
Programming with Transactional Memory

Brian D. Carlstrom

Computer Systems Laboratory
Stanford University

http://tcc.stanford.edu

Programming with Transactional Memory 2

The Problem: “The free lunch is over”

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
 V

AX
-1

1/
78

0)

25%/year

52%/year

??%/year?

From Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, Sept. 15, 2006

Uniprocessor
Performance
Trends
(SPECint)

Chip manufacturers have switched from making faster uniprocessors to
adding more processor cores per chip

Software developers can no longer just hope that the next
generation of processor will make their program faster

Programming with Transactional Memory 3

Parallel Programming for the Masses?

1628Intel2009
818AMD2009

414AMD Barcelona2007

24124Azul Vega 12005

48148Azul Vega 22006

3248Sun Niagara 12005

Intel
Sun Niagara 2

Intel Barcelona
Intel Woodcrest
AMD Opteron

IBM POWER5
Microprocessor

8242008
64882007

4142006
4222006
2122005

4222004
Thread/chipThread/procProc/chipYear

• IBM and Sun
went multi-
core first on
the server
side

• AMD/Intel
now in core
count race for
laptops,
desktops, and
servers

Every programmer is now a parallel programmer
The black arts now need to be taught to undergraduates

Programming with Transactional Memory 4

What Makes Parallel Programming Hard?

Typical parallel program
Single memory shared by multiple program threads
Need to coordinate access to memory shared b/w threads
Locks allow temporary exclusive access to shared data

Lock granularity tradeoff
Coarse grained locks - contention, lack of scaling, …
Fine grained locks - excessive overhead, deadlock,…

Apparent tradeoff between correctness and performance
Easier to reason about only a few locks…
… but only a few locks can lead to contention

Programming with Transactional Memory 5

Transactional Memory to the Rescue?

Transactional Memory
Replaces waiting for locks with concurrency
Allows non-conflicting updates to shared data
Shown to improve scalability of short critical regions

Promise of Transactional Memory
Program with coarse transactions
Performance like fine grained lock

Focus on correctness, tune for performance
Easier to reason about only a few transactions…
… only focus on areas with true contention

Programming with Transactional Memory 6

Thesis and Contributions

Thesis:
If transactional memory is to make parallel programming
easier, rather than just more scalable, the programming
interface requires more than simple atomic transactions

To support this thesis I will:
• Show why lock based programs cannot be simply

translated to a transactional memory model
• Present the design of Atomos, a parallel programming

language designed for transactional memory
• Show how Atomos can support semantic concurrency

control, allowing programs with coarse transactions to
perform competitively with fine-grained transactions.

Programming with Transactional Memory 7

Overview

Motivation and Thesis
How to make parallel programming of chip multiprocessors
easier using transactional memory

Transactional Memory
Concepts, implementation, environment

JavaT [SCP 2006]
Executing Java programs with Transactional Memory

Atomos [PLDI 2006]
A transactional programming language

Semantic concurrency control [PPoPP 2007]
Improving scalability of applications with long transactions

Programming with Transactional Memory 8

Locks versus Transactions

Lock
...
synchronized (lock) {
x = x + y;

}
...

Mapping from lock to protected data
lock protects x

Transaction
...
atomic {
x = x + y;

}
...

Transaction protects all data
No need to worry if another lock
is necessary to protect y

Programming with Transactional Memory 9

Transactional Memory at Runtime

What if transactions modify the same data?
First commit causes other transactions to abort & restart
Can provide programmer with useful feedback!

Time

Transaction B

Transaction A

LOAD X

STORE X LOAD X

STORE X
Commit X

Time

Transaction B

Transaction A

LOAD X

STORE X LOAD X

STORE X
Commit X

Violation!Time

Transaction B

Transaction A

LOAD X

STORE X LOAD X

STORE X
Commit X

LOAD X

STORE X

Violation!

Re-execute
with new

data

Original Code:

... = X + Y;

X = ...

Programming with Transactional Memory 10

Transactional Memory Related Work

Transactional Memory
Transactional Memory: Architectural Support for Lock-Free Data
Structures [Herlihy & Moss 1993]
Software Transactional Memory [Shavit & Touitou 1995]

Database
Transaction Processing [Gray & Reuter 1993]

4.7) Nested transactions [Moss 1981]
4.9) Multi-level transactions [Weikum & Schek 1984]
4.10) Open nesting [Gray 1981]
16.7.3) Commit and abort handlers [Eppinger et al. 1991]

Recent Transactional Memory
Language support for lightweight txs [Harris & Fraser 2003]
Exceptions and side-effects in atomic blocks [Harris 2004]
Open nesting in STM [Ni et al. 2007]

