
The Software Stack for Transactional Memory
Challenges and Opportunities

Brian D. Carlstrom JaeWoong Chung
Christos Kozyrakis Kunle Olukotun

Computer Systems Laboratory
Stanford University

{bdc, jwchung, kozyraki, kunle}@stanford.edu

Abstract
Transactional memory systems apply the experience of the database
community to the general problem of parallel programming with
the goal of providing a simple parallel programing model that de-
livers on the performance potential of multi-processor systems.
Although initial research into both software-only and hardware-
supported transactional memory has shown promising results, there
are many challenges to creating a fully transactional software stack.
Although today’s software stack has some limited use of trans-
actional programming, many parts of the stack from basic data
structures to the operating system and program runtimes contain
at least some lock-based code. In code with coarse-grained lock-
ing, transactions provide an opportunity to improve performance.
In code with fine-grained lock, transactions provide an opportunity
to simplify code while reducing overhead.

1. Introduction
In 1978 C.A.R Hoare wrote, “developments of processor tech-
nology suggest that a multiprocessor machine [...] may become
more powerful, capacious, reliable, and economical than a machine
which is disguised as a monoprocessor” [11]. Over a quarter of
a century later, even laptop computers are multiprocessors thanks
to the arrival of multi-core processors. Although there has been
progress in the intervening decades, there is still debate about how
to best create software to take advantage of multiprocessor systems.

The most widely used mechanism for explicitly managing par-
allelism in programs is locks, whether it be through Pthread mu-
texes in C or C++ or synchronizing on objects in Java. However,
the traditional problems of locks such as priority inversion, con-
voying, and deadlock, have led to the development of alternatives
such as non-blocking data structures as well as the use of ACID
transactions.

Although locks may be the most common method for managing
parallelism explicitly, more programmers probably use parallel sys-
tems implicitly through the use of transactional database systems.
We believe that there is much to be gained from the transactional
alternative to locking. We believe that transactions make it easier to
write correct parallel programs and, just as important, to write par-

Copyright is held by the authors.
STMCS ’06 March 26, 2006, Manhattan, New York, NY

allel programs that have good performance. Our beliefs are not just
based on our own experience with the programming model pro-
vided by transactional memory, but also on the experience of the
database community. To give a seasoned opinion from that com-
munity, here is a quote from Jim Gray:

There are many examples of systems that tried and failed to
implement fault-tolerant or distributed computations using
ad hoc techniques rather than a transaction concept. Sub-
sequently, some of these systems were successfully imple-
mented using transaction techniques. After the fact, the im-
plementers confessed that they simply hit a complexity bar-
rier and could not debug the ad hoc system without a sim-
ple unifying concept to deal with exceptions [Borr 1986;
Hagmann 1987]. Perhaps even more surprising, the subse-
quent transaction oriented systems had better performance
than the ad hoc incorrect systems, because transaction log-
ging tends to convert many small messages and random disk
inputs and outputs (I/Os) into a few larger messages and se-
quential disk I/Os. [9]

While this paper does not focus exclusively on hardware transac-
tional memory, the last sentence of this quote has particular rele-
vance to multi-core processors, where exchanging many small, la-
tency sensitive messages for fewer, larger messages can be advan-
tageous, as previously demonstrated [13].

Despite their short comings, locks can be found supporting
parallelism in all layers of today’s software stack including basic
data structure libraries, operating systems, databases, programming
languages, and distributed systems. This creates opportunities for
transactions to improve parallel performance while reducing soft-
ware complexity throughout the stack. However, with these oppor-
tunities come challenges, particularly in handling I/O and other op-
erations that don’t always fit the transactional semantics, which are
common in system software.

2. Data Structures
Parallel access to data structures using locks is a trade off between
simplicity and efficiency. Usually a programmer will start with
a single lock to protect a structure, which can lead to idle time
due to contention. A programmer can then move to finer grained
locks, with the cost of implementation complexity, increasing the
likelihood of deadlock.

There has been work on non-blocking data structures to avoid
using locks and the common problems they lead to such as dead-
locks, convoying, and priority inversion. However, these data struc-
tures can be more complex than even their fine-grained locking
counterparts.



Transactional memory allows simple lock-free data structures
to be used with concurrent access without performance impact.
However, similar to non-blocking data structures, contention can
still be a problem. For example, a simple hash table will have little
contention even on parallel update. However, if the table tries to
maintain the current number of elements, it creates a source of
contention for any update that adds or removes elements, which
for most uses is the common case.

A few extensions to the basic transactional semantics have been
proposed to handle such cases [12]. The concept of open nested
transaction can help by minimizing the impact of contention, by
only rolling back the update of element counter and not the en-
tire transaction. Another approach is to use violation handlers to
respond to contention in a data structure specific way; in the case
of the counter, the transaction can discard its changes and simply
re-increment the counter. One area of future work is to create a
transaction friendly set of standard collection classes for C++ and
Java.

