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The Problem: “The free lunch is over”
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From Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, Sept. 15, 2006

Uniprocessor
Performance 
Trends 
(SPECint)

Chip manufacturers have switched from making faster uniprocessors to 
adding more processor cores per chip

Software developers can no longer just hope that the next 
generation of processor will make their program faster
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Parallel Programming for the Masses?

1628Intel2009
818AMD2009

414AMD Barcelona2007

24124Azul Vega 12005

48148Azul Vega 22006

3248Sun Niagara 12005

Intel
Sun Niagara 2

Intel Barcelona
Intel Woodcrest
AMD Opteron

IBM POWER5
Microprocessor

8242008
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• IBM and Sun 
went multi-
core first on 
the server 
side

• AMD/Intel 
now in core 
count race for 
laptops, 
desktops, and 
servers

Every programmer is now a parallel programmer
The black arts now need to be taught to undergraduates
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What Makes Parallel Programming Hard?

Typical parallel program
Single memory shared by multiple program threads
Need to coordinate access to memory shared b/w threads
Locks allow temporary exclusive access to shared data

Lock granularity tradeoff
Coarse grained locks - contention, lack of scaling, …
Fine grained locks - excessive overhead, deadlock,…

Apparent tradeoff between correctness and performance
Easier to reason about only a few locks…
… but only a few locks can lead to contention
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Transactional Memory to the Rescue?

Transactional Memory
Replaces waiting for locks with concurrency
Allows non-conflicting updates to shared data
Shown to improve scalability of short critical regions

Promise of Transactional Memory
Program with coarse transactions
Performance like fine grained lock

Focus on correctness, tune for performance
Easier to reason about only a few transactions…
… only focus on areas with true contention
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Thesis and Contributions

Thesis:
If transactional memory is to make parallel programming
easier, rather than just more scalable, the programming 
interface requires more than simple atomic transactions

To support this thesis I will:
• Show why lock based programs cannot be simply 

translated to a transactional memory model
• Present the design of Atomos, a parallel programming 

language designed for transactional memory
• Show how Atomos can support semantic concurrency 

control, allowing programs with coarse transactions to 
perform competitively with fine-grained transactions.
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Overview

Motivation and Thesis
How to make parallel programming of chip multiprocessors 
easier using transactional memory

Transactional Memory
Concepts, implementation, environment

JavaT [SCP 2006]
Executing Java programs with Transactional Memory

Atomos [PLDI 2006]
A transactional programming language

Semantic concurrency control [PPoPP 2007]
Improving scalability of applications with long transactions
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Locks versus Transactions

Lock
...
synchronized (lock) {
x = x + y;

}
...

Mapping from lock to protected data
lock protects x

Transaction
...
atomic {
x = x + y;

}
...

Transaction protects all data
No need to worry if another lock 
is necessary to protect y
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Transactional Memory at Runtime

What if transactions modify the same data?
First commit causes other transactions to abort & restart
Can provide programmer with useful feedback!

Time

Transaction B

Transaction A

LOAD X

STORE X LOAD X

STORE X
Commit X

Time

Transaction B

Transaction A

LOAD X

STORE X LOAD X

STORE X
Commit X

Violation!Time

Transaction B

Transaction A

LOAD X

STORE X LOAD X

STORE X
Commit X

LOAD X

STORE X

Violation!

Re-execute 
with new 

data

Original Code:

... = X + Y;

X = ...
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Transactional Memory Related Work

Transactional Memory
Transactional Memory: Architectural Support for Lock-Free Data 
Structures [Herlihy & Moss 1993]
Software Transactional Memory [Shavit & Touitou 1995]

Database
Transaction Processing [Gray & Reuter 1993]

4.7) Nested transactions [Moss 1981]
4.9) Multi-level transactions [Weikum & Schek 1984]
4.10) Open nesting [Gray 1981]
16.7.3) Commit and abort handlers [Eppinger et al. 1991]

Recent Transactional Memory
Language support for lightweight txs [Harris & Fraser 2003]
Exceptions and side-effects in atomic blocks [Harris 2004]
Open nesting in STM [Ni et al. 2007]
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Hardware Environment

