The Atomos Transactional
Programming Language

Brian D. Carlstrom, Austen McDonald, Hassan Chafi,
JaeWoong Chung, Chi Cao Minh,
Christos Kozyrakis, Kunle Olukotun

Computer Systems Laboratory
Stanford University
http://tcc.stanford.edu

The Atomos Transactional Programming Language Brian D. Carlstrom

Transactional Memory

 Reasons to use Transactional Memory (TM)
= Replace mutual exclusion with concurrent transactions
= Remove challenges to programming with locks
 Challenges

* Long running transactions without lower level violations
- Easier to use one big transaction than having to split into chunks
- Application libraries and runtimes want to update encapsulated state

* Transactional conditional waiting with hardware support

- Software transactional memory (STM) systems have an arbitrary
number of transactional contexts in memory, allowing some to be idle

- Hardware transactional memory (HTM) systems have a fixed number
of transactional contexts in silicon, don’t want to busy wait

The Atomos Transactional Programming Language

The Atomos Programming Language

« Atomos derived from Java
= atomic replaces synchronized
= retry replaces wart/notify/notiftyAll

« Atomos design features

= Open nested transactions
- open blocks committing nested child transaction before parent
- Useful for language implementation but also available for applications

= Watch Sets
- Extension to retry for efficient conditional waiting on HTM systems

e Atomos implementation features

= Violation handlers
- Handle expected violations without rolling back in all cases
- Not part of the language, only used in language implementation

The Atomos Transactional Programming Language

synchronized versus atomic

Java Atomos
synchronized (hashMap){ atomic {
hashMap.put(key,value); hashMap.put(key,value);
+ +

Transactional memory advantages
 NoO association between a lock and shared data
* Non-conflicting operations can proceed in parallel

The Atomos Transactional Programming Language

The counter problem

Application JIT Compiler
atomic { // method prolog
this.id = getUID(); invocationCounter++;
} // method body
static long getUID (O { -
atomic { // method epilogue
globalCounter++;
1

 Lower-level updates to global data can lead to violations
* General problem not confined to counters:

= Application level caching

= Cooperative scheduling in virtual machine

The Atomos Transactional Programming Language

Open nested solution to the counter problem

e Solution e Benefits
= Wrap counter update in = Violation of cou_nter just replays open
open nested transaction nested transaction
= Open nested commit discards child’s
atomic { read-set preventing later violations
. |ssues
this.id = getUIDQ); = What happens if parent rolls back
after child commits?
} = QOkay for statistical counters and UID
= Not okay for SPECjbb2000 object
static long getUID O { allocation counters
open { - Need to some way to compensate if
globalCounter++; parent rolls back
+

}

The Atomos Transactional Programming Language

Transaction Commit and Abort Handlers

 Programs can specify callbacks at end of transaction

= Separate interfaces for commit and abort outcomes
public interface CommitHandler { boolean onCommit();}
public interface AbortHandler { boolean onAbort ();}

= DB technique for delaying non-transactional operations

= Harris brought the technique to STM for solving 1/O problem
- See Exceptions and side-effects in atomic blocks.
- Buffer output until commit, rewind input on abort
= |n Atomos, commit of open nested transaction can register
abort handler for parent transaction
. This allows for compensating transaction for object counter example

The Atomos Transactional Programming Language

wairt/notiftyAll versus retry

Java Atomos
public 1nt get (O{ public 1nt get O{
synchronized (this) { atomic {
while (lavailable) 1T (tavailable)
wait(); retry;

available = false; available = false;
notiftyAll) ;
return contents;}} return contents;}}

Transactional memory advantages
« Automatic reevaluation of avai lable condition
* No need for explicit notifyAll

The Atomos Transactional Programming Language

Transactional Conditional Waiting

 When condition false, wait until consumer Producer

read set violated .}vai lable? No
= |Leverage violation detection for

efficient wakeup

= When violation happens
- Rollback waiting transaction available=true
- Move thread from waiting to ready

« Approach scales well in STM

= No practical limit on number of
transactional contexts

« However HTM has limited
number of hardware contexts

= Can we overcome this issue?

commit

violation

<

rol Iback

available? Yes!

