
The Atomos Transactional Programming Language Brian D. Carlstrom

The Atomos Transactional 
Programming Language

Brian D. Carlstrom, Austen McDonald, Hassan Chafi, 
JaeWoong Chung, Chi Cao Minh,

Christos Kozyrakis, Kunle Olukotun

Computer Systems Laboratory
Stanford University

http://tcc.stanford.edu



The Atomos Transactional Programming Language 2

Transactional Memory

• Reasons to use Transactional Memory (TM)
Replace mutual exclusion with concurrent transactions
Remove challenges to programming with locks 

• Challenges
Long running transactions without lower level violations

• Easier to use one big transaction than having to split into chunks
• Application libraries and runtimes want to update encapsulated state

Transactional conditional waiting with hardware support
• Software transactional memory (STM) systems have an arbitrary 

number of transactional contexts in memory, allowing some to be idle
• Hardware transactional memory (HTM) systems have a fixed number 

of transactional contexts in silicon, don’t want to busy wait



The Atomos Transactional Programming Language 3

The Atomos Programming Language

• Atomos derived from Java
atomic replaces synchronized
retry replaces wait/notify/notifyAll

• Atomos design features
Open nested transactions

• open blocks committing nested child transaction before parent
• Useful for language implementation but also available for applications

Watch Sets
• Extension to retry for efficient conditional waiting on HTM systems

• Atomos implementation features
Violation handlers

• Handle expected violations without rolling back in all cases
• Not part of the language, only used in language implementation



The Atomos Transactional Programming Language 4

synchronized versus atomic

Java
...
synchronized (hashMap){
hashMap.put(key,value);

}
...

Atomos
...
atomic {
hashMap.put(key,value);

}
...

Transactional memory advantages
• No association between a lock and shared data
• Non-conflicting operations can proceed in parallel



The Atomos Transactional Programming Language 5

The counter problem

Application
atomic {
...
this.id = getUID();
...

}
static long getUID () {

atomic {
globalCounter++;

}}

JIT Compiler
// method prolog
...
invocationCounter++;
...
// method body
...
// method epilogue
...

• Lower-level updates to global data can lead to violations
• General problem not confined to counters:

Application level caching
Cooperative scheduling in virtual machine



The Atomos Transactional Programming Language 6

Open nested solution to the counter problem

• Benefits
Violation of counter just replays open 
nested transaction
Open nested commit discards child’s 
read-set preventing later violations

• Issues
What happens if parent rolls back 
after child commits?
Okay for statistical counters and UID 
Not okay for SPECjbb2000 object 
allocation counters

• Need to some way to compensate if 
parent rolls back

• Solution
Wrap counter update in 
open nested transaction

atomic {
...
this.id = getUID();
...

}

static long getUID () {
open {
globalCounter++;

}
}



The Atomos Transactional Programming Language 7

Transaction Commit and Abort Handlers

• Programs can specify callbacks at end of transaction
Separate interfaces for commit and abort outcomes
public interface CommitHandler { boolean onCommit();}

public interface AbortHandler { boolean onAbort ();}

DB technique for delaying non-transactional operations
Harris brought the technique to STM for solving I/O problem

• See Exceptions and side-effects in atomic blocks. 
• Buffer output until commit, rewind input on abort

In Atomos, commit of open nested transaction can register 
abort handler for parent transaction

• This allows for compensating transaction for object counter example



The Atomos Transactional Programming Language 8

wait/notifyAll versus retry

Java
public int get (){
synchronized (this) {
while (!available)
wait();

available = false;
notifyAll();
return contents;}}

Atomos
public int get (){
atomic {
if (!available)
retry;

available = false;

return contents;}}

Transactional memory advantages
• Automatic reevaluation of available condition
• No need for explicit notifyAll



The Atomos Transactional Programming Language 9

Transactional Conditional Waiting

• When condition false, wait until 
read set violated

Leverage violation detection for 
efficient wakeup
When violation happens

• Rollback waiting transaction
• Move thread from waiting to ready

• Approach scales well in STM
No practical limit on number of 
transactional contexts

• However HTM has limited 
number of hardware contexts

Can we overcome this issue?

