
Transactional Collection Classes Brian D. Carlstrom

Transactional Collection Classes

Brian D. Carlstrom, Austen McDonald, Michael Carbin
Christos Kozyrakis, Kunle Olukotun

Computer Systems Laboratory
Stanford University

http://tcc.stanford.edu

Transactional Collection Classes 2

Transactional Memory

Promise of Transactional Memory (TM)
1. Make parallel programming easier
2. Better performance through concurrent execution

How does TM make parallel programming easier?
Program with large atomic regions
Keep the performance of fine-grained locking

Transactional Collection Classes
Transactional versions of Map, SortedMap, Queue, …
Avoid unnecessary data dependency violations
Provide scalability while allowing access to shared data

Transactional Collection Classes 3

Evaluating Transactional Memory

Past evaluations
Convert fine-grained locks to fine-grained transactions
Convert barrier style applications with little communication

Past results
TM can compete given similar programmer effort

What happens when we use longer transactions?

Transactional Collection Classes 4

TM hash table micro-benchmark comparison

Old: Many short transactions that
each do only one Map
operation

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8 16 32

CPUs

Sp
ee

du
p

Locks

Transactions

0

5

10

15

20

25

30

35

1 2 4 8 16 32

CPUs

Sp
ee

du
p

Locks

Transactions

`

New: Long transactions containing
one or more Map operations

Transactional Collection Classes 5

New: High contention - All threads
in 1 warehouse

• All transactions touch some
shared Map

TM SPECjbb2000 benchmark comparison

Old: Measures JVM scalability, but
app rarely has communication

• 1 thread per warehouse, 1%
inter-warehouse transactions

0

5

10

15

20

25

30

35

1 2 4 8 16 32

CPUs

Sp
ee

du
p

Locks

Transactions

`

0

2

4

6

8

10

12

14

16

18

1 2 4 8 16 32

CPUs

Sp
ee

du
p

Locks

Transactions

`

`

Transactional Collection Classes 6

Unwanted data dependencies limit scaling

Data structure bookkeeping causing serialization
Frequent HashMap and TreeMap violations updating size
and modification counts

With short transactions
Enough parallelism from operations that do not conflict to
make up for the ones that do conflict

With long transactions
Too much lost work from conflicting operations

How can we eliminate unwanted dependencies?

Transactional Collection Classes 7

Reducing unwanted dependencies

Custom hash table
Don’t need size or modCount? Build stripped down Map
Disadvantage: Do not want to custom build data structures

Open-nested transactions
Allows a child transaction to commit before parent
Disadvantage: Lose transactional atomicity

Segmented hash tables
Use ConcurrentHashMap (or similar approaches)
• Compiler and Runtime Support for Efficient STM, Intel, PLDI 2006

Disadvantage:
Reduces, but does not eliminate, unnecessary violations

Is this reduction of violations good enough?

Transactional Collection Classes 8

Composing Map operations

Suppose we want to perform two
Map operations atomically

With locks: take a lock on
Map and hold it for
duration
With transactions: one big
atomic block
Both lousy performance

Use ConcurrentHashMap?
Won’t help lock version
Probabilistic approach
hurts as number of
operations per transaction
increases

Can we do better?

0

1

2

3

4

1 2 4 8 16 32

CPUs

Sp
ee

du
p

Locks Transactions

`

Example compound operation:
atomic {

int balance = map.get(acct);

balance += deposit;

map.put(acct, balance);}

Transactional Collection Classes 9

Semantic Concurrency Control

Database concept of multi-level transactions
Release low-level locks on data after acquiring higher-level
locks on semantic concepts such as keys and size

Example
Before releasing lock on B-tree node containing key 7
record dependency on key 7 in lock table
B-tree locks prevent races – lock table provides isolation

4

2

1 3 5 7

6

………

Read7#2317

………

ModeKeyTX#

Transactional Collection Classes 10

Semantic Concurrency Control

Applying Semantic Concurrency Control to TM
Avoid retaining memory level dependencies
Replace with semantic dependencies
Add conflict detection on semantic properties