The Atomos Transactional Programming Language

Hardware Transactional Conditional Waiting

* Instead of using one HW Consumer Scheduler Producer
context per waiting
transaction

= Merge waiting read sets
Into one shared context

e Our VM already has
dedicated VM scheduler
thread

= Use as shared context

 Challenges

= How can we
communicate read set
between threads?

= How can shared context
handle violations for
others?

available? No

=true

xfer read-set

<« »

available

commit

violation

<
4

reschedule A

available? Yes!

The Atomos Transactional Programming Language

Violation Handlers

 Violation Handlers solve both challenges

= Thread can register handler for violation callbacks
public iInterface ViolationHandler {
boolean onViolation (Address violatedAddress);}

« How can we communicate read set between threads?
= Use open nested transaction to send command to scheduler
= Scheduler ViolationHandler receives commands

« How can shared context handle violations for others?
» Scheduler maintains map of addresses to interested threads
= non-command violation moves threads from waiting to ready

The Atomos Transactional Programming Language

Common case transactional waiting

« |ssues with transferring the public int get (Q{
read-set on retry atomic {
= Need HW interface to 1T (lavailable){
enumerate read-set watch available:
= Want to minimize size the retry;}

number of addresses

= Want to prevent overflow of
HW transactional context

e Solution

= Program usually only cares
about changes to a small
subset of its read-set

= This watch-set will usually
only be a single address

available = false;
return contents;}}

The Atomos Transactional Programming Language

Hardware and Software Environment

 The simulated chip multiprocessor TCC Hardware (See PACT 2005)

CPU 1-32 single issue PowerPC core

L1 64-KB, 32-byte cache line, 4-way associative, 1 cycle latency
Victim Cache 8 entries fully associative

Bus width 16 bytes

Bus arbitration 3 pipelined cycles

Transfer Latency 3 pipelined cycles

L2 Cache 8MB, 8-way, 16 cycles hit time

Main Memory 100 cycles latency, up to 8 outstanding transfers

For detailed semantics of open nesting, handlers, etc., see ISCA 2006
e Atomos built on top of Jikes RVM
= Derived from Jikes RVM 2.4.2+CVS using GNU Classpath 0.19
= All necessary code precompiled before measurement
= Virtual machine startup excluded from measurement

The Atomos Transactional Programming Language

Transactions keep data structures simple

e TestHashtable

* 50%-50% mix of reads and
write to Map implementations

 Comparison of Map performance

No built in synchronization
Collections.synchronizedMap
= Java Hashtable
Singe coarse lock
= Java ConcurrentHashMap
Fine grained locking

= Atomos HashMap

Simple HashMap with transactions
scales better than than
ConcurrentHashMap

The Atomos Transactional Programming Language

Speedup

e
o N

Java ConcurrentHashMap

#: Atomos HashMap
18
Java HashMap

16 -

—e— Java Hashtable

/\l

4/

o N b~ OO

Transactional conditional waiting evaluation

e TestWait benchmark

I I 160
= Pass tokens in circle AOMOS
= Uses blocking queues 140)R
= 32 CPUs, vary token count 120 f
e Purpose 100 /

» Used by Harris and Fraser to
measure Conditional Critical

Speedup
8
\

Region (CCR) performance 60 '
 Results 40 - /
= Atomos similar scalability to 20
Java with few tokens . //'_——.
= As token count nears CPU 1 2 4 8 16 32
count, violation detection short Tokens

circuits wait code, avoiding
context switch overhead

The Atomos Transactional Programming Language

The Atomos Programming Language

e Atomos derived from Java

= Transactional Memory for concurrency
atomic blocks define basic nested transactions
Removed synchonized

= Transaction based conditional waiting
Derivative of Conditional Critical Regions and Harris retry
Removed wait, notify, and notifyAll
Watch sets for efficient implementation on HTM systems
= Open nested transactions
open blocks committing nested child transaction before parent
Useful for language implementation but also available for applications
= Violation handlers
Handle expected violations without rolling back in all cases
Not part of the language, only used in language implementation
* Finally, atomos is the classical Greek word for indivisible

= “a” prefix means “not” and “tomos” root means “cuttable”

The Atomos Transactional Programming Language

