
Architectural Semantics for Practical Transactional Memory

Austen McDonald, JaeWoong Chung, Brian D. Carlstrom, Chi Cao Minh, Hassan Chafi,
Christos Kozyrakis and Kunle Olukotun

Computer Systems Laboratory
Stanford University

{austenmc, jwchung, bdc, caominh, hchafi, kozyraki, kunle}@stanford.edu

Abstract

Transactional Memory (TM) simplifies parallel program-
ming by allowing for parallel execution of atomic tasks.
Thus far, TM systems have focused on implementing trans-
actional state buffering and conflict resolution. Missing is a
robust hardware/software interface, not limited to simplis-
tic instructions defining transaction boundaries. Without
rich semantics, current TM systems cannot support basic
features of modern programming languages and operating
systems such as transparent library calls, conditional syn-
chronization, system calls, I/O, and runtime exceptions.

This paper presents a comprehensive instruction set ar-
chitecture (ISA) for TM systems. Our proposal introduces
three key mechanisms: two-phase commit; support for soft-
ware handlers on commit, violation, and abort; and full
support for open- and closed-nested transactions with inde-
pendent rollback. These mechanisms provide a flexible in-
terface to implement programming language and operating
system functionality. We also show that these mechanisms
are practical to implement at the ISA and microarchitecture
level for various TM systems. Using an execution-driven
simulation, we demonstrate both the functionality (e.g., I/O
and conditional scheduling within transactions) and perfor-
mance potential (2.2× improvement for SPECjbb2000) of
the proposed mechanisms. Overall, this paper establishes
a rich and efficient interface to foster both hardware and
software research on transactional memory.

1 Introduction
As chip-multiprocessors become ubiquitous, providing

architectural support for practical parallel programming is
now critical. Transactional Memory (TM) [17] simpli-
fies concurrency management by supporting parallel tasks
(transactions) that appear to execute atomically and in iso-
lation. Using optimistic concurrency, TM allows program-
mers to achieve increased parallel performance with easy-
to-identify, coarse-grain transactions. Furthermore, trans-
actions address other challenges of lock-based parallel code
such as deadlocks and robustness to failures.

Several proposed systems implement transactional mem-
ory in hardware (HTM) using different techniques for trans-
actional state buffering and conflict detection [27, 12, 4, 28,

23]. At the instruction set level, HTM systems provide only
a couple of instructions to define transaction boundaries
and handle nested transactions through flattening. While
such limited semantics have been sufficient to demonstrate
HTM’s performance potential using simple benchmarks,
they fall short of supporting several key aspects of mod-
ern programming languages and operating systems such as
transparent library calls, conditional synchronization, sys-
tem calls, I/O, and runtime exceptions. Moreover, the cur-
rent HTM semantics are insufficient to support recently pro-
posed languages and runtime systems that build upon trans-
actions to provide an easy-to-use concurrent programming
model [13, 14, 8, 2, 7, 29, 20, 11, 1, 6]. For HTM systems
to become useful to programmers and achieve widespread
acceptance, it is critical to carefully design expressive and
clean interfaces between transactional hardware and soft-
ware before we delve further into HTM implementations.

This paper defines a comprehensive instruction set ar-
chitecture (ISA) for hardware transactional memory. The
architecture introduces three basic mechanisms: (1) two-
phase transaction commit, (2) support for software han-
dlers on transaction commit, violation, and abort, and (3)
closed- and open-nested transactions with independent roll-
back. Two-phase commit enables user-initiated code to run
after a transaction is validated but before it commits in or-
der to finalize tasks or coordinate with other modules. Soft-
ware handlers allow runtime systems to assume control of
transactional events to control scheduling and insert com-
pensating actions. Closed nesting is used to create compos-
able programs for which a conflict in an inner module does
not restrict the concurrency of an outer module. Open nest-
ing allows the execution of system code with independent
atomicity and isolation from the user code that triggered it.
The proposed mechanisms require a small set of ISA re-
sources, registers and instructions, as a significant portion
of their functionality is implemented through software con-
ventions. This is analogous to function call and interrupt
handling support in modern architectures, which is limited
to a few special instructions (e.g., jump and link or return
from interrupt), but rely heavily on well-defined software
conventions.

