
Computer Scieirce Department
Stair ford Ui~iversity

Comprehensive Exaininatioi~ in Software S y s t e i ~ ~ s
A u t u n ~ n 1980

READ THIS FIRST!

1. You should write your answers fix this part of the Comprehensive Esax~linatio~i in i\

BLUE BOOK. Be sure to write your SIACIC YUSt BER on the cover of every blrtt* I) , 11 ~k
that you use.

2. The number of POINTS for encll problem indicates how elaborate an answer is t.s-
pected. For example, an essay- type question worth 6 points or less doesn't dt*servct
an extremely detded answer, even though a person can expound at length ou jrtst
about any topic in computer science.

3. The total number of points is 60. and tlie exam takes 60 minutes. This "coincidence"
can help you plan your time.

4. This exam is CLOSED BOOK. You may not use any notes, calculators, computers. or
outside help.

So Show your work, since PARTIAL CREDIT will be given for incomplete answers. For
example, you can get credit for making a reasonable start on a probleiil even if tlie
idea doesn'twork out; gar can also get credit for making that certain approaches
are incorrect. On a true/false question, you might get partial credit for explainixlq
why you think something is true when it is actually false. But no partid credit c.3 n
be given if you write nothing.

Comprehensive: Software Systems (60 points) Autumn 1989

\.A

Problem 1 (15 points). Consider tvltat happens when a page fault occurs. Briefly answer tlte
following queationr in a sentence or two.

la . (3 points). How does the systcn~ decide which page should be brought in?
l b . (3 points). How does the systeni decide which page fraim should be used for the new pagel
l c . (3 points). What happells to the page that used to be in that page frame?
Id. (3 points). What system tables must be updated as a result of this operation?
le. (3 points). When does paging work? That is. when is the time c a t of paging nrgtibk

compared to the execution of a program?

Problem 2 (10 points). Suppose a ~nolti-level feedback scheduling algorithm can be parameterized
by N, the number of levels, aud Q[I . . N], aa array of priorities indexed by level.
2a. (S points). What parameter mlues would give the same effect acl a first-comefirst-serve

algorithm?
2b. (5 points). What parameter values would give the same effect as a mand-mbin algorithm

with quantum T?

Probkm 3 (35 points). A certain freight traia can hold a maximum of B boxes. The train travels
across country once a day, stopping to drop off and pick up boxes at each of N stations along the
way.

You are to write two functions, tmin aad sendboq that simulate the operation of the trait1
with respect to loading and unloading boses. The tmin function is called by a process simulating
the train; m d b w is called by a process simulating a box that is sent on the train. You sre only to
write these fanctions; do not be concerned with the other code for the proceme.

You are to use general semaphores to synchronize the traia process and the box processes.
The tmin function iq p d a single integer parameter s that idtntiiia a station. This function is
called when the train stops at the specified station. To synchronize the onbding of boxes, it is
necessary to wake up a box process and then wait until the box b taken off the ttaia. Similarly. it
b necesary to wake up box processes at the station and wait for them to be M e d on the train.

The s e n d k function is passed taw integer parameten identifying the stations where the bos
is sent from and to, respectively. This function should wait for the train to come to the originating
station, load the box on the train, wait for the train to get to the destinstion station, and the11
unload the box. A box may not be W e d on the train if it is frJl (has B boxes rltebdy). If tile
destination of r box h in the opposite direction the train is traveling, the barr should be loaded
anyway and will be d e l i 4 the nest day.

You can prolpun these functions in Pascal or C. Be sure to specify initial d u e s for all
semaphores and global wiabks. Try to maximize concurrency white avoiding busy-waiting and
the poaibility of deadlock.