Chip Multiprocessor
up to 32 CPUs
write-back L1
shared L2
x86 ISA

Lock evaluation
MESI protocol

TM evaluation
L1 buffers speculative data 
Bus snooping detects data 
dependency violations Changes for TM support



Programming with Transactional Memory 12

Software Environment

Virtual Machine
IBM’s Jikes RVM (Research Virtual Machine) 2.4.2+CVS
GNU Classpath 0.19

HTM extensions
VM_Magic methods converted by JIT to HTM primitives

Polyglot
Translate language extensions to VM_Magic calls
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Overview

Motivation and Thesis
How to make parallel programming of chip multiprocessors 
easier using transactional memory

Transactional Memory
Concepts, implementation, environment

JavaT [SCP 2006]
Executing Java programs with Transactional Memory

Atomos [PLDI 2006]
A transactional programming language

Semantic concurrency control [PPoPP 2007]
Improving scalability of applications with long transactions
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JavaT: Transactional Execution of Java Programs

Goals
Run existing Java programs using transactional memory
Require no new language constructs
Require minimal changes to program source
Compare performance of locks and transactions

Non-Goals
Create a new programming language
Add new transactional extensions
Run all Java programs correctly without modification
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JavaT: Rules for Translating Java to TM

Three rules create transactions in Java programs
1. synchronized defines a transaction
2. volatile references define transactions
3. Object.wait performs a transaction commit

Allows supports execution of a variety of programs:
Histogram based on our ASPLOS 2004 paper
STM benchmarks from Harris & Fraser, OOPSLA 2003
SPECjbb2000 benchmark
All of Java Grande (5 kernels and 3 applications)

Performance comparable or better in almost all cases

Many developers already believe that synchronized
means atomic, as opposed to mutual exclusion!
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JavaT: Defining transactions with synchronized

synchronized blocks define transactions
public static void main (String args[]){

a(); a();      // non-transactional
synchronized (x){ BeginNestedTX();

b(); b();      //     transactional
} EndNestedTX();
c(); c();      // non-transactional

}

We use closed nesting for nested synchronized blocks 
public static void main (String args[]){

a(); a();      // non-transactional
synchronized (x){ BeginNestedTX();

b1(); b1();     // transaction at level 1
synchronized (y) { BeginNestedTX();          

b2(); b2();     // transaction at level 2
} EndNestedTX();
b3(); b3();     // transaction at level 1

} EndNestedTX();
c(); c();      // non-transactional

}
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JavaT: Alternative to rollback on wait

JavaT rules say that Object.wait commits transaction 
Other proposals rollback on wait (or prohibit side effects)

• C.A.R. Hoare’s Conditional Critical Regions (CCRs)
• Harris’s retry keyword
• Welc et al.’s Transactional Monitors

Rollback handles one common pattern of condition variables
sychronized (lock) {

while (!condition) 
wait();

...
}
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JavaT: Commiting on wait

• So why does JavaT commit on wait?
• Motivating example: A simple barrier implementation

synchronized (lock) {
count++;
if (count != thread_count) {

lock.wait();
} else {

count = 0;
lock.notifyAll();

}
}

Code like this is found in Sun Java Tutorial, SPECjbb2000, and Java Grande

• With commit, barrier works as intended 
• With rollback, all threads think they are first to barrier
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JavaT: Commit on wait tradeoff

Major positive of commit on wait
Allows transactional execution of existing Java code

Major negative of commit on wait
Nested transaction problem
We don’t want to commit value of “a” when we wait:
synchronized (x) {

a = true; 
synchronized (y) {

while (!b)
y.wait();

c = true;}}

With locks, wait releases specific lock
With transactions, wait commits all outstanding transactions
In practice, nesting examples are very rare

• It is bad to wait while holding a lock
• wait and notify are usually used for unnested top level coordination 
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JavaT: Keeping Scalable Code Simple

Java HashMap, 
Java Hashtable, 
ConcurrentHashMap

Simple lock around 
swap does not scale

ConcurrentHM Fine
Use ordered key 
locks to avoid 
deadlock

JavaT HashMap
Use simplest code of  
Java HM, performs 
best of all!

