’ Section \ Faculty \ Page ‘
’ Table of Contents \ \ 1 ‘
Analysis of Algorithms [Unknown] 2
Analysis of Algorithms solutions 3
Automata and Formal Languages [Unknown] 4
Automata and Formal Languages solutions 7
Computer Architecture [Unknown] 9
Computer Architecture solutions 13
Numerical Analysis solutions 17
Software Systems [Unknown] 20
Software Systems solutions 22

Comprehensive: Analysis of Algorithms (80 points) Autumn 1989

The list of functions that are considered closed form includes |z], [z], Fa, Ha, n!, n&, n¥, (-

Problem 1 (20 points). The generating function for the elements of Pascal's triangle along a line

of slope —1/2 is given by
n-k
)= X (17 0)
k

where n > 0.
la. (7 points). Give a recurrence for ga(z) in terms of gn_1(z) and ga-2(2).
1b. (13 points). Evaluate g,(3) in closed form.

Problem 2 (20 points). Let d(k) be the number of divisors of k (e.g., d(10) = 4).
2a. (7 points). Express
n
> d(k)

k=1
as g(n) + O(n), with g(n) in closed form.

2b. (13 points). Reduce the O(n) error term from part (a) to O(y/n). [Hint: Consider divisors
smaller than \/n and greater than \/n separately.]

Problem 3 (11 points). Given n, exhibit an arithmetic progression ai + b (a # 0) such that
ged(ai + 6,65+ 8) =1forall0<i<j<n.

Problem 4 (29 points). A binary search tree T is constructed with the elements of the set [n] ==
{1,2,...,n}. The elements of this set are inserted in T one by one, in the order given by a
permutation of [n] chosen uniformly at random from the set of all such permutations. [To insert a
new element i in a tree: if the tree is empty, let i be the root. Otherwise compare i with the root
7, and insert i in the left subtree or in the right subtree depending on whether i< jori> j]-

4a. (13 points). Show that the probability that element ¢ is compared with element j when i is
inserted in T is 1
AT Ee
(Hint: How does i reach j?]
4b. (7 points). Determine the expected depth of element i in T.

4c. (9 points). What is the expected depth in T of an element chosen uniformly at random
from (n]?

®,

Comprehensive Solutions: Analysis of Algorithms (80 points) Autumn 1989 O

What you needed to know to get 3 passing score on the Analysis of Algorithms comprehensive:
For Problem 1a, in addition to the meaning of generating functions, and the additive recurrence
for binomial coefficients, you needed to know that Ep(,,) f(k)= Zp(.“, f(k+¢). This is a routine

" transformation on sums, emphasized in Concrete Mathematics.

For Problem 2a, you needed to know another basic summation transform: Instead of

Z [¢ < nj Z [d divides i],
d

reverse the summation order as
Z Z[ddividesis nj,
d i
and the inner sum is then [n/d).
For Problem 3, to get substantial Partial credit and have a good chance of recognizing one of
the many solutions, you needed to know thatp L ¢ = PpL g+ mp Then
aj+blak+b=aj+b1 a(k - j).
Some particular cases impose substantial constraints:

(=0) dblak = b1k

30 b has no prime factors < n. Then candidate values for 5 might be large primes, lem(2..n) + 1,
n! + 1, or simply 1.

sum of reciprocals is a harmonic number.
For Problem 4c, you needed to know the meaning of “expected value”, and how to sum

harmonic numbers. Since harmonic numbers are themselves sums, expanding into a bivariate sum

and reversing the summation order is routine.
Using the above knowledge, you could get
la
1b
22
2b
3
4a
4
4c

g'bﬂlhl‘l'ﬂ
1

which is a passing grade, by turning the crank.

O

Computer Science Department
Stanford University
Comprehensive Examination in Automata, Languages, and
Mathematical Theory of Computation
Autumn 1989

November 27, 1989

READ THIS FIRST!

1.

3.

5.

You should write your answers for this part of the Comprehensive Examination in a
BLUE BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue book
that you use.