Transactional Collection Classes
Avoid memory level dependencies on size field, …
Replace with semantic dependencies on keys, size, …
Only detect semantic conflicts that are necessary
No more memory conflicts on implementation details

Transactional Collection Classes 11

Transactional Collection Classes

Our general approach
Read operations acquire
semantic dependency

• Open nesting used to read
class state

Writes buffered until commit
Check for semantic conflicts
on commit
Release dependencies on
commit and abort

Simplified Map example
Read operations add
dependencies on keys
Write operations buffer
inserts and updates
On commit we applied
buffered changes, violating
transactions that read
values from keys that are
changing
On commit and abort we
remove dependencies on
the keys we have read

Transactional Collection Classes 12

{}{c => 23}{c => 23}

{c => [1]}

size=4

{a => 50,

b => 17,

c => 23,

d => 42}

size=2

{a => 50,

b => 17}

{d => 42}

{d => [2]}{c => [1],

d => [2]}

size=3

{a => 50,

b => 17,

c => 23}

Example of non-conflicting put operations

Underlying
Map

Write Buffer

Depend-
encies

put(c,23)
open-nested
transaction

{}

{}

Write Buffer

put(d,42)
open-nested
transaction

TX #2 startingTX #1 starting

TX #1 commit
and handler
execution

TX #2 commit
and handler
execution

Transactional Collection Classes 13

{}

{c => [1]}{}{}{c =>
[1,2]}

size=3

{a => 50,

b => 17,

c => 23}

{}{c => 23}{c => 23}

size=3

{a => 50,

b => 17,

c => 23}

size=2

{a => 50,

b => 17}

{}

Example of conflicting put and get operations

Underlying
Map

Write Buffer

Depend-
encies

put(c,23)
open-nested
transaction

Write Buffer

get(c)
open-nested
transaction

TX #2 startingTX #1 starting

TX #1 commit
and handler
execution

TX #2 abort
and handler
execution

Transactional Collection Classes 14

Benefits of Semantic Concurrency Approach

Works with any conforming implementation
HashMap, TreeMap, …

Avoids implementation specific violations
Not just size and mod count
HashTable resizing does not abort parent transactions
TreeMap rotations invisible as well

Transactional Collection Classes 15

Making a Transactional Class

1. Categorize primitive versus derivative methods
Derivative methods such as isEmpty can be ignored
Often only a small fraction of methods are primitive

2. Categorize read versus write methods
Read methods do not conflict with each other
Need to focus on how write operations cause conflicts

3. Define semantic dependencies
Most difficult step, although still not rocket science
For Map, this involved deciding to track keys and size

4. Implement!

Transactional Collection Classes 16

Making a Transactional Class

4. Implementation
1. Derivative methods call primitive methods
2. Read operations use open nesting

Avoid memory dependencies on committed state
Record semantic dependencies in shared state
Consult buffered state for local changes of our own write operations

3. Write operations record changes in local state
4. Commit handler

• Transfers local state to committed state
• Abort other transactions with conflicting dependencies
• Releases dependencies

5. Abort handler
• Cleans up local state
• Releases dependencies

Transactional Collection Classes 17

Library focused solution

Programmer just uses the usual collection interfaces
Code change as simple as replacing

Map map = new HashMap();

with
Map map = new TransactionalMap();

We provide similar interface coverage to util.concurrent
Maps: TransactionalMap, TransactionalSortedMap
Sets: TransactionalSet, TransactionalSortedSet
Queue:TransactionalQueue

Primarily only library writers need to master implementation
Seems more manageable work than util.concurrent effort

Transactional Collection Classes 18

Paper details…

TransactionalMap
Discussion of full interface including dealing with iteration

TransactionalSortedMap
Adds tracking of range dependencies

TransactionalQueue
Reduces serialization requirements
Mostly FIFO, but if abort after remove, simple pushback

Transactional Collection Classes 19

Evaluation Environment

• The Atomos Transactional Programming Language
Java - locks + transactions = Atomos
Implementation based on Jikes RVM 2.4.2+CVS
GNU Classpath 0.19