We demonstrate that the three proposed mechanisms are
sufficient to support rich functionality in programming lan-

guages and operating systems including transparent library
calls, conditional synchronization, system calls, I/O, and
runtime exceptions within transactions. We also argue that
their semantics provide a solid substrate to support future
developments in TM software research. We describe prac-
tical implementations of the mechanisms that are compat-
ible with proposed HTM architectures. Specifically, we
present the modifications necessary to properly track trans-
actional state and detect conflicts for multiple nested trans-
actions. Using execution-driven simulation, we evaluate I/O
and conditional synchronization within transactions. More-
over, we explore performance optimizations using nested
transactions.

Overall, this paper is an effort to revisit concurrency sup-
port in modern instruction sets by carefully balancing soft-
ware flexibility and hardware efficiency. Our specific con-
tributions are:

• We propose the first comprehensive instruction set ar-
chitecture for hardware transactional memory that intro-
duces support for two-phase transaction commit; soft-
ware handlers for commit, violation, and abort; and
closed- and open-nested transactions with independent
rollback.

• We demonstrate that the three proposed mechanisms pro-
vide sufficient support to implement functionality such
as transparent library calls, conditional synchronization,
system calls, I/O, and runtime exceptions within trans-
actions. No further concurrency control mechanisms are
necessary for user or system code.

• We implement and quantitatively evaluate the proposed
ISA. We demonstrate that nested transactions lead to
2.2× performance improvement for SPECjbb2000
over conventional HTM systems with flat transactions.
We also demonstrate scalable performance for transac-
tional I/O and conditional scheduling.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 motivates the need for rich
architectural semantics in HTM systems. We introduce the
instruction set semantics of the three mechanisms in Section
4 and describe how they support programming language and
system code development in Section 5. In Section 6, we dis-
cuss the hardware implementation of the proposed mecha-
nisms. Finally, Section 7 presents a quantitative evaluation,
and Section 8 concludes the paper.

2 Background and Related Work
2.1 Transactional Memory Overview

With Transactional Memory (TM), programmers define
atomic code sequences (transactions) that may include un-
structured flow control and any number of memory refer-
ences. A TM system executes transactions providing: (1)
atomicity: either the whole transaction executes or none of
it; (2) isolation: partial memory updates are not visible to
other transactions; and (3) consistency: there appears to be
a single transaction completion order across the whole sys-
tem [17]. TM systems achieve high performance through
speculation. A transaction runs without acquiring locks, op-
timistically assuming no other transaction operates concur-

rently on the same data. If this is true at the end of its execu-
tion, the transaction commits its writes to shared memory.
If not, the transaction violates, its writes are rolled back, and
it is re-executed.

Any TM system must implement the following mecha-
nisms: (1) isolation of stores until the transaction commits;
(2) conflict detection between concurrent transactions; (3)
atomic commit of stores to shared memory; (4) rollback of
stores when conflicts are detected. Conflict detection re-
quires tracking the addresses read (read-set) and written
(write-set) by each transaction. A conflict occurs when
the write-set of one transaction intersects with the read-
set of another concurrently executing transaction. These
mechanisms can be implemented either with hardware-
assisted (HTM) [27, 12, 4, 28, 23] or software-only (STM)
[31, 15, 16, 13, 21, 30] techniques. This paper focuses on
HTM systems because they support transactional mecha-
nisms at minimal overheads and make the implementation
details transparent to software.

2.2 Hardware Transactional Memory
Recent work has demonstrated that various HTM imple-

mentations allow for good performance with simple paral-
lel code [27, 12, 23]. HTM systems implement specula-
tive buffering and track read- and write-sets in caches. For
conflict detection, they use the cache-coherence protocol.
Since HTM systems are subject to physical resource limi-
tations (cache capacity, paging, context switches), virtual-
ization mechanisms have been proposed that allow transac-
tional state to be stored in virtual memory [4, 28].