3. Program Composition
Building software systems involves the composition of many build-
ing blocks, such as data structures, to create a working whole. Sim-
ple nesting of transactions allows basic libraries to be built and
integrated into larger components, similar to the nesting of syn-
chronized blocks in Java. Transactions can also offer alternatives
to threads for parallelism, such as speculative loops that use trans-
actions to maintain sequential semantics while taking advantage of
additional processors for performance. Parallel looping constructs
can dynamically detect the number of processors to use, running
sequentially if higher levels of parallelism are already using other
processors or using all processors if their is a sequential caller.

One challenge to program composition is the inclusion of I/O
calls within a transaction. A general solution is to use buffering
of input and output to remove any non-transactional operations
from within transactions. In practice, this seems reasonable in many
cases. For example, in a web server, a request can be read from
the network, then a transaction can process the request buffering
its output. If the transaction completes successfully, the buffer can
be flushed across the network. If the transaction is aborted, it can
be restarted with the same input. If there is a compelling reason,
the I/O could be allowed from within the transaction, with some
compensating code to be run on failure. For example, a transaction
may want to use a private temporary file within a transaction, which
could simply be deleted if the transaction is later aborted.

Another challenge to program composition is waiting on con-
ditional variables within nested transactions. There is no transac-
tional interpretation that is guaranteed to preserve the semantics of
all lock based programs [3]. Fortunately, alternatives such as con-
ditional critical regions fit well with transactional memory [10].

4. Operating Systems
Operating system kernels show great potential to benefit from
Transactional memory. The Linux kernel’s evolution from unipro-
cessor to multiprocessor support has shown many of the difficulties
of locks. Over time there has been a move from a “one big lock”
lock approach to finer grained locks for high contention data struc-
tures. The increased code complexity due to locking has led a sig-
nificant number of bugs. For example, many drivers have had issues
working in a multiprocessor environment because of requirements
locking places on all accesses to shared data structures. Transac-
tional memory can simplify kernel construction and potentially
even provide performance improvements by speculating through
former lock waiting points.

Transactional memory can also be used to build more reliable
and secure operating systems. The atomicity of transactions pre-
vents unexpected hardware or software faults from leaving shared
system structures in an inconsistent state. The isolation provided
by transactions can be useful for a secure system in that latent at-
tacks from malicious code are always wrapped by transactions and
remain ineffective to systems until they are filtered by security con-
formance test before the commit of the transactions.

The opportunities provided by transactional memory come with
some challenges. Operating systems typically consider processors
to have low preemption cost. Even though there is much talk of
the cost of context switching, in practice the cost of save and re-
store the register set is negligible. Unfortunately, hardware transac-
tional memory complicates preemption by extending the processor
state to include the current state of transactional memory in addi-
tion to the register set. Operating system schedulers may need to
take the transactional status of a processor into consideration, fa-
voring the preemption of code not currently in a transaction. For-
ward progress can become a serious issue if transactions need to
run longer than the scheduling quantum and are rolled back on pre-
emption, although studies of common case transactional behavior
of programs seems to indicate this is not likely to be a problem[7].

Interrupts handling creates similar problems, because we do not
want the handlers state to affect an unrelated transaction that was
already running. One potential solution is to run interrupt handlers
as a sort of open nested transaction that runs and commits its
changes without committing the parent that was already on the
processor.

Physical device I/O operations are inherently non-transactional
because they cannot be rolled back. Several approaches should be
considered. First, some buffering techniques described above might
work for non-block devices. Second, I/O operations could be de-
layed until commit, a typical approach taken in other transactional
systems. Finally, perhaps simply prohibiting device I/O within a
transaction would not be an undue burden on the kernel program-
mer.

Finally, virtual memory management needs to cooperate with
transactional memory when updating virtual to physical address
mappings so that changes in mapping do not cause the system to
miss any data conflicts.

It is worth noting that the challenges of transaction preemption
on context switch or interrupt are limited to hardware transactional
memory systems. Software transactional memory systems do not
share these issues, since by definition none of their transactional
state is maintained within the processor. Hopefully, the challenges
presented by hardware transactional memory in the context of oper-
ating systems can be explored in parallel with opportunities through
the use of software transactional memory.

5. Language Implementation
Just as databases hide complexity in implementation in order to
provide a simple interface, programming language runtimes of-
ten have to deal with details so the programmer does not have to.
One area of complexity is memory allocation. For example, some
software transactional memory systems internally differentiate be-
tween heap allocated and stack allocated objects in C/C++ [15].
Java garbage collectors need to be made transaction aware so par-
allel collection can avoid unnecessary overhead.

