Comprehensive Solutions: Autumn 1989
Automata, Languages, and Mathematical Theory of Computation (60 points)

Problem 1 (20 points).

la. L, consists of all the subsequences of the strings in L. Let A be a finite state automaton
accepting L. Construct M, from M by adding an ¢-edge between every pair (s,t) of states
of M such that there s an edge from s to ¢ labeled with some symbol of £. The language
accepted by M, is L. So L, is necessarily regular (and hence, context-free).

1b. We will show that L3 is not necessarily connext-free (hence not regular). Take ; =
(ad)*(cd)". Let Ly = {a™c™™d" : myn > 0}. Ly is not context-free. We will show
that L; Na®c g~ = Ly. Since any string in Ly has equal number of a’s and b’s, and equal
number of ¢’s and d’s, it follows that Ly Nna“cb g* C L;. l"\xrthermore, for any m,n 20,
(ab)™(cd)™ € sbuﬁe(c"‘c",b"‘d"). Hence Ly C L, n a“c b d".
Since context-free languages are closed under intersection with regular sets, it follows that
L3 is not context-free.

If Q, when given G’ - {e} as the input, says “yes®,
then set G’ to G’ - {e}, else leave G’ unchanged.
At the end G' will be a subgraph of G composed solely of a Hamiltonian cycle. The time taken by

this program equals the product of the number of edges of ¢ by the time taken by Q, and thus is
Polynomial in the size of G.

Problem 3 (20 points).
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3b. Let
(2,5, quot, rem): £=¥-quot + rem A rem > 0,
¢(2, 3, quot, rem, i, ;). P(2,9,quot,rem) A z = iy,
r(z,y, quot,rem, i,z): ¢e,y, quot,rem,i,z) A rem 22
The assertions ¢ and ¥ of (a) correspond to r(z,y, quot, rem, i, z) and ¢(z, , quot, rem, i, z),
respectively. All verification conditions are easy to check:
(z20Ay>0 = »(z,,0,2),
(ii) p(2,y, quot, rem) A rem > ¥y = r(2,y,quot, rem,1,y),
(iii) #(z,y, quot, rem, i, z) — 9(=,v.qu°t+i.wn-z.i+i.:+ z),
(iv) g(=,y,quot, rem, s, 5) A remgz — q(c.r.quot+i.rem-z,i+i.z +3),
(v) o(=,y, quot,rem,i,z) A rem< 3 — P(2,y, quot, rem),
(vi) p(:,y,quot,m) A rempy — =y -quot+ rem A 0O<remcy.
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3c. The value of rem is a suitable variant function into (N, <). To prove termination, show
that:
(i) rem > 0 is an invariant for both loops (which follows from (b)).
(ii) z > 0is an invariant of the repeat-loop (which requires stronger invariants than (b)).

While (i) guarantees that rem € N, condition (ii) establishes that the repeat-loop reduces
rem with every execution (rem > rem -~ z). So does the while-loop, because every execution
of the while-loop includes at least one execution of the repeat-loop.

Problem 4 (20 points). The set of programs that accept infinitely many inputs is not r.e.

Take an instance of the no-input halting problem: Does program P; halt, when started with
null input? From P;, construct a program P; that accepts n if P, has no computation that halts
in at most n steps. If P; halts, P; accepts finitely many inputs; if no, P; accepts everything. .

Suppose the set of programs that accept infinitely many inputs were r.e., i.e., the range of a
computable function f. To decide whether P; halts, for each n, test whether P, halts in n steps
(then P, halts) and whether Py = f(n) (then P; does not halt) until one is true.

This is an application of the argument of the second form of Rice's theorem.
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