Be sure you have all the pages of this exam. There are 2 pages.

The number of POINTS for each problem indicates how elaborate an answer is ex-
pected. For example, an essay-type question worth 6 points or less doesn’t deserve
an extremely detailed answer, even though a person can expound at length on just
about any topic in computer science.

The total number of points is 60, and the exam takes 60 minutes. This “coincidence”
can help you plan your time.

This exam is CLOSED BOOK. You may not use any notes, calculators, computers, or
outside help. '

Show your work, since PARTIAL CREDIT will be given for incomplete answers. For
example, you can get credit for making a reasonable start on & problem even if the
idea doesn’t work out; you can also get credit for realizing that certain approaches
are incorrect. On a true/false question, you might get partial credit for explaining
why you think something is true when it is actually false. But no partial credit can
be given if you write nothing.

Comprehensive: Autumn 1989
Automata, Languages, and Mathematica] Theory of Computation (60 points) <
Problem 1 (20 points). Given two strings z and y over ap alphabet T, define shuffle(z,y) to be
the set of all strings over T, which can be obtained by shuffling z and together in an arbitrary
way.
~ For instance, shuflle(a, bc) = {abe, bac, bca}.
shuffle can be defined recursively as follows:
shuffle(z, ¢) = {z}
shuffie(¢,z) = {z}
shuffle(az, by) = {az: z € shuffle(z, by)} U{bz:z¢ shuffle(az,y)) .
Let L be an arbitrary regular language over £,
la. Let L, = {z e 2°. 3y € £*(shuffle(z,y)n L #¢)).
Is L, hecessarily regular?
Is it Decessarily context-free?
Justify your answers briefly.
1b. Let I3 = {zy: 2,y € I° and shuffle(z,y)N L # ¢}.
Is I3 necessarily regular?
Is it necessarily context-free?
Justify your answers briefly.

Problem 2 (10 points). Assume that there is no polynomial-time Program that, given a graph, -
prints a Hamiltonian cycle, when one exists. Prove that the decision problem “BAMILTONIAN
CYCLE” (does the given graph have a Hamiltonian cycle?) is not in the class P, O

Problem 3 (20 points).
3a. Give the strongest possible Hoare-style verification rule to prove the partial correctness of
the statement repeat P until £ (where Pisa program and E an expression).
3b. Consider the following Program Q to compute the quotient and remainder of a nonnegative
integer z and a Positive integer y:
{z204 y> 0}
quot := 0; rem := 2;
while {p(z,y, quot, rem)} rem > y do
begin

i:=1;2:=
repeat
quot := quot + i; rem := rem - z;
i=itiiz:=mz42 :
until {g(z, y, quot, rem,i,z)} rem < ; -
end : :
{z=r-quot+rem/\0's~m<v}- .
Sketch a proof of the partial correctness of Q, using the rule you gave in (a). In particular,
give loop invariants p and ¢ such that all verification conditions have trivial proofs (you need
Dot prove them).

3c. Define a variant function into a well-founded set, and sketch a proof of the termination of Q. C

Problem 4 (10 points). Prove that the set of all Turing machines that accept infinitely many

inputs is not r.e. ' .
_ Hint:: Compare the problem of whether a Turing machine accepts infinitely many inputs with
the complement of the halting problem.

@

Comprehensive Solutions: Autumn 1989
Automata, Languages, and Mathematical Theory of Computation (60 points)

Problem 1 (20 points).

la. L, consists of all the subsequences of the strings in L. Let A be a finite state automaton
accepting L. Construct M, from M by adding an ¢-edge between every pair (s,t) of states
of M such that there s an edge from s to ¢ labeled with some symbol of £. The language
accepted by M, is L. So L, is necessarily regular (and hence, context-free).

