice that in order to find out the
number of possibilities, we can check all possible assignments of hats
and umbrellas and count the number of appropriate assignments. The
problem with this approach is that it takes exponential time. Can you
come up with an approach that will allow us to compute the number
of possibilities in polynomial time ? For example, an expression like
n1 1 is an acceptable answer. In other words, your answer should be
a formula computable in polynomial time.

Answer: First, observe that there is no connection between umbrellas and
hats, and therefore it is sufficient to count the number of possibilities
to assign, say, hats, and square the result. Notice that although the
first person to leave has exactly n — 1 choices, the second person has
either n — 1 or n — 2 choices, depending on whether the first one has
grabbed the hat that belongs to the second one or not. Therefore. this
approach will lead to an exponential algorithm.

There are several valid approaches, and we will present two of them.
First, notice that we are looking for the number of permutations of n
elements that do not have fixed points. Let H(n) denote this number.
Total number of permutations on n elements is n!. Out of those, we
have H(n) permutations with no fixed points, (’l') H(n—1) permutations

with a single fixed point, (’2') H(n — 2) with exactly 2 fixed points, etc.

Hence, we have:
=Y (") H(i)
i=o \?

Using this formula, one can compute H(1), use it to compute H(2),
etc.

A different, somewhat cleaner way, is to use inclusion-exclusion. Let
Si denote the set of permutations that fix i. We would like to compute

{2

U,|Sil. In order to use inclusion-exclusion, we have to be sble to com-
pute the cardinality of intersection of r different sets Si. Given r places
that we want to fix, the cardinality of such intersection is (n—r)!, since
all the rest of the elements can be assigned arbitrary. There are (™
possible intersections associated with each r, and hence this leads to
the following formula:

H) = nt = 31 (") -

=1

Problem 2: (20 points total)

Given a sequence of numbers 81,82,...,8q, a subsequence is a sequence
@iys @i,y ..,8i,, Where i; < 4j4y foralll1 < j < k—1. You are given
weights w(a;) > 0 associated with each element of the given sequence.
Describe an efficient algorithm to find an increasing subsequence of
maximum weight, where the weight of the subsequence a;,, a;,, ..., a;,
is defined as 2;‘___1 w(a;,). What is the running time of your algorithm?
Explain.

Answer: There was a confusion as to what does an “increasing subsequence”
mean. It means that the numbers and not weights are increasing. If one
tries to solve the problem where we require increasing weights in the
output subsequence, then it is easy to see that this problem is a special
case of the original problem (just set each number in the ‘sequence to
be equal to its weight). Therefore, we will present the solution to the
original problem.

The idea is to use dynamic programming. Instead of presenting an algo-
rithm to compute the optimum subsequence, we will concentrate on an
algorithm to compute the weight of the subsequence. It is straightfor-
ward to change this algorithm to compute the subsequence itself. The
following algorithm can be imroved, but we will ommit the optimiza-
tion issues and concentrate on the main ideas. Notjce that, without
loss of generality, we can assume that the input sequence includes only
numbers from 1 to n.

Let S; = a,,a,,...,aq; be the i-th prefix of the given sequence. Assume
that we have computed the maximum-weight increasing subsequence

2

O

for S;. Notice that this is not sufficient in urder to quickly compute the
maximum-weight increasing subsequence for Siy, ! The reason is that
it might be beneficial to use a non-optimum subsequence with respect
to S; in order to be able to use a; as well.

For each prefix S;, we will keep A(i,7), 1 < j < n, where A(t,j) is the
weight of the maximum-weight increasing subsequence out of prefix S;,
where the restriction is that the subsequence does not include elements
that are larger than ;.

Initialization of A(1,J) is trivial. Now, assume that we have computed
A(z,5) for some i and for all j. Consider k = a;y;. For all j < &,
existence of this element does not help us, and we just copy A(i+1,j) =
A(,j). Consider A(i + 1,k). We can add a;41 to the corresponding
sequence, and hence A(i + 1,k) = A(i, k) + w(ai4;). For all j > k, we
set A(t+ 1,7) = maz{A(s,7), A(i + 1,k)}.

The running time of this algorithm is O(n?) and it uses O(n) space,
since we need to keep only a single (current) column of A in memory.

Problem 3: (20 points total)

An ordered 2-3 tree T is used to implement a dictionary, with each ele-
ment in the dictionary being assigned to a unique leaf in T'. Initially, T
is empty. Then the sequence of operations INSERT(a,), INSERT(a,),
.-« INSERT(a,) is performed, where each of the n! possible orderings
of the elements a;,4a3,...,a, is equally likely. Let h be the height of
T following these n insertions (recall that a tree consisting of a single
vertex has height 0).

1. (15 points)
Give an exact formula for the maximum possible value of A (as a
function of n).

2. (5 points)
If n = 30, what is the expected value of A? [Hint: What are the
minimum and maximum possible values of A?)

Answer: A 2-3 tree is a tree in which each internal node has either 2 or 3

children, and every path from the root to a leaf is of the same length.

When an ordered 2-3 iree is used to implement a dictionary, the ele-
ments in the dictionary are stored in the leaves of the tree in ascending
order from left to right.

1.

(3]

. 4

llog;).

If the elements are inserted in increasing order, then following 2*
insertions T is a complete binary tree with height k. Therefore,
h 2 |log;n]. Furthermore, no 23 tree with n leaves has height
greater than |log; n| because all leaves are at the same ievel and
each internal node has degree at least 2, so h < llog, n].

Any 2-3 tree of height A bas at least 2 leaves and at most 3%
leaves. If A < 3 then 3* < 30, while if A 2 5 then 2% > 30.
Therefore, any 2-3 tree with 30 leaves has height 4.

Problem 4: (20 points total) Recurrence Relations
Given any constant ¢, where 0 < ¢ < 1, and any positive real number
N, the function T(N,c) is defined as follows:

o

Answer:

_J 2T(cN,ce)+ N? ifN>1
T(N"’)‘{m if0<N <1

. (10 points)

What is the asymptotic complexity of T(N,1/2) (to within a con-
stant factor)?

. (10 points)

What is the largest value of ¢ such that T(N, ¢) = O(N?log N)?

1. O(N?).
The values of the recursive calls form a geometrically decreasing
sequence. For example, if N > 4 then

T(N,1/2) 2T'(N/2,1/2) + N?
4T(N/4,1/2) + N?/2 + N?

= 8T(N/8,1/2) + N?/4+ N*/2 + N2.