• Hardware is simulated PowerPC chip multiprocessor
1-32 processors with private L1 and shared L2

• For details about the Atomos programming language
See PLDI 2006

• For details on hardware for open nesting, handlers, etc.
See ISCA 2006

• For details on simulated chip multiprocessor
See PACT 2005

Transactional Collection Classes 20

TestMap results

• TestMap is a long
operation containing a
single map operation

• Java HashMap with
single lock scales
because lock region is
small compared to long
operation

• TransactionalMap with
semantic concurrency
control returns scalability
lost to memory level
violations

0

5

10

15

20

25

30

35

1 2 4 8 16 32

CPUs
Sp

ee
du

p

Java HashMap

Atomos HashMap

Atomos TransactionalMap

`

Transactional Collection Classes 21

TestCompound results

• TestCompound is a long
operation containing two
map operations

• Java HashMap protects
the compound operations
with a lock, limiting
scalability

• TransactionalMap
preserves scalability of
TestMap 0

5

10

15

20

25

30

1 2 4 8 16 32

CPUs

Sp
ee

du
p

Java HashMap
Atomos HashMap
Atomos TransactionalMap

`

Transactional Collection Classes 22

High-contention SPECjbb2000 results

Java Locks
Short critical sections

Atomos Baseline
Full protection of logical ops

Performance Limit?
Data dependency violations
on unique ID generator for
new order objects 0

2

4

6

8

10

12

14

16

18

1 2 4 8 16 32

CPUs
Sp

ee
du

p

Java

Atomos Baseline

`

Transactional Collection Classes 23

High-contention SPECjbb2000 results

Java Locks
Short critical sections

Atomos Baseline
Full protection of logical ops

Atomos Open
Use simple open-nesting for
UID generation

Performance Limit?
Data dependency violations
on TreeMap and HashMap

0

2

4

6

8

10

12

14

16

18

1 2 4 8 16 32

CPUs
Sp

ee
du

p

Java

Atomos Baseline

Atomos Open

`

Transactional Collection Classes 24

High-contention SPECjbb2000 results

Java Locks
Short critical sections

Atomos Baseline
Full protection of logical ops

Atomos Open
Use simple open-nesting for
UID generation

Atomos Transactional
Change to Transactional
Collection Classes

Performance Limit?
Semantic violations from calls
to SortedMap.firstKey()

0

2

4

6

8

10

12

14

16

18

1 2 4 8 16 32

CPUs
Sp

ee
du

p

Java
Atomos Baseline
Atomos Open
Atomos Transactional

`

Transactional Collection Classes 25

High-contention SPECjbb2000 results

SortedMap dependency
SortedMap use overloaded

1. Lookup by ID
2. Get oldest ID for deletion

Replace with Map and Queue
1. Use Map for lookup by ID
2. Use Queue to find oldest 0

2

4

6

8

10

12

14

16

18

1 2 4 8 16 32

CPUs
Sp

ee
du

p

Java
Atomos Baseline
Atomos Open
Atomos Transactional

`

Transactional Collection Classes 26

High-contention SPECjbb2000 results

What else could we do?
Split larger transactions into
smaller ones
In the limit, we can end up
with transactions matching
the short critical regions of
Java

Return on investment
Coarse grained
transactional version is
giving 8x on 32 processors
Coarse grained lock version
would not have scaled at all

0

2

4

6

8

10

12

14

16

18

1 2 4 8 16 32

CPUs
Sp

ee
du

p

Java
Atomos Baseline
Atomos Open
Atomos Transactional

`

Transactional Collection Classes 27

Conclusions

Transactional memory promises to ease parallelization
Need to support coarse grained transactions

Need to access shared data from within transactions
While composing operations atomically
While avoiding unnecessary dependency violations
While still having reasonable performance!

Transactional Collection Classes
Provides needed scalability through familiar library
interfaces of Map, SortedMap, Set, SortedSet, and Queue