1b. We will show that L3 is not necessarily connext-free (hence not regular). Take ; =
(ad)*(cd)". Let Ly = {a™c™™d" : myn > 0}. Ly is not context-free. We will show
that L; Na®c g~ = Ly. Since any string in Ly has equal number of a’s and b’s, and equal
number of ¢’s and d’s, it follows that Ly Nna“cb g* C L;. l"\xrthermore, for any m,n 20,
(ab)™(cd)™ € sbuﬁe(c"‘c",b"‘d"). Hence Ly C L, n a“c b d".
Since context-free languages are closed under intersection with regular sets, it follows that
L3 is not context-free.

If Q, when given G’ - {e} as the input, says “yes®,
then set G’ to G’ - {e}, else leave G’ unchanged.
At the end G' will be a subgraph of G composed solely of a Hamiltonian cycle. The time taken by

this program equals the product of the number of edges of ¢ by the time taken by Q, and thus is
Polynomial in the size of G.

Problem 3 (20 points).
> WIPU) (wn £} Py
{#} repeat P unti] E{¢ A E}’

3b. Let
(2,5, quot, rem): £=¥-quot + rem A rem > 0,
¢(2, 3, quot, rem, i, ;). P(2,9,quot,rem) A z = iy,
r(z,y, quot,rem, i,z): ¢e,y, quot,rem,i,z) A rem 22
The assertions ¢ and ¥ of (a) correspond to r(z,y, quot, rem, i, z) and ¢(z, , quot, rem, i, z),
respectively. All verification conditions are easy to check:
(z20Ay>0 = »(z,,0,2),
(ii) p(2,y, quot, rem) A rem > ¥y = r(2,y,quot, rem,1,y),
(iii) #(z,y, quot, rem, i, z) — 9(=,v.qu°t+i.wn-z.i+i.:+ z),
(iv) g(=,y,quot, rem, s, 5) A remgz — q(c.r.quot+i.rem-z,i+i.z +3),
(v) o(=,y, quot,rem,i,z) A rem< 3 — P(2,y, quot, rem),
(vi) p(:,y,quot,m) A rempy — =y -quot+ rem A 0O<remcy.

5

3c. The value of rem is a suitable variant function into (N, <). To prove termination, show
that:
(i) rem > 0 is an invariant for both loops (which follows from (b)).
(ii) z > 0is an invariant of the repeat-loop (which requires stronger invariants than (b)).

While (i) guarantees that rem € N, condition (ii) establishes that the repeat-loop reduces
rem with every execution (rem > rem -~ z). So does the while-loop, because every execution
of the while-loop includes at least one execution of the repeat-loop.

Problem 4 (20 points). The set of programs that accept infinitely many inputs is not r.e.

Take an instance of the no-input halting problem: Does program P; halt, when started with
null input? From P;, construct a program P; that accepts n if P, has no computation that halts
in at most n steps. If P; halts, P; accepts finitely many inputs; if no, P; accepts everything. .

Suppose the set of programs that accept infinitely many inputs were r.e., i.e., the range of a
computable function f. To decide whether P; halts, for each n, test whether P, halts in n steps
(then P, halts) and whether Py = f(n) (then P; does not halt) until one is true.

This is an application of the argument of the second form of Rice's theorem.

LN

Computer Science Department
Stanford University
Comprehensive Examination in Computer Architecture
Autumn 1989

November 29, 1989

READ THIS FIRST!

1.

4.

You should write your answers for this part of the Comprehensive Examination in a
BLUE BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue book
that you use.

Be sure you have all the pages of this exam. There are 3 pages.

The number of POINTS for each problem indicates how elaborate an answer is ex-
pected. For example, an essay-type question worth 6 points or less doesn’t deserve
an extremely detailed answer, even though a person can expound at length on just
about any topic in computer science.

The total number of points is 60, and the exam takes 60 minutes. This comcxdenee
can help you plan your time.

This exam is CLOSED BOOK. You may not use any notes, calculators, computers, or
outside help.

Show your work, since PARTIAL CREDIT will be given for incomplete answers. For
example, you can get credit for making a reasonable start on a problem even if the
idea doesn’t work out; you can also get credit for realizing that certain approaches
are incorrect. On a tme/false question, you might get partial credit for explaining
why you think something is true when it is actua.lly false But no partial credit can
be given if you write nothing.