While there are challenges in implementing programming lan-
guages in a transactional environment, there are opportunities as
well. For example, one can imagine taking advantage of violation
detection to allow a garbage collector to run in parallel with mutator
threads, where a violation works as event trigger for concurrent up-
dates of mutators and collectors to heap and stack memory. By hav-
ing violation handlers to do suitable adjustments at violations due



to conflicts between collectors and mutators, the burden of playing
with fine-grain locking and synchronization schemes can be greatly
mitigated [12]. In addition, one could imagine a JIT compiler mak-
ing unsafe optimization with respect to reachability of a location,
counting on violations to catch any problems in practice.

6. Programming Models
There seem to be as many different semantics for transactional
memory as there are transactional memory proposals. While most
provide the basic concept of begin transaction, commit transaction,
and simple nesting, from this starting point there are departures
for many competing destinations. One source of concern is that
often proposals use the same name for differing semantics, with
one example being the usage of open nesting.

A larger problem is when certain behavior is not defined at all.
For example, there are two general forms of atomicity: strong and
weak. Strong atomicity implies that a transaction’s results are not
visible to non-transactional code and that changes made to shared
state by non-transactional code violate transactions that depend on
that state. However some systems offer only weak atomicity, which
means atomicity is preserved only if all accesses are from within
transactions, but no guarantees are made for simultaneous read or
write access from non-transactional code. This means that reads
from outside transactions may read partially update state and that
writes may break the atomicity assumptions of code that is running
within a transaction.

We believe that strong atomicity should be a requirement of all
transactional memory proposals, otherwise a programmer acciden-
tally reading or writing shared state outside a transaction will de-
stroy atomicity expectations in other parts of the system. While al-
most all hardware transactional memory proposals provide strong
atomicity, until recently most software transactional memory pro-
posals did not. We are encouraged to see that this has become a
topic of interest in recent software transactional memory research.
However, we are concerned when some hardware proposals offer
extensions that create environments where strong and weak atom-
icity might be mixed within a program, especially when neither
programming model is a functional subset of the other [2].

One design challenge is how to provide transactional features to
the programmer in a structured way, particularly in choosing which
features to expose to high level programmers and which to reserve
for system programming. A large number of language proposals
that were otherwise unrelated to transactions have recently added
atomic constructs, although some are more completely specified
than others [1, 5, 8]. Our own proposal for the Atomos program-
ming language tries to address the boundary between transactional
constructs for the programming language user and those program-
ming language implementer, focusing on providing the basics like
open and closed nesting and conditional waiting to the programmer
and reserving the full power of violation handlers for the use under
the hood [4].

7. Distributed Transactions
Large enterprise applications are typically built with distributed
transactions. The programmer in this environment is already used
to the concept of transactions, which have been used for decades as
a vehicle to build reliable and efficient business systems. In these
environments, a single transaction can span more than one system.
Each system acts as a resource manager and a transaction manager
employees a two phase commit protocol to ensure that the ACID
properties of transactions are preserved in the event of the failure
of any of the resource managers. It is important for the transactional
memory community to be aware of the requirements placed on re-

source managers to allow future integration with external transac-
tion managers.

Distributed transaction systems typically provide their own in-
terface for coordinating transactions across the system, including
such basic operations as committing a transaction, so that the re-
quests are directed to the transaction manager. Some examples of
these interfaces include Microsoft .Net’s Enterprise Services for its
Distributed Transaction Coordinator (DTC), Java 2 Enterprise Edi-
tion (J2EE)’s Java Transaction Service (JTS), and CORBA’s Object
Transaction Service (OTS). Any transactional memory interfaces,
including transactional language proposals, need to consider how
they could delegate their commit operations to use these interfaces
if needed.

Distributed transaction systems often provide a declarative defi-
nition of the transaction proprieties of interfaces, separate from the
code that implements those interfaces. For example, Enterprise Java
Beans (EJBs), the distributed object system in J2EE, requires pro-
grammers to annotate interface methods with transactional prop-
erties such as TX REQUIRED or TX BEAN MANAGED to in-
dicate if a transaction is expected to already be present or should
be internal to the bean. When calling these interfaces, transactional
memory may be able to extract parallelism by using the interface
annotations as hints about what calls might prove useful sources of
method-level parallelism.

8. Legacy Code
No matter how successful transactional memory systems become,
they will always have to integrate with existing legacy code. There
are several approaches to taking advantage of transactions with
existing code. For existing parallel code with locks, proposals such
as TLR have explored converting critical sections into transactions,
falling back to locks on rollback [14]. Even sequential code can
take advantage of transactions with techniques to convert ordered
loops into speculative transactions such as the Jrpm system for
Java[6]. Similar techniques could be applied directly to native code
with binary translation. Together these two approaches promise to
smooth the transition for both existing parallel and sequential code
to parallel transactional execution.

