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Transactional Memory

• Reasons to use Transactional Memory (TM)
Replace mutual exclusion with concurrent transactions
Remove challenges to programming with locks 

• Challenges
Long running transactions without lower level violations

• Easier to use one big transaction than having to split into chunks
• Application libraries and runtimes want to update encapsulated state

Transactional conditional waiting with hardware support
• Software transactional memory (STM) systems have an arbitrary 

number of transactional contexts in memory, allowing some to be idle
• Hardware transactional memory (HTM) systems have a fixed number 

of transactional contexts in silicon, don’t want to busy wait
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The Atomos Programming Language

• Atomos derived from Java
atomic replaces synchronized
retry replaces wait/notify/notifyAll

• Atomos design features
Open nested transactions

• open blocks committing nested child transaction before parent
• Useful for language implementation but also available for applications

Watch Sets
• Extension to retry for efficient conditional waiting on HTM systems

• Atomos implementation features
Violation handlers

• Handle expected violations without rolling back in all cases
• Not part of the language, only used in language implementation
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synchronized versus atomic

Java
...
synchronized (hashMap){
hashMap.put(key,value);

}
...

Atomos
...
atomic {
hashMap.put(key,value);

}
...

Transactional memory advantages
• No association between a lock and shared data
• Non-conflicting operations can proceed in parallel
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The counter problem

Application
atomic {
...
this.id = getUID();
...

}
static long getUID () {

atomic {
globalCounter++;

}}

JIT Compiler
// method prolog
...
invocationCounter++;
...
// method body
...
// method epilogue
...

• Lower-level updates to global data can lead to violations
• General problem not confined to counters:

Application level caching
Cooperative scheduling in virtual machine
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Open nested solution to the counter problem

• Benefits
Violation of counter just replays open 
nested transaction
Open nested commit discards child’s 
read-set preventing later violations

• Issues
What happens if parent rolls back 
after child commits?
Okay for statistical counters and UID 
Not okay for SPECjbb2000 object 
allocation counters

• Need to some way to compensate if 
parent rolls back

• Solution
Wrap counter update in 
open nested transaction

atomic {
...
this.id = getUID();
...

}

static long getUID () {
open {
globalCounter++;

}
}
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Transaction Commit and Abort Handlers

• Programs can specify callbacks at end of transaction
Separate interfaces for commit and abort outcomes
public interface CommitHandler { boolean onCommit();}

public interface AbortHandler { boolean onAbort ();}

DB technique for delaying non-transactional operations
Harris brought the technique to STM for solving I/O problem

• See Exceptions and side-effects in atomic blocks. 
• Buffer output until commit, rewind input on abort

In Atomos, commit of open nested transaction can register 
abort handler for parent transaction

• This allows for compensating transaction for object counter example
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wait/notifyAll versus retry

Java
public int get (){
synchronized (this) {
while (!available)
wait();

available = false;
notifyAll();
return contents;}}

Atomos
public int get (){
atomic {
if (!available)
retry;

available = false;

return contents;}}

Transactional memory advantages
• Automatic reevaluation of available condition
• No need for explicit notifyAll
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Transactional Conditional Waiting

• When condition false, wait until 
read set violated

Leverage violation detection for 
efficient wakeup
When violation happens

• Rollback waiting transaction
• Move thread from waiting to ready

• Approach scales well in STM
No practical limit on number of 
transactional contexts

• However HTM has limited 
number of hardware contexts

Can we overcome this issue?

Consumer Producer

available? No

available=true
commit

available? Yes!

violation

rollback
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xfer read-set

Hardware Transactional Conditional Waiting

• Instead of using one HW 
context per waiting 
transaction

Merge waiting read sets 
into one shared context

• Our VM already has 
dedicated VM scheduler 
thread

Use as shared context
• Challenges

How can we 
communicate read set 
between threads?
How can shared context 
handle violations for 
others?

SchedulerConsumer Producer

available? No
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Violation Handlers

• Violation Handlers solve both challenges
Thread can register handler for violation callbacks
public interface ViolationHandler {

boolean onViolation (Address violatedAddress);}

• How can we communicate read set between threads?
Use open nested transaction to send command to scheduler
Scheduler ViolationHandler receives commands

• How can shared context handle violations for others?
Scheduler maintains map of addresses to interested threads
non-command violation moves threads from waiting to ready
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Common case transactional waiting

• Issues with transferring the 
read-set on retry

Need HW interface to 
enumerate read-set
Want to minimize size the 
number of addresses
Want to prevent overflow of 
HW transactional context

• Solution
Program usually only cares 
about changes to a small 
subset of its read-set
This watch-set will usually 
only be a single address

public int get (){
atomic {

if (!available){
watch available;
retry;}

available = false;
return contents;}}
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Hardware and Software Environment

• The simulated chip multiprocessor TCC Hardware (See PACT 2005)

For detailed semantics of open nesting, handlers, etc., see ISCA 2006
• Atomos built on top of Jikes RVM 

Derived from Jikes RVM 2.4.2+CVS using GNU Classpath 0.19
All necessary code precompiled before measurement
Virtual machine startup excluded from measurement

16 bytesBus width

8 entries fully associativeVictim Cache

3 pipelined cyclesTransfer Latency

100 cycles latency, up to 8 outstanding transfersMain Memory

8MB, 8-way, 16 cycles hit timeL2 Cache

3 pipelined cyclesBus arbitration

64-KB, 32-byte cache line, 4-way associative, 1 cycle latencyL1

1-32 single issue PowerPC coreCPU
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Transactions keep data structures simple

• TestHashtable
50%-50% mix of reads and 
write to Map implementations

• Comparison of Map performance 
Java HashMap

• No built in synchronization
• Collections.synchronizedMap

Java Hashtable
• Singe coarse lock

Java ConcurrentHashMap
• Fine grained locking

Atomos HashMap
• Simple HashMap with transactions 

scales better than than
ConcurrentHashMap
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Transactional conditional waiting evaluation

• TestWait benchmark
Pass tokens in circle
Uses blocking queues
32 CPUs, vary token count

• Purpose
Used by Harris and Fraser to 
measure Conditional Critical 
Region (CCR) performance

• Results
Atomos similar scalability to 
Java with few tokens
As token count nears CPU 
count, violation detection short 
circuits wait code, avoiding 
context switch overhead
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The Atomos Programming Language

• Atomos derived from Java
Transactional Memory for concurrency

• atomic blocks define basic nested transactions
• Removed synchonized

Transaction based conditional waiting
• Derivative of Conditional Critical Regions and Harris retry
• Removed wait, notify, and notifyAll
• Watch sets for efficient implementation on HTM systems

Open nested transactions
• open blocks committing nested child transaction before parent
• Useful for language implementation but also available for applications

Violation handlers
• Handle expected violations without rolling back in all cases
• Not part of the language, only used in language implementation

• Finally, atomos is the classical Greek word for indivisible
“a” prefix means “not” and “tomos” root means “cuttable”