There are several differences among the HTM propos-
als. Speculative writes can be stored in a write-buffer un-
til commit [27, 12] or stored in shared memory directly if
an undo-log is maintained [23]. Conflicts can be detected
eagerly as transactions access memory [4, 23] or lazily on
transaction commit [12]. An HTM system may allow non-
transactional code to see partial updates (weak atomicity)
or provide full isolation of uncommitted updates (strong
atomicity) [5]. Transactions can be used for localized non-
blocking synchronization [4, 23] or in a continuous man-
ner [12]. Finally, HTM systems differ in other aspects such
the granularity of state tracking and the use of snooping or
directory-based coherence [22, 23].

The semantics supported by current HTM systems are
typically limited to instructions that define transaction
boundaries. UTM [4] and LogTM [23] suggest the use
of a software violation handler for contention management
on conflicts. Our work presents a general mechanism for
transactional handlers on violations, user-initiated aborts, or
commits. We are the first to describe the hardware and soft-
ware necessary to implement handlers and how they support
a wide range of system functionality. Moss and Hosking
have discussed nested transactions and potential implemen-
tations [24]. We define alternative semantics for open nest-
ing, which are more appropriate for composable software.

3 The Need for Rich HTM Semantics
Current HTM systems provide instructions to define

transaction boundaries which are sufficient to support pro-
gramming constructs such as atomic{} and demonstrate
the HTM performance potential with simple benchmarks.
However, they fall short of supporting key aspects of mod-
ern programming environments [19]. Moreover, there is
now a significant body of work on languages and runtime
systems that builds upon transactions to provide an easy-to-
use concurrent programming model [13, 14, 8, 2, 7, 29, 20,
11, 1, 6]. To achieve widespread acceptance, HTM systems
must support a full programming environment and allow
for innovation in transaction-based software. This section
reviews the basic software requirements that motivate the
semantics proposed in Section 4.

Composable Software (libraries): Modern programs use
hierarchies of libraries, which have well-defined interfaces,
but their implementation is hidden from users. Since
libraries called within transactions may include atomic
blocks, transactions will often be nested. Current HTM sys-
tems deal with nested transactions by subsuming (or flatten-
ing) all inner transactions within the outermost one [12, 4,
23]. Flattening can hurt performance significantly as a con-
flict in a small, inner transaction may cause the re-execution
of a large, outer transaction. Such conflicts may even occur
due to bookkeeping data maintained by the library, which
are only tangentially related to the concurrency in the over-
all program. To avoid such bottlenecks without nesting, a
programmer must be aware of the implementation details of
the library code, which is completely impractical. Hence,
HTM systems must support independent abort of nested
transactions.

Contention and Error Management: Current HTM sys-
tems handle conflicts by aborting and re-executing the trans-
action. Recent proposals, however, require software control
over conflicts to improve performance and eliminate starva-
tion [11]. Language constructs such as tryatomic [2]
and ContextListener [13] allow alternate execution
paths on transaction aborts. With nested transactions, pro-
grammers may define separate conflict policies for each
nesting level. Finally, it is necessary for both error handling
(e.g., try/catch) and debugging to expose some informa-
tion about the aborted transaction before its state is rolled
back. Hence, HTM systems must intervene on all excep-
tional events and manage transactional state and program
control flow.

Conditional Synchronization: Transactions must replace
locks not only for atomic execution but also for con-
ditional synchronization (e.g., wait/notify). Condi-
tional synchronization is useful with producer/consumer
constructs and efficient barriers. Recently proposed lan-
guages include a variety of constructs that build upon
transactions to provide conditional synchronization with-
out explicit notify statements (conditional atomic [15],
retry and orElse [14], yield [29], when [8], watch
and wait [6]). To support such constructs, software needs
control over conflicts and commits, and HTMs must also fa-
cilitate communication between uncommitted transactions.