24

Comprehensive: Computer Architecture (60 points) Autumn 1989

Floating-Point (FP) benchmark.

Operation CPI Frequency
Call/Return 2 5%
Branches 2 20%
ALU 1 45%
Load/Store 2 25%
FP Operation 5 5%

la. (2 points). What is the CPI for this benchmark assuming a perfect memory system?

1b. (3 points). Now assume that we remove the hardware logic that automatically inserted the
stall cycles for branches, calls/returns, and load /store operations. Now our-compiler must
insert NOP instructions in the delay slots jf the delay slots canpot be filled with useful
instructions. We find that the compiler can fill 70% of the branch slots, 100% of the call
slots, and 40% of the load/store slots with useful instructions. What is the new CPI still
assuming a perfect memory system? ,

1c.

1d. (3 points). Now the memory architects, not to be outdone, claim that they can also speedup

instructions in our benchmark with LD/SD instructions, how much faster will the original
machine run with just this enhancement? ’

le. (5 points). Finally, a customer waats to know hew much the CPI increases for the original
i a split i

X4

:

Problem 2 (13 points). You are given a computer with a 48-bit virtual address and a 32-bit
physical address. The processor uses a 16K B unified cache with a 16B line.

2a. (8 points). What is the smallest page size you can use to allow overlapped TLB and cache
access 1if the cache is direct-mapped? If the cache is 4-way set associative? Also give the
number of bits of physical address used for cache tag, index, and offset in each case.

2b. (5 points). If you buy 32MB of main memory with this machine, and you are told the
machine has the following characteristics:
CPI = 1.6 cycles
1.3 references/instruction are sent to TLB
bus can transfer 4B/cycle
page fault every 100 * (number of pages in memory) references

how much bus bandwidth is used for the page transfer from disks to main memory by each page
size in part (2a)?

Problem 3 (4 points). What is the Boolean function, expressed as a sum of products, for the
following Karnaugh map?

CcD
AB 00 Ot 11 10
00 1 0 0 1
01 1 0 1 1
11 1 1 1 1
10 1 1 1 1

Problem 4 (4 points). Synthesize the following equation using only two-input nand gates. (All
signals are active high).
A=(B-C)+(D-FE).

Zb

Problem § (22 points). Build a specialized processor that evaluates the following polynomial: C
Asz® + Agz' + A% 4 4,.
The expression can be calculated using Horner's rule:
(((A6)=® + Ay)2? + A3)2? + 4,.

You can use multipliers, adders, registers, muxes and any other logic gates. The specification of
the computation is given by the following RTL (register transfer level) description.

Note on RTL notation: operations separated by commas (+) are executed in the same clock;
operations in different clocks are separated by semi-colons (;).

Input registers X (64-bit), RESET (1-bit)
Output registers P (64-bit)

Internal registers xsq, a6, A4, A2, A0 (all 64-bif)
SO: 46 <~ X;

S1: A4 <-X;
$2: A2 ¢-X;
S3: A0 ¢~ X;

S4: XSQ <~ XsX, SUM <- A6;

SS: SUM <- SUMsXSQ+A4;

S6: SUM <- SUMsXSQ+A2;

S7: P <= SUM*XSQ+AO, if RESET then goto SO else goto S4; O

5a. (4 points). What is the smallest number of buses needed?
5b. (7 points). Drawa logic diagram for the data Processing unit (also known as the data path).

5c. (7 points). Design a hardwired control unit for the machine. Show only the logic to imple-
ment the state transitions. (You do not need to show how the control signals are generated.)

5d. (4 points). Describe how you would modify the data Pprocessing unit and the control unit of
the machine if the polynomial is of degree 100: .

A100z!® + Agyz®® +--+ 4.

(2]

Comprehensive Solutions: Computer Architecture (60 points) Autumn 1989

O Problem 1 (17 points).