TestCompound benchmark from Harris & Fraser, OOPSLA 2003
Atomic swap of Map elements
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history
(B-Tree)

Warehouse

history
(B-Tree)

newOrder
(B-Tree)

SPECjbb2000 Overview

• Java Business Benchmark
3-tier Java benchmark modeled on TPC-C
5 ops: order, payment, status, delivery, stock level

• Most updates local to single warehouse
1% case of inter-warehouse transactions

order
(B-Tree)

Warehouse

YTDTransaction
Manager

Driver Threads

Driver Threads

Client Tier Transaction Server Tier Database Tier

newOrder
(B-Tree)

order
(B-Tree)

nextID
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JavaT: SPECjbb2000 Results

SPECjbb2000
• Close to linear scaling for transactions and locks up to 32 CPUs

32 CPU scale limited by bus in simulated CMP configuration 
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JavaT: Transactional Execution of Java Programs

Goals (revisited)
Run existing Java programs using transactional memory

• Can run a wide variety of existing benchmarks

Require no new language constructs
• Used existing synchronized, volatile, and Object.wait

Require minimal changes to program source
• No changes required for these programs

Compare performance of locks and transactions
• Generally better performance from transactions

Problem
Conditional waiting semantics not right for all programs
What can we do if we can change the language?
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Overview

Motivation and Thesis
How to make parallel programming of chip multiprocessors 
easier using transactional memory

Transactional Memory
Concepts, implementation, environment

JavaT [SCP 2006]
Executing Java programs with Transactional Memory

Atomos [PLDI 2006]
A transactional programming language

Semantic concurrency control [PPoPP 2007]
Improving scalability of applications with long transactions
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The Atomos Programming Language

Atomos derived from Java
atomic replaces synchronized
retry replaces wait/notify/notifyAll

Atomos design features
Open nested transactions

• open blocks committing nested child transaction before parent
• Useful for language implementation but also available for applications

Commit and Abort handlers
• Allow code to run dependant on transaction outcome

Watch Sets
• Extension to retry for efficient conditional waiting on HTM systems
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Atomos: The counter problem

Application
atomic {
...
id = nextId();
...

}
static long nextId() {

atomic {
nextID++;

}}

JIT Compiler
// method prolog
...
invocationCounter++;
...
// method body
...
// method epilogue
...

• Lower-level updates to global data can lead to violations
• General problem not confined to counters:

Application level caching
Cooperative scheduling in virtual machine
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Atomos: Open nested counter solution

Benefits
Violation of counter just replays open 
nested transaction
Open nested commit discards child’s 
read-set preventing later violations

Issues
What happens if parent rolls back 
after child commits?
Okay for statistical counters and UID 
Not okay for SPECjbb2000 YTD 
(year-to-date) payment counters

• Need to some way to coordinate with 
parent transaction

Solution
Wrap counter update in 
open nested transaction

atomic {
...
id = nextId();
...

}

static long nextID () {
open {
nextID++;

}
}
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Atomos: Commit and Abort Handlers

Programs can specify callbacks at end of transaction
Separate interfaces for commit and abort outcomes
public interface CommitHandler { boolean onCommit();}
public interface AbortHandler { boolean onAbort ();}

Historical uses for commit and abort handlers
DB technique for delaying non-transactional operations
Harris brought the technique to STM for solving I/O problem

• See Exceptions and side-effects in atomic blocks. 
• Buffer output until commit, rewind input on abort

Atomos applications
EITHER Delay updates to shared data until parent commits

• Update YTD field only when parent is committing
OR Provide compensation action to open nesting

• Undo YTD update when parent is aborted
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Atomos: SPECjbb2000 Results

SPECjbb2000
Difference between JavaT and Atomos result is handler overhead
Overhead has negligible impact, Atomos still outperforms Java
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Atomos Summary

Atomos similarities to other proposals
atomic, retry, and commit/abort handlers

Atomos differences
Open nested transactions for reduced isolation
watch allows for scalable HTM retry implementation

Open nested transactions controversial
Some uses straight forward
More sophisticated uses require proper handlers

Can we give programmers the benefits of open nesting 
without expecting them to use it directly?
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Overview

Motivation and Thesis
How to make parallel programming of chip multiprocessors 
easier using transactional memory

Transactional Memory
Concepts, implementation, environment

JavaT [SCP 2006]
Executing Java programs with Transactional Memory

Atomos [PLDI 2006]
A transactional programming language

Semantic concurrency control [PPoPP 2007]
Improving scalability of applications with long transactions
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What happens to SPECjbb with long transactions?