State Type Description
Basic State

xstatus Reg Transaction info: ID, type (closed, open), sta-
tus (active, validated, committed, or aborted),
nesting level

xtcbptr base Reg Base address of TCB stack
xtcbptr top Reg Address of current TCB frame

Handler State
xchcode Reg PC for commit handler code
xvhcode Reg PC for violation handler code
xahcode Reg PC for abort handler code
xchptr base TCB Base of commit handler stack
xchptr top TCB Top of commit handler stack
xvhptr base TCB Base of violation handler stack
xvhptr top TCB Top of violation handler stack
xahptr base TCB Base of abort handler stack
xahptr top TCB Top of abort handler stack

Violation & Abort State
xvPC Reg Saved PC on violation or abort
xvaddr Reg Violation address (if available)
xvcurrent Reg Current violation mask: 1 bit per nesting level
xvpending Reg Pending violation mask: 1 bit per nesting level

Table 1. State needed for rich HTM semantics. State
may be in a processor register or stored in a TCB field.

System Calls, I/O, and Runtime Exceptions: HTM sys-
tems prohibit system calls, I/O, and runtime exceptions
within transactions [4, 23] or revert to sequential execution
on such events [12]. Both approaches are unacceptable as
real programs include system calls and cause exceptions,
often hidden within libraries. To avoid long transactions
through system code invoked explicitly (system calls) or
implicitly (exceptions), system code should update shared-
memory independently of the user transaction that triggered
it. There should also be mechanisms to postpone system
calls until the corresponding user code commits or com-
pensate for the system call if the corresponding user code
aborts. Furthermore, system programmers should be able to
use the atomicity and isolation available with transactional
memory to simplify system code development.

4 HTM Instruction Set Architecture
To provide robust support for user and system software,

we introduce three key mechanisms to HTM architectures:
two-phase commit, transactional handlers, and closed- and
open-nested transactions. This section describes their ISA-
level semantics and introduces the necessary state and in-
structions. We discuss their implementation in Section 6.
The instructions should be used by language and system
developers to implement high-level functionality that pro-
grammers access through language constructs and APIs.
The instructions provide key primitives for flexible software
development and do not dictate any end-to-end solutions.

Throughout this section, we refer to Tables 1 and 2 that
summarize the state and instructions necessary for the three
mechanisms. Some basic instructions are already available
in some form in HTM systems (e.g., xbegin, xabort,
xregrestore, and xrwsetclear), but we need to
modify their semantics. The exact encoding or name for
instructions and registers depends on the base ISA used and
is not important.

Each transaction is associated with a Transaction Con-
trol Block (TCB) in the same manner as a function call is
associated with an activation record. The TCB is a logical
structure that stores basic transaction state: a status word,

Instruction Description
Transaction Definition

xbegin Checkpoint registers & start (closed-nested) transaction

xbegin open Checkpoint registers & start open-nested transaction

xvalidate Validate read-set for current transaction

xcommit Atomically commit current transaction

State & Handler Management
xrwsetclear Discard current read-set and write-set;

clear xvpending at current nesting level

xregrestore Restore current register checkpoint

xabort Abort current transaction; jump to xahcode;
disable further violation reporting

xvret Return from abort or violation handler;
jump to xvPC; enable violation reporting

xenviolrep Enable violation reporting

Optional (Performance Optimizations)
imld Load without adding to read-set

imst Store to memory without adding to write-set

imstid Store to memory without adding to write-set;
no undo information maintained

release Release an address from the current read-set

Table 2. Instructions needed for rich HTM semantics.

the register checkpoint at the beginning of the transaction
(including the PC), the read-set and write-set addresses, and
the write-buffer or undo-log. Conceptually, all TCB fields
can be stored in cacheable, thread-private main memory. In
practice, several TCB fields will be in caches (e.g., the read-
set, write-set, and write-buffer) or in registers (e.g., the sta-
tus word) for faster access. Figure 2 summarizes the final
view of the TCB.

4.1 Two-phase Commit
Semantics: We replace the monolithic commit instruction
in current HTM systems with a two-phase commit [10].
The xvalidate instruction verifies that atomicity was
maintained (i.e., no conflicts) and sets the transaction sta-
tus to validated. Its completion specifies that the transac-
tion will not be rolled back due to a prior memory access.
The xcommit instruction marks the transaction commit-
ted, which makes its writes visible to shared memory. Any
code between the two instructions executes as part of the
current transaction and has access to its speculative state.
The code can access thread-private state safely, but accesses
to shared data may cause conflicts and should be wrapped
within open-nested transactions (see Section 4.5). The code
can also lead to voluntary aborts instead of an xcommit.