Operation CPI Frequency
Call/Return 2 5%
Branches 2 20%
ALU 1 45%
Load/Store 2 25%
FP Operation 5 5%

la. (2 points).

CPle=5% > 2+20% x 2+4+45% x 1 + 25% x 2+ 5% x 5 = 1.7 cycles.

1b. (3 points).

CPle = 5% x (1 x 100% + 2 x 0%) + 20% x (1 x 70%

+2x30%) + 45% x 1+ 25% x (1 x 40% + 2 x 60%) + 5% x 5
= 1.41 cycles.

1lc. (4 points).

O Fraction of execution doing FP = 5% x 5/1.7 = 14.7%
Speedup = 1/[(1 - 14.7%) + 14.7%/1.2) = 1.025 = 2.5% faster.

1d. (3 points). Replace 20% of 25 Iw/sw instructions = 20 lw/sw plus 5/2 = 2.5 new 1d/sd
instructions.
New instruction distribution:

LW/SW 20.0% 2 cycles
LD/SD 25% 3

B/Call ~ 25.0% 2
ALU 450% 1
FP 50% 5

total 7.5%

CPle = 2 x 20/97.5+ 3 x 2.5/97.5+ 2 x 25/97.5+ 1 x 45/97.5+5 x 5/97.5 = 1.72 cycles
perf = IC x CPI x CT = CTold = CTnew
ratio of perf = (ICold x CPlold)/(ICnew x CPInew)
= (1 x 1.7)/(.975 x 1.72) = 1.0137 = 1.37% faster.

le. (5 points).
O CPlc =1 x0.02 x 10 + 0.25 x 0.04 x (10 + 0.4 x 10) = 0.34 cycles.

1

Problem 2 (13 points).
2a. (8 points). C
dm: index all blocks = 2'4 = |6KB page
tag =18 index =10 offset = 4
d-way: 2'4/4 = 212 = 4kpB page
tag = 20 index = 8 offset = 4
2b. (5 points).
dm: 16KB Page — 2K pages in mm — 204800 refs/pf
204800 r/pf x 1.6 ¢/i/1.3¢/i = 252K c/pf = 3.97y pf/c
3.97u pf/c x 16 KB/pf/4 B/c = 0.016 B/c = 1.6%
4-way: 4KB page — 8K pages in mm — 809600 refs/pf
809600 r/pf x 1.6 ¢/i/1.3¢/i = 1.0IM ¢/pl = 0.99u pf/c
0.99u pf/c x 4 KB/pf/4 B/c = 0.0010 B/c = 0.10%

Problem 3 (4 points).

A+D¢tgC

Problem 4 (4 points).

g....

m o

D

Problem § (22 points).
Sa. (4 points).
5 buses, to carry values: SUM
Xsq
Ad

SUM = XSQ
SUM s XSQ ¢+ Ai

Sb. (7 points).

Se. (7 Points). Simplest solution:

reset

reset
5d. (4 points).
Data Processing unijt: _
More registers to hold A4;, otherwise unchanged.
Control unit:
Use the counter approach.
Need to modif;

Y the LOAD condition

Add a reset signal for the counter.

Computer Science Department
Stanford University
Comprehensive Examination in Numerical Analysis
Autumn 1989

November 29, 1989

READ THIS FIRST!

1.

You should write your answers for this part of the Comprehensive Examination in a
BLUE BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue book
that you use.

The number of POINTS for each problem indicates how elaborate an answer is ex-
pected. For example, an essay-type question worth 6 points or less doesn’t deserve
an extremely detailed answer, even though a person can expound at length on just
about any topic in computer science.

The total number of points is 30, and the exam takes 30 minutes. This “coincidence”
can help you plan your time.

This exam is CLOSED BOOK. You may not use any notes, calculators, computers, or
outside help.

Show your work, since PARTIAL CREDIT will be given for incomplete answers. For
example, you can get credit for making a reasonable start on a problem even if the
idea doesn’t work out; you can also get credit for realizing that certain approaches
are incorrect. On a true/false question, you might get partial credit for explaining
why you think something is true when it is actually false. But no partial credit can
be given if you write nothing.