Old: SPECjbb could scale
Open nesting 
addresses counters
Only 1% of operations 
touch other 
warehouse data 
structures

New: high-contention SPECjbb
All threads in 1 
warehouse
All transactions touch 
some shared Map

Open nested results not much 
better than Baseline

High-contention SPECjbb Results
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size=2

{1 => …,

2 => …}

size=3

{1 => …,

2 => …,

3 => …}

size=3

{1 => …,

2 => …,

3 => …}

Violations in logically independent operations

Map

put(3,…) 
closed-nested 

transaction

put(4,…) 
closed-nested 

transaction

TX #2 startingTX #1 starting

TX #1 commit TX #2 abort
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Unwanted data dependencies limit scaling

Data structure bookkeeping causing serialization
Frequent HashMap and TreeMap violations updating size 
and modification counts

With short transactions
Enough parallelism from operations that do not conflict to 
make up for the ones that do conflict

With long transactions
Too much lost work from conflicting operations

How can we eliminate unwanted dependencies?
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Reducing unwanted dependencies

Custom hash table
Don’t need size or modCount? Build stripped down Map
Disadvantage: Do not want to custom build data structures

Open-nested transactions
Allows a child transaction to commit before parent
Disadvantage: Lose transactional atomicity

Segmented hash tables
Use ConcurrentHashMap (or similar approaches)
• Compiler and Runtime Support for Efficient STM, Intel, PLDI 2006

Disadvantage: 
Reduces, but does not eliminate, unnecessary violations

Is this reduction of violations good enough?
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Semantic Concurrency Control

Database concept of multi-level transactions
Release low-level locks on data after acquiring higher-level 
locks on semantic concepts such as keys and size

Example
Before releasing lock on B-tree node containing key 7
record dependency on key 7 in lock table
B-tree locks prevent races – lock table provides isolation

4

2

1 3 5 7

6

………

Read7#2317

………

ModeKeyTX#
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Semantic Concurrency Control

Applying Semantic Concurrency Control to TM
Avoid retaining memory level dependencies
Replace with semantic dependencies
Add conflict detection on semantic properties

Transactional Collection Classes
Avoid memory level dependencies on size field, …
Replace with semantic dependencies on keys, size, …
Only detect semantic conflicts that are necessary

No more memory conflicts on implementation details 
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Benefits of Transactional Collection Classes

Programmer just uses the usual collection interfaces
Code change as simple as replacing

Map map = new HashMap();

with 
Map map = new TransactionalMap();

Similar interface coverage to util.concurrent
Maps: TransactionalMap, TransactionalSortedMap
Sets: TransactionalSet,   TransactionalSortedSet
Queue:TransactionalQueue

Only library writers deal directly with open nesting
Similar to java.util.concurrent.atomic
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Implementing Transactional Collection Classes

Remove key dependenciesOn commit and abort
Release semantic dependencies

Apply buffer to underlying map, 
violate transactions that depended on  
the keys we are writing

On commit
Apply buffer to underlying state
Check for semantic conflicts

put(key,value) writes to thread 
local buffer

Write operations
Buffer changes until commit

get(key) add dependencies on key
returns value from underlying map

Read operations
Acquire semantic dependency
Open nesting reads underlying state

Simplified Map exampleGeneral Approach
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{}{c => 23}{c => 23}

{c => [1]}

size=4

{a => 50,

b => 17,

c => 23,

d => 42}

size=2

{a => 50,

b => 17}

{d => 42}

{d => [2]}{c => [1],

d => [2]}

size=3

{a => 50,

b => 17,

c => 23}

Example of non-conflicting put operations

Underlying 
Map

Write Buffer

Depend-
encies

put(c,23) 
open-nested 
transaction

{}

{}

Write Buffer

put(d,42) 
open-nested 
transaction

TX #2 startingTX #1 starting

TX #1 commit 
and handler 
execution

TX #2 commit 
and handler 
execution
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{}