Use: Two-phase commit allows the compiler or runtime to
insert code between xvalidate and xcommit. This is
useful for commit handlers that help finalize system calls
and I/O. It also enables the transaction to coordinate with
other code before it commits. For example, we can run a
transaction in parallel with code that checks its correctness
(e.g., for memory leaks, stack overflows, etc.) [26]. Alter-
natively, we can coordinate multiple transactions collabo-
rating on the same task for group commit [20].

4.2 Commit Handlers
Semantics: Commit handlers allow software to register
functions that run once a transaction is known to com-
plete successfully. Commit handlers execute between
xvalidate and xcommit and require no further hard-
ware support. Everything else is flexible software conven-

tions. It is desirable that transactions can register multi-
ple handlers, each with an arbitrary number of arguments.
Hence, we define a commit handler stack in thread-private
memory. The base and top of the stack are tracked in
the TCB fields xchptr base and xchptr top, respec-
tively. To register a commit handler, the transaction pushes
a pointer to the handler code and its arguments on the
stack. An additional TCB field, (xchcode), points to the
code that walks the stack and executes all handlers after
xvalidate. To preserve the sequential semantics of the
transaction code, commit handlers should run in the order
they were registered. As transactions may include multiple
function calls and returns, handler developers should rely
only on heap allocated data.

Use: Commit handlers allow us to finalize tasks at
transaction commit. System calls with permanent side-
effects execute as commit handlers (e.g., write to file or
sendmsgs).

4.3 Violation Handlers

Semantics: Violation handlers allow software to register
functions to be automatically triggered when a conflict is
detected in the current transaction. The mechanisms for in-
voking and returning from the violation handler resembles a
user-level exception. On a conflict, the hardware interrupts
the current transaction by saving its current PC in the xvPC
register and the conflict address in the the xvaddr register
(if available). Then, it automatically jumps to the code in-
dicated by the xvhcode register. To avoid repeated jumps
to xvhcode if additional conflicts are detected, we auto-
matically disable violation reporting. Additional conflicts
detected are noted by in the xvpending register. The vio-
lation handler returns by executing the xvret instruction,
which enables violation reporting and jumps to the address
in xvPC (which may have been altered by software). If
xvpending is set, the violation handler is invoked again
and xvpending is cleared.

A transaction can register multiple violation handlers
with arbitrary arguments in the violation handler stack
stored in thread-private memory. The stack base and
top are tracked in the TCB fields xvhptr base and
xvhptr top, but code located at xvhcode is responsi-
ble for running all registered handlers. Violation handlers
should run in the reverse order from which they were regis-
tered to preserve correct undo semantics.

Like commit handlers, violation handlers start as part of
the current transaction and have access to its speculative
state. They can safely access thread-private state, but should
uses open-nested transactions to access shared state1. By
manipulating xvPC before returning, violation handlers can
continue the current transaction (i.e., ignore violation), roll
back and re-execute, or roll back and run other code. To roll
back the transaction, the handler must flush the write-buffer
or process the undo-log, discard the read-set and write-
set using xrwsetclear, and restore the register check-
point with xregrestore. xrwsetclear also clears the
xvpending register to avoid spurious violations.

1Violation reporting should be re-enabled before the nested transaction.

xbegin
(NL=1)

xbegin
(NL=2)

xbegin
(NL=2)

Ti
m

e

TB

TC

TA

xbegin
(NL=1)

xbegin_open
(NL=2)

TD

TE

1 2

1 2

3

3

1 3 4

4

4

Closed
Nesting

Open
Nesting

xvalidate
xcommit

xvalidate
xcommit

xvalidate
xcommit

xvalidate
xcommit

xvalidate
xcommit

Commit transaction’s writes to
memory.

3

Discard transaction’s read-/write-set.4

1 Update parent with child’s writes.
Merge child’s read-/write-set with
parent’s.

2

Figure 1. Timeline of three nested transactions: two
closed-nested and one open-nested.