22

Comprehensive Solutions: Numerical Analysis (30 points)

Problem 1 (14 points).

la. (4 points). Writing equations in matrix form:

du=f,
Since
det|d] =] - qb,

det|A| # 0 when ab # 1. Thus the LU factorization exists.
1b. (5 points). We can write the iteration as:

G =<(3)+ (),

where

In addition, we have

()=<()+()-

Subtracting (2) from (1), yields

€kt+1 = Ce,

where -

Cp = (:k - f)

Ve — 7
Thus,
. . Cryr = C"'ek .
Finally, taking norms gives
lessr ISHC? || Jeu) .

Since |ab] < 1, || C?

lI< 1 and thus the iteration converges.
lc. (5 points). Once

()=o) L)
C= (8 ;;‘) :

where this time

3gain we can write the iteration in matrix form as:

Autumnp 1989

(1)

(2)

3) O

It is possible to show that for this matrix C, (3) holds and that the norm of || C ||< 1.

O

24

Problem 2 (16 points).
2a. (4 points). Expand f(z) about midpoint yields:
) = S0 + (2 =00 + 3z = 9P () ..

where
y=a+

o)

Integrate series and simplify:

a+h a+h 1 ad+A
/ f(r)dz=hf(y)+/ (z-9)f'(y)dz + 5/ (z-y)*f"(y)dz + ---

Substitute z = z - a ~ 4 on the righthand side:

a+h i 1 g .,
/° f(z)dz = hf(y)+/_§ zfr(y)dz + 5/-§ 2"y)dz+---
Finally, we get:
a+h A3
| frde = a4 2 o
where 7 € [a,a + A).

2b. (4 points). Summing the error terins:

E= % BS' (%) € [a+ih=ha+ih+ A

n=l

= ,}Zh’f"(n) n€la,a+b]

2c. (4 points). Must show that the error ‘expression is positive
. ["(z)=62z"% >0.
h?>0.
b-a=1 > 0.

2d. (4 points). Determine n such that error exprésion above is less than 10-3.

A ax f(n)=6.

_/ 6
“Y2ax10-3

So

23S

Computer Science Department
Stanford University
Comprehensive Examination in Software Systems
Autumn 1989

December 1, 1989

READ THIS FIRST!

1.

2.

3.

4.

50

You should write your answers for this part of the Comprehensive Examination in a
BLUE BOOK. Be sure to write vour MAGIC NUMBER on the cover of every blue hook
that you use.

The number of POINTS for each problem indicates how elaborate an answer is ox-
pected. For example, an essay-type question worth 6 points or less doesn’t deserve
an extremely detailed answer, even though a person can expound at length on juxt
about any topic in computer science.

The total number of points is 60. and the exam takes 60 minutes. This “coincidence”
can help you plan your time.

This exam is CLOSED BOOK. You may not use any notes, calculators, computers. ot
outside help.

Show your work, since PARTIAL CREDIT will be given for incomplete answers. For
example, you can get credit for making a reasonable start on a problem even if the
idea doesn'twork out; you can also get credit for realizing that certain approaches
are incorrect. On a true/false question, you might get partial credit for explaining
why you think something is true when it is actually false. But no partial credit can
be given if you write nothing.

1

Problem 1 (18 points). Consider what happens when a Page fault occyrs. Briefly answer the
following qQuestions in a sentence or two.

Problem 2 (10 points). Suppose a inulti-level feedback scheduling algorithm cap be Parameterize(
by N, the number of levels, and Q[L..N), an array of priorities indexeq by leve].

2a. (S points). What Parameter values wouyld give the same effect as a ﬁrst-come.ﬁrst-sen-e
algorithm?