{c => [1]}{}{}{c =>  
[1,2]}

size=3

{a => 50,

b => 17,

c => 23}

{}{c => 23}{c => 23}

size=3

{a => 50,

b => 17,

c => 23}

size=2

{a => 50,

b => 17}

{}

Example of conflicting put and get operations

Underlying 
Map

Write Buffer

Depend-
encies

put(c,23) 
open-nested 
transaction

Write Buffer

get(c) 
open-nested 
transaction

TX #2 startingTX #1 starting

TX #1 commit 
and handler 
execution

TX #2 abort 
and handler 
execution
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Benefits of Semantic Concurrency Approach

Transactional Collection Class works with abstract type
Can work with any conforming implementation
HashMap, TreeMap, …

Avoids implementation specific violations
Not just size and mod count
HashTable resizing does not abort parent transactions
TreeMap rotations invisible as well
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High-contention SPECjbb2000 results

Java Locks
Short critical sections

Atomos Baseline
Full protection of logical ops

Atomos Open
Use simple open-nesting for 
UID generation

Atomos Transactional
Change to Transactional 
Collection Classes

Performance Limit?
Semantic violations from 
calls to SortedMap.firstKey()
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High-contention SPECjbb2000 results

SortedMap dependency
SortedMap use 
overloaded
1. Lookup by ID
2. Get oldest ID 

for deletion

Replace with Map and 
Queue
1. Use Map for 

lookup by ID
2. Use Queue to 

find oldest
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High-contention SPECjbb2000 results

What else could we do?
Split larger 
transactions into 
smaller ones
In the limit, we can 
end up with 
transactions 
matching the short 
critical regions of 
Java

Return on investment
Coarse grained 
transactional version 
is giving almost 8x on 
16 processors
Coarse grained lock 
version would not 
have scaled at all

Focus on correctness
tune for performance



Programming with Transactional Memory 46

SPECjbb2000 Return on Investment

272 synchronized statements13.0Java

272 atomic statements12.5Short

EffortSpeedup on 
16 CPUs

Version

Change TxnSortedMap to TxnMap/TxnQueue
(2 new calls: Queue.add & Queue.remove)

7.8Queue

2 Transactional Map, 1 TxnSortedMap
2 transactional counters

4.1Transactional

4 open statements2.7Open

1 atomic statement1.6Baseline

Atomos 14 changes  7.8x
Java 272 changes 13x
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Semantic Concurrency Control Summary

Transactional memory promises to ease parallelization
Need to support coarse grained transactions

Need to access shared data from within transactions
While composing operations atomically
While avoiding unnecessary data dependency violations
While still having reasonable performance!

Transactional Collection Classes
Provides needed scalability through familiar library 
interfaces of Map, SortedMap, Set, SortedSet, and Queue
Removes need for direct use of open nested transactions
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Overview

Motivation and Thesis
How to make parallel programming of chip multiprocessors 
easier using transactional memory

Transactional Memory
Concepts, implementation, environment

JavaT [SCP 2006]
Executing Java programs with Transactional Memory

Atomos [PLDI 2006]
A transactional programming language

Semantic concurrency control [PPoPP 2007]
Improving scalability of applications with long transactions
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Summary

Thesis:
If transactional memory is to make parallel programming 
easier, rather than just more scalable, the programming 
interface requires more than simple atomic transactions

JavaT
Transactions alone cannot run all existing Java programs 
due to incompatibility of  monitor conditional waiting

Atomos Programming Language
Features to support reduced isolation and integration non-
transactional operations through handlers

Transactional Collection Classes
Using semantic concurrency control to improve scalability of 
applications using long transactions
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Future Work

Transaction-aware I/O libraries 
Semantic concurrency control for structured files such as b-trees 
Support for automatically buffering OutputStreams and Writers
Support for application logging within transactions

Integrating with other transactional systems (distributed transactions)
Treat TM as resource manager like DB or transactional file system

Programming Language
Language support for loop based parallelism 
Task-based, rather than thread-based, models

Virtual Machines
Garbage Collector
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