Consumer Producer

available? No

available=true
commit

available? Yes!

violation

rollback



The Atomos Transactional Programming Language 10

xfer read-set

Hardware Transactional Conditional Waiting

• Instead of using one HW 
context per waiting 
transaction

Merge waiting read sets 
into one shared context

• Our VM already has 
dedicated VM scheduler 
thread

Use as shared context
• Challenges

How can we 
communicate read set 
between threads?
How can shared context 
handle violations for 
others?

SchedulerConsumer Producer

available? No

a
v
a
i
l
a
b
l
e
=
t
r
u
e

c
o
m
m
i
t

available? Yes!

violation

rollback

B

A

A

reschedule A



The Atomos Transactional Programming Language 11

Violation Handlers

• Violation Handlers solve both challenges
Thread can register handler for violation callbacks
public interface ViolationHandler {

boolean onViolation (Address violatedAddress);}

• How can we communicate read set between threads?
Use open nested transaction to send command to scheduler
Scheduler ViolationHandler receives commands

• How can shared context handle violations for others?
Scheduler maintains map of addresses to interested threads
non-command violation moves threads from waiting to ready



The Atomos Transactional Programming Language 12

Common case transactional waiting

• Issues with transferring the 
read-set on retry

Need HW interface to 
enumerate read-set
Want to minimize size the 
number of addresses
Want to prevent overflow of 
HW transactional context

• Solution
Program usually only cares 
about changes to a small 
subset of its read-set
This watch-set will usually 
only be a single address

public int get (){
atomic {

if (!available){
watch available;
retry;}

available = false;
return contents;}}



The Atomos Transactional Programming Language 13

Hardware and Software Environment

• The simulated chip multiprocessor TCC Hardware (See PACT 2005)

For detailed semantics of open nesting, handlers, etc., see ISCA 2006
• Atomos built on top of Jikes RVM 

Derived from Jikes RVM 2.4.2+CVS using GNU Classpath 0.19
All necessary code precompiled before measurement
Virtual machine startup excluded from measurement

16 bytesBus width

8 entries fully associativeVictim Cache

3 pipelined cyclesTransfer Latency

100 cycles latency, up to 8 outstanding transfersMain Memory

8MB, 8-way, 16 cycles hit timeL2 Cache

3 pipelined cyclesBus arbitration

64-KB, 32-byte cache line, 4-way associative, 1 cycle latencyL1

1-32 single issue PowerPC coreCPU



The Atomos Transactional Programming Language 14

Transactions keep data structures simple

• TestHashtable
50%-50% mix of reads and 
write to Map implementations

• Comparison of Map performance 
Java HashMap

• No built in synchronization
• Collections.synchronizedMap

Java Hashtable
• Singe coarse lock

Java ConcurrentHashMap
• Fine grained locking

Atomos HashMap
• Simple HashMap with transactions 

scales better than than
ConcurrentHashMap

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8 16 32

CPUs

Sp
ee

du
p

Atomos HashMap
Java ConcurrentHashMap
Java HashMap
Java Hashtable

`



The Atomos Transactional Programming Language 15

Transactional conditional waiting evaluation

• TestWait benchmark
Pass tokens in circle
Uses blocking queues
32 CPUs, vary token count

• Purpose
Used by Harris and Fraser to 
measure Conditional Critical 
Region (CCR) performance

• Results
Atomos similar scalability to 
Java with few tokens
As token count nears CPU 
count, violation detection short 
circuits wait code, avoiding 
context switch overhead

0

20

40

60

80

100

120

140

160

1 2 4 8 16 32

Tokens

Sp
ee

du
p

Atomos
Java

`



The Atomos Transactional Programming Language 16

The Atomos Programming Language

• Atomos derived from Java
Transactional Memory for concurrency

• atomic blocks define basic nested transactions
• Removed synchonized

Transaction based conditional waiting
• Derivative of Conditional Critical Regions and Harris retry
• Removed wait, notify, and notifyAll
• Watch sets for efficient implementation on HTM systems

Open nested transactions
• open blocks committing nested child transaction before parent
• Useful for language implementation but also available for applications

Violation handlers
• Handle expected violations without rolling back in all cases
• Not part of the language, only used in language implementation

• Finally, atomos is the classical Greek word for indivisible
“a” prefix means “not” and “tomos” root means “cuttable”