Programming with Transactional Memory 11

Hardware Environment

Chip Multiprocessor
up to 32 CPUs
write-back L1
shared L2
x86 ISA

Lock evaluation
MESI protocol

TM evaluation
L1 buffers speculative data
Bus snooping detects data
dependency violations Changes for TM support

Programming with Transactional Memory 12

Software Environment

Virtual Machine
IBM’s Jikes RVM (Research Virtual Machine) 2.4.2+CVS
GNU Classpath 0.19

HTM extensions
VM_Magic methods converted by JIT to HTM primitives

Polyglot
Translate language extensions to VM_Magic calls

Programming with Transactional Memory 13

Overview

Motivation and Thesis
How to make parallel programming of chip multiprocessors
easier using transactional memory

Transactional Memory
Concepts, implementation, environment

JavaT [SCP 2006]
Executing Java programs with Transactional Memory

Atomos [PLDI 2006]
A transactional programming language

Semantic concurrency control [PPoPP 2007]
Improving scalability of applications with long transactions

Programming with Transactional Memory 14

JavaT: Transactional Execution of Java Programs

Goals
Run existing Java programs using transactional memory
Require no new language constructs
Require minimal changes to program source
Compare performance of locks and transactions

Non-Goals
Create a new programming language
Add new transactional extensions
Run all Java programs correctly without modification

Programming with Transactional Memory 15

JavaT: Rules for Translating Java to TM

Three rules create transactions in Java programs
1. synchronized defines a transaction
2. volatile references define transactions
3. Object.wait performs a transaction commit

Allows supports execution of a variety of programs:
Histogram based on our ASPLOS 2004 paper
STM benchmarks from Harris & Fraser, OOPSLA 2003
SPECjbb2000 benchmark
All of Java Grande (5 kernels and 3 applications)

Performance comparable or better in almost all cases

Many developers already believe that synchronized
means atomic, as opposed to mutual exclusion!

Programming with Transactional Memory 16

JavaT: Defining transactions with synchronized

synchronized blocks define transactions
public static void main (String args[]){

a(); a(); // non-transactional
synchronized (x){ BeginNestedTX();

b(); b(); // transactional
} EndNestedTX();
c(); c(); // non-transactional

}

We use closed nesting for nested synchronized blocks
public static void main (String args[]){

a(); a(); // non-transactional
synchronized (x){ BeginNestedTX();

b1(); b1(); // transaction at level 1
synchronized (y) { BeginNestedTX();

b2(); b2(); // transaction at level 2
} EndNestedTX();
b3(); b3(); // transaction at level 1

} EndNestedTX();
c(); c(); // non-transactional

}

Programming with Transactional Memory 17

JavaT: Alternative to rollback on wait

JavaT rules say that Object.wait commits transaction
Other proposals rollback on wait (or prohibit side effects)

• C.A.R. Hoare’s Conditional Critical Regions (CCRs)
• Harris’s retry keyword
• Welc et al.’s Transactional Monitors

Rollback handles one common pattern of condition variables
sychronized (lock) {

while (!condition)
wait();

...
}

Programming with Transactional Memory 18

JavaT: Commiting on wait

• So why does JavaT commit on wait?
• Motivating example: A simple barrier implementation

synchronized (lock) {
count++;
if (count != thread_count) {

lock.wait();
} else {

count = 0;
lock.notifyAll();

}
}

Code like this is found in Sun Java Tutorial, SPECjbb2000, and Java Grande

• With commit, barrier works as intended
• With rollback, all threads think they are first to barrier

Programming with Transactional Memory 19

JavaT: Commit on wait tradeoff

Major positive of commit on wait
Allows transactional execution of existing Java code

Major negative of commit on wait
Nested transaction problem
We don’t want to commit value of “a” when we wait:
synchronized (x) {

a = true;
synchronized (y) {

while (!b)
y.wait();

c = true;}}

With locks, wait releases specific lock
With transactions, wait commits all outstanding transactions
In practice, nesting examples are very rare

• It is bad to wait while holding a lock
• wait and notify are usually used for unnested top level coordination

Programming with Transactional Memory 20

JavaT: Keeping Scalable Code Simple

Java HashMap,
Java Hashtable,
ConcurrentHashMap

Simple lock around
swap does not scale

ConcurrentHM Fine
Use ordered key
locks to avoid
deadlock

JavaT HashMap
Use simplest code of
Java HM, performs
best of all!