2b. (5 points). What Parameter values would give the same effect as 2 round-robjp algorithim
with quantum 77

Problem 3 (35 points). A certain freight train cap hold a maximum of B boxes. The train travels
across country once a day, stopping to drop off and Pick up boxes at each of ¥ stations along the
way. -

You are to write two functions, trin and sendboz, thag simulate the Operation of the traj,
with respect to loading and unloading boxes. The train function js called by a Process simulating
the train; sendboz s called by a process simulating a box that is sent op the train. Yo, are only to
write these fanctions; do not be concerned with the other code for the Processes,

You are to use general Semaphores to synchronize the train process ang the box Processes.
The train function is passed a single integer Parameter s that identifies 3 station. This function is
called when the train stops at the specified station. To synchronize the unloading of boxes, it is
hecessary to wake Up a box process and then wait untj] the box is taken off the train. Similarly, it

unload the box. A box may not be loaded on the train if it is fu] (bas B boxes already). If the
destination of 5 box is in the Opposite direction the train is traveling, the box should be loaded
anyway and will be delivered the next day. E

You can Program these functions jp Pascal or C. Be Sure to specify initial valyes for all
semaphores and global variabjes. Try to maximize concurrency while avoiding busy-waiting and
the possidility of dead] . .

Comp

rehensive Solutions: Software Systems (60 points) Autumn 1989

Problem 1 (15 points).

la.
1b.

lc.

1d.

le.

(3 points). It looks at which address caused the fault (demand page selection).
(3 points). [t uses a page replacement algorithm, such as LRU. which hopefully picks a page
frame containing a page that will not be used for a while.
(3 points). If it has been changed since it was written on the disk. the latest version must
be written to disk. ;
(3 points). Both the maps for the old page (mark it invalid) and the new page (mark it
valid), as well as the table that says which pages are in real memory.
(3 points). Paging is infrequent if real memory is large enough to hold the working sets of
all running processes.

Problem 2 (10 points).

2a.
2b.

(5 points). N =1, Q[1] = 0.
(5 points). ¥ =1, Q[1]=T.

Problem 3 (35 points). Solution in C++:

/*

% % # # # # & 4 @

»
~

We need two arrays indexed by station: one for the boxes waiting

to be loaded on the train at a station and one for the boxes on the train
that should be unloaded at a particular station. We also need to keep
track of the number of boxes on the train at any time.

For each station, we need a mutual exclusion semaphore for accessing

the numWaiting arrays, a wait semaphore for loading, and a wait semaphore
for unloading. We also need two semaphores for the train,

one for loaded boxes and one for unloaded boxes.

int nunHaitingAtStation[N]. nunHaitingForStation[NJ, boxes;

Semaphore mutex(1)(N].
Semaphore vaitingAtStation(O)[N]. waitingForStation(O)(NJ;
Semaphore 1o0ad(0), unload(0);
void train(int s) {
int unloading, loading;
mutex(s].P();
unloading = nunHaitingForStation[s];
nunHaitingForStation[sJ = 0;
boxes -= unloading;
it (boxes + numHaitingAtStation[s] >B) {
loading = B - boxes; .
} else {
loading = numUaitingAtStation[s];

hunmWaitingAtStation(s] -= loading;
mutex(s].v();
boxes += loading;
/* unload boxes destined for this station =/
for (int { = 0; § < unloading; jee) {
vaitingForStation(s].v();
unload.P(); .
}

/* load boxes vaiting at station s/

for (1 = 0; § ¢ loading; i+s))
waitingAtStation[s].V();
load.P();

}

void sendbox(int fromStation, int toStation) {
/* add to waiting at station s/
mutox[rrouStation].P():
¢¢nunﬂaitingtt3tation[tronStat1on];
nutox[ttouStationJ.V():
/* vait for the train =/
vaitingAtStttion[ttonStationJ.P();
/% load ¢/
load.v(); :
/* add to vaiting for toStation s/
nutox[toStation].P():
oonunwaitingrorStation[toStationJ:
nutox(toStationJ.V();
/* wait for the train to reach toStation s/
vaiting?orStation[toStationJ.P():
/* unload ¢/
unload.V();