9. Conclusion
For transactional memory to deliver on its promise, transactions
must be integrated across the software stack. While there are sev-
eral challenges along that way, revisiting the software stack for
transactions provides a great opportunity to improve performance,
reliability, and ease-of-use in future systems based on multicore
chips. It also provides an opportunity to re-energize collaboration
between the architecture, programming language, compiler, operat-
ing systems, and distributed systems communities. Such synergis-
tic work is necessary to create practical and truly scalable parallel
systems.

Acknowledgements
This research was sponsored by the Defense Advanced Research
Projects Agency (DARPA) through the Department of the Interior
National Business Center under grant number NBCH104009. The
views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Defense Advanced
Research Projects Agency (DARPA) or the U.S. Government.

Additional support was also available through NSF grant 0444470.
Brian D. Carlstrom is supported by an Intel Foundation PhD Fel-
lowship.



References
[1] E. Allen, D. Chase, V. Luchangco, J.-W. Maessen, S. Ryu, G. L. S.

Jr., and S. Tobin-Hochstadt. The Fortress Language Specification.
Sun Microsystems, 2005.

[2] C. Blundell, E. C. Lewis, and M. M. K. Martin. Deconstructing
transactional semantics: The subtleties of atomicity. In Workshop on
Duplicating, Deconstructing, and Debunking (WDDD), June 2005.

[3] B. D. Carlstrom, J. Chung, H. Chafi, A. McDonald, C. Cao Minh,
L. Hammond, C. Kozyrakis, and K. Olukotun. Transactional
Execution of Java Programs. In OOPSLA 2005 Workshop on
Synchronization and Concurrency in Object-Oriented Languages
(SCOOL). October 2005.

[4] B. D. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. Cao Minh,
C. Kozyrakis, and K. Olukotun. The Atomos Transactional
Programming Language. In PLDI ’06: Proceedings of the 2006
ACM SIGPLAN Conference on Programming Language Design and
Implementation, New York, NY, USA, 2006. ACM Press.

[5] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. In OOPSLA ’05:
Proceedings of the 20th annual ACM SIGPLAN conference on Object
oriented programming systems languages and applications, pages
519–538, New York, NY, USA, 2005. ACM Press.

[6] M. K. Chen and K. Olukotun. The Jrpm system for dynamically
parallelizing java programs. In Proceedings of the 30th International
Symposium on Computer Architecture, pages 434–445, June 2003.

[7] J. Chung, H. Chafi, C. Cao Minh, A. McDonald, B. D. Carlstrom,
C. Kozyrakis, and K. Olukotun. The Common Case Transactional
Behavior of Multithreaded Programs. In Proceedings of the
12th International Conference on High-Performance Computer
Architecture, 2006.

[8] Cray. Chapel Specification. February 2005.

[9] J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[10] T. Harris and K. Fraser. Language support for lightweight trans-
actions. In OOPSLA ’03: Proceedings of the 18th annual ACM
SIGPLAN conference on Object-oriented programing, systems, lan-
guages, and applications, pages 388–402. ACM Press, 2003.

[11] C. A. R. Hoare. Communicating sequential processes. Communica-
tions of the ACM, 21(8):666–677, 1978.

[12] A. McDonald, J. Chung, B. D. Carlstrom, C. Cao Minh, H. Chafi,
C. Kozyrakis, and K. Olukotun. Architectural Semantics for Practical
Transactional Memory. In Proceedings of the 33rd International
Symposium on Computer Architecture, 2006.

[13] A. McDonald, J. Chung, H. Chafi, C. Cao Minh, B. D. Carlstrom,
L. Hammond, C. Kozyrakis, and K. Olukotun. Characterization
of TCC on Chip-Multiprocessors. In PACT ’05: Proceedings of
the 14th International Conference on Parallel Architectures and
Compilation Techniques (PACT’05), pages 63–74, Washington, DC,
USA, September 2005. IEEE Computer Society.

[14] R. Rajwar and J. R. Goodman. Transactional lock-free execution
of lock-based programs. In ASPLOS-X: Proceedings of the 10th
international conference on Architectural support for programming
languages and operating systems, pages 5–17, New York, NY, USA,
October 2002. ACM Press.

[15] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. Cao Minh, and
B. Hertzberg. A high performance software transactional memory
system for a multi-core runtime. In PPoPP ’06: Proceedings of the
eleventh ACM SIGPLAN symposium on Principles and practice of
parallel programming, New York, NY, USA, March 2006. ACM
Press.