TestCompound benchmark from Harris & Fraser, OOPSLA 2003
Atomic swap of Map elements

Programming with Transactional Memory 21

history
(B-Tree)

Warehouse

history
(B-Tree)

newOrder
(B-Tree)

SPECjbb2000 Overview

• Java Business Benchmark
3-tier Java benchmark modeled on TPC-C
5 ops: order, payment, status, delivery, stock level

• Most updates local to single warehouse
1% case of inter-warehouse transactions

order
(B-Tree)

Warehouse

YTDTransaction
Manager

Driver Threads

Driver Threads

Client Tier Transaction Server Tier Database Tier

newOrder
(B-Tree)

order
(B-Tree)

nextID

Programming with Transactional Memory 22

JavaT: SPECjbb2000 Results

SPECjbb2000
• Close to linear scaling for transactions and locks up to 32 CPUs

32 CPU scale limited by bus in simulated CMP configuration

Programming with Transactional Memory 23

JavaT: Transactional Execution of Java Programs

Goals (revisited)
Run existing Java programs using transactional memory

• Can run a wide variety of existing benchmarks

Require no new language constructs
• Used existing synchronized, volatile, and Object.wait

Require minimal changes to program source
• No changes required for these programs

Compare performance of locks and transactions
• Generally better performance from transactions

Problem
Conditional waiting semantics not right for all programs
What can we do if we can change the language?

Programming with Transactional Memory 24

Overview

Motivation and Thesis
How to make parallel programming of chip multiprocessors
easier using transactional memory

Transactional Memory
Concepts, implementation, environment

JavaT [SCP 2006]
Executing Java programs with Transactional Memory

Atomos [PLDI 2006]
A transactional programming language

Semantic concurrency control [PPoPP 2007]
Improving scalability of applications with long transactions

Programming with Transactional Memory 25

The Atomos Programming Language

Atomos derived from Java
atomic replaces synchronized
retry replaces wait/notify/notifyAll

Atomos design features
Open nested transactions

• open blocks committing nested child transaction before parent
• Useful for language implementation but also available for applications

Commit and Abort handlers
• Allow code to run dependant on transaction outcome

Watch Sets
• Extension to retry for efficient conditional waiting on HTM systems

Programming with Transactional Memory 26

Atomos: The counter problem

Application
atomic {
...
id = nextId();
...

}
static long nextId() {

atomic {
nextID++;

}}

JIT Compiler
// method prolog
...
invocationCounter++;
...
// method body
...
// method epilogue
...

• Lower-level updates to global data can lead to violations
• General problem not confined to counters:

Application level caching
Cooperative scheduling in virtual machine

Programming with Transactional Memory 27

Atomos: Open nested counter solution

Benefits
Violation of counter just replays open
nested transaction
Open nested commit discards child’s
read-set preventing later violations

Issues
What happens if parent rolls back
after child commits?
Okay for statistical counters and UID
Not okay for SPECjbb2000 YTD
(year-to-date) payment counters

• Need to some way to coordinate with
parent transaction

Solution
Wrap counter update in
open nested transaction

atomic {
...
id = nextId();
...

}

static long nextID () {
open {
nextID++;

}
}

Programming with Transactional Memory 28

Atomos: Commit and Abort Handlers

Programs can specify callbacks at end of transaction
Separate interfaces for commit and abort outcomes
public interface CommitHandler { boolean onCommit();}
public interface AbortHandler { boolean onAbort ();}

Historical uses for commit and abort handlers
DB technique for delaying non-transactional operations
Harris brought the technique to STM for solving I/O problem

• See Exceptions and side-effects in atomic blocks.
• Buffer output until commit, rewind input on abort

Atomos applications
EITHER Delay updates to shared data until parent commits

• Update YTD field only when parent is committing
OR Provide compensation action to open nesting

• Undo YTD update when parent is aborted

Programming with Transactional Memory 29

Atomos: SPECjbb2000 Results

SPECjbb2000
Difference between JavaT and Atomos result is handler overhead
Overhead has negligible impact, Atomos still outperforms Java

Programming with Transactional Memory 30

Atomos Summary

Atomos similarities to other proposals
atomic, retry, and commit/abort handlers

Atomos differences
Open nested transactions for reduced isolation
watch allows for scalable HTM retry implementation

Open nested transactions controversial
Some uses straight forward
More sophisticated uses require proper handlers

Can we give programmers the benefits of open nesting
without expecting them to use it directly?

Programming with Transactional Memory 31

Overview

Motivation and Thesis
How to make parallel programming of chip multiprocessors
easier using transactional memory

Transactional Memory
Concepts, implementation, environment

JavaT [SCP 2006]
Executing Java programs with Transactional Memory

Atomos [PLDI 2006]
A transactional programming language

Semantic concurrency control [PPoPP 2007]
Improving scalability of applications with long transactions

Programming with Transactional Memory 32

What happens to SPECjbb with long transactions?

Old: SPECjbb could scale
Open nesting
addresses counters
Only 1% of operations
touch other
warehouse data
structures

New: high-contention SPECjbb
All threads in 1
warehouse
All transactions touch
some shared Map

Open nested results not much
better than Baseline

High-contention SPECjbb Results

Programming with Transactional Memory 33

size=2

{1 => …,

2 => …}

size=3

{1 => …,

2 => …,

3 => …}

size=3

{1 => …,

2 => …,

3 => …}

Violations in logically independent operations

Map

put(3,…)
closed-nested

transaction

put(4,…)
closed-nested

transaction

TX #2 startingTX #1 starting

TX #1 commit TX #2 abort

Programming with Transactional Memory 34

Unwanted data dependencies limit scaling

Data structure bookkeeping causing serialization
Frequent HashMap and TreeMap violations updating size
and modification counts

With short transactions
Enough parallelism from operations that do not conflict to
make up for the ones that do conflict

With long transactions
Too much lost work from conflicting operations

How can we eliminate unwanted dependencies?

Programming with Transactional Memory 35

Reducing unwanted dependencies

Custom hash table
Don’t need size or modCount? Build stripped down Map
Disadvantage: Do not want to custom build data structures

Open-nested transactions
Allows a child transaction to commit before parent
Disadvantage: Lose transactional atomicity

Segmented hash tables
Use ConcurrentHashMap (or similar approaches)
• Compiler and Runtime Support for Efficient STM, Intel, PLDI 2006

Disadvantage:
Reduces, but does not eliminate, unnecessary violations

Is this reduction of violations good enough?

Programming with Transactional Memory 36

Semantic Concurrency Control

Database concept of multi-level transactions
Release low-level locks on data after acquiring higher-level
locks on semantic concepts such as keys and size

Example
Before releasing lock on B-tree node containing key 7
record dependency on key 7 in lock table
B-tree locks prevent races – lock table provides isolation

4

2

1 3 5 7

6

………

Read7#2317

………

ModeKeyTX#

Programming with Transactional Memory 37

Semantic Concurrency Control

Applying Semantic Concurrency Control to TM
Avoid retaining memory level dependencies
Replace with semantic dependencies
Add conflict detection on semantic properties

Transactional Collection Classes
Avoid memory level dependencies on size field, …
Replace with semantic dependencies on keys, size, …
Only detect semantic conflicts that are necessary

No more memory conflicts on implementation details

Programming with Transactional Memory 38

Benefits of Transactional Collection Classes

Programmer just uses the usual collection interfaces
Code change as simple as replacing

Map map = new HashMap();

with
Map map = new TransactionalMap();

Similar interface coverage to util.concurrent
Maps: TransactionalMap, TransactionalSortedMap
Sets: TransactionalSet, TransactionalSortedSet
Queue:TransactionalQueue

Only library writers deal directly with open nesting
Similar to java.util.concurrent.atomic

Programming with Transactional Memory 39

Implementing Transactional Collection Classes

Remove key dependenciesOn commit and abort
Release semantic dependencies

Apply buffer to underlying map,
violate transactions that depended on
the keys we are writing

On commit
Apply buffer to underlying state
Check for semantic conflicts

put(key,value) writes to thread
local buffer

Write operations
Buffer changes until commit

get(key) add dependencies on key
returns value from underlying map

Read operations
Acquire semantic dependency
Open nesting reads underlying state

Simplified Map exampleGeneral Approach

Programming with Transactional Memory 40

{}{c => 23}{c => 23}

{c => [1]}

size=4

{a => 50,

b => 17,

c => 23,

d => 42}

size=2

{a => 50,

b => 17}

{d => 42}

{d => [2]}{c => [1],

d => [2]}

size=3

{a => 50,

b => 17,

c => 23}

Example of non-conflicting put operations

Underlying
Map

Write Buffer

Depend-
encies

put(c,23)
open-nested
transaction

{}

{}

Write Buffer

put(d,42)
open-nested
transaction

TX #2 startingTX #1 starting

TX #1 commit
and handler
execution

TX #2 commit
and handler
execution

Programming with Transactional Memory 41

{}

{c => [1]}{}{}{c =>
[1,2]}

size=3

{a => 50,

b => 17,

c => 23}

{}{c => 23}{c => 23}

size=3

{a => 50,

b => 17,

c => 23}

size=2

{a => 50,

b => 17}

{}

Example of conflicting put and get operations

Underlying
Map

Write Buffer

Depend-
encies

put(c,23)
open-nested
transaction

Write Buffer

get(c)
open-nested
transaction

TX #2 startingTX #1 starting

TX #1 commit
and handler
execution

TX #2 abort
and handler
execution

Programming with Transactional Memory 42

Benefits of Semantic Concurrency Approach

Transactional Collection Class works with abstract type
Can work with any conforming implementation
HashMap, TreeMap, …

Avoids implementation specific violations
Not just size and mod count
HashTable resizing does not abort parent transactions
TreeMap rotations invisible as well

Programming with Transactional Memory 43

High-contention SPECjbb2000 results

Java Locks
Short critical sections

Atomos Baseline
Full protection of logical ops

Atomos Open
Use simple open-nesting for
UID generation

Atomos Transactional
Change to Transactional
Collection Classes

Performance Limit?
Semantic violations from
calls to SortedMap.firstKey()

Programming with Transactional Memory 44

High-contention SPECjbb2000 results

SortedMap dependency
SortedMap use
overloaded
1. Lookup by ID
2. Get oldest ID

for deletion

Replace with Map and
Queue
1. Use Map for

lookup by ID
2. Use Queue to

find oldest

Programming with Transactional Memory 45

High-contention SPECjbb2000 results

What else could we do?
Split larger
transactions into
smaller ones
In the limit, we can
end up with
transactions
matching the short
critical regions of
Java

Return on investment
Coarse grained
transactional version
is giving almost 8x on
16 processors
Coarse grained lock
version would not
have scaled at all

Focus on correctness
tune for performance

Programming with Transactional Memory 46

SPECjbb2000 Return on Investment

272 synchronized statements13.0Java

272 atomic statements12.5Short

EffortSpeedup on
16 CPUs

Version

Change TxnSortedMap to TxnMap/TxnQueue
(2 new calls: Queue.add & Queue.remove)

7.8Queue

2 Transactional Map, 1 TxnSortedMap
2 transactional counters

4.1Transactional

4 open statements2.7Open

1 atomic statement1.6Baseline

Atomos 14 changes 7.8x
Java 272 changes 13x

Programming with Transactional Memory 47

Semantic Concurrency Control Summary

Transactional memory promises to ease parallelization
Need to support coarse grained transactions

Need to access shared data from within transactions
While composing operations atomically
While avoiding unnecessary data dependency violations
While still having reasonable performance!

Transactional Collection Classes
Provides needed scalability through familiar library
interfaces of Map, SortedMap, Set, SortedSet, and Queue
Removes need for direct use of open nested transactions

Programming with Transactional Memory 48

Overview

Motivation and Thesis
How to make parallel programming of chip multiprocessors
easier using transactional memory

Transactional Memory
Concepts, implementation, environment

JavaT [SCP 2006]
Executing Java programs with Transactional Memory

Atomos [PLDI 2006]
A transactional programming language

Semantic concurrency control [PPoPP 2007]
Improving scalability of applications with long transactions

Programming with Transactional Memory 49

Summary

Thesis:
If transactional memory is to make parallel programming
easier, rather than just more scalable, the programming
interface requires more than simple atomic transactions

JavaT
Transactions alone cannot run all existing Java programs
due to incompatibility of monitor conditional waiting

Atomos Programming Language
Features to support reduced isolation and integration non-
transactional operations through handlers

Transactional Collection Classes
Using semantic concurrency control to improve scalability of
applications using long transactions

Programming with Transactional Memory 50

Future Work

Transaction-aware I/O libraries
Semantic concurrency control for structured files such as b-trees
Support for automatically buffering OutputStreams and Writers
Support for application logging within transactions

Integrating with other transactional systems (distributed transactions)
Treat TM as resource manager like DB or transactional file system

Programming Language
Language support for loop based parallelism
Task-based, rather than thread-based, models

Virtual Machines
Garbage Collector

Programming with Transactional Memory 51

Acknowledgements

• My wife Jennifer and kids Michael, Daniel, and Bethany
• My parents David and Elizabeth
• My advisors Kunle Olukotun and Christos Kozyrakis
• My committee Dawson Engler, Margot Gerritsen, John Mitchell
• Jared Casper, Hassan Chafi, JaeWoong Chung, Austen McDonald

and the rest of TCC group for the simulator and everything else
• Andrew Selle and Jacob Leverich for all those cycles
• Normans Adams, Marc Brown, and John Ellis for encouraging me to

go back to school
• Everyone at Ariba that made it possible to go back to school
• Olin Shivers and Tom Knight and the MIT UROP program for inspiring

me to do research as an undergraduate
• Intel for my PhD fellowship
• DARPA, not just for supporting me for the last five years, but for

employing my father for my first five years…