Use: Violation handlers allow for software contention man-
agement on a conflict [14, 11]. It also allows for compensa-
tion code for system calls that execute within the transaction
if it rolls back (e.g., read or lseek to a file).

4.4 Abort Handlers
Semantics: Abort handlers are identical to violation han-
dlers but they are triggered when a transaction uses an ex-
plicit xabort instruction. A separate register points to the
code to invoke (xahcode). Abort handlers have a separate
stack bounded by the xahptr base and xahptr top
fields in the TCB. The uses of abort handlers are similar
to those of violation handlers.

4.5 Nested Transactions
We define two types of nesting, explained in Figure 1.

Closed Nesting Semantics: A closed-nested transaction
starts when an xbegin instruction executes within another
transaction (TB and TC in Figure 1). The HTM system sep-
arately tracks the read-set, write-set, and speculative state
of the child transaction from that of its parent. However,
the child can access any state generated by an ancestor. If a
child detects a conflict, we can independently roll back only
the child, without affecting any ancestors. When a child
commits using xcommit, hardware merges its speculative
writes (�) and read-/write-set (�) with that of its parent, but
no update escapes to shared memory. We make writes visi-
ble to shared memory only when the outermost transaction
commits (�, �).

Open Nesting Semantics: An open-nested transaction
starts when an xbegin open instruction executes within
another transaction (see TE in Figure 1). Open nesting dif-
fers from closed nesting only in commit semantics. On

open-nested commit, we allow the child transaction to im-
mediately update shared memory with its speculative writes
(�, �). The parent transaction updates the data in its read-
set or write-set if they overlap with the write-set of the open-
nested transaction. However, conflicts are not reported and
no overlapping addresses are removed from the parent’s
read-set or write-set. If we want to undo the open nested
transaction after it commits and its parent aborts, we need
to register an abort and/or violation handler.

Our closed nesting semantics are identical to those pre-
sented by Moss and Hosking [24]. However, our open nest-
ing semantics differ. Moss and Hosking propose that open-
nested transactions remove from their ancestors’ read-set
or write-set any addresses they update while committing.
Their motivation is to use open nesting as an early release
mechanism that trims the read-/write-set for performance
optimizations [7]. We find these semantics non-intuitive
and dangerous: an open-nested transaction within library
code that is a black box to the programmer can change the
atomicity behavior of the user’s code in an unanticipated
manner.

Use: Closed-nested transactions allow for independent roll-
backs and contention management at each nesting level,
which typically leads to better performance. Open-nested
transactions can both rollback and commit independently
from their parents, which provides a powerful tool for sys-
tem code development. We can use them within a trans-
action to perform system calls without creating frequent
conflicts through system state (e.g., time). We can use
them for calls that update system state before parents com-
mit (e.g., brk). We also use them in handlers to access
shared state independently. Note that within an open-nested
transaction, we still provide atomicity and isolation, hence
system code does not have to use locks for synchronization.
In many cases, open-nested transactions must be combined
with violation handlers to provide undo capabilities.

4.6 Nested Transactions and Handlers
Nested transactions can have separate handlers. To prop-

erly track all information, each transaction has its own TCB
frame. We implement a stack of TCB frames in thread-
private memory as shown in Figure 2, with a frame allo-
cated before xbegin or xbegin open and deallocated
on xcommit or a rollback. The base and current top of
the TCB stack are identified by registers xtcbptr base
and xtcbptr top. TCB frames have fixed length as the
the read-set, write-set, and speculative state of the transac-
tion are physically tracked in caches. For each transaction,
xstatus tracks the current nesting level. Overall, TCB
management for transactions is similar to activation record
management for function calls.

A single stack is necessary to store all registered handlers
of a certain type. Each transaction has separate base and
top pointers to identify its entries in the stack. At commit, a
closed-nested transaction merges its commit, violation, and
abort handlers with those of its parent by copying its top
pointer (e.g. xchptr top) into the parent’s top pointer.
The fixed length of TCB frames makes such an operation
trivial. On an open-nested commit, we execute commit han-

write-buffer or undo log*

xstatus†

xchcode†

xvhcode†

xahcode†

xchptr_base‡

xchptr_top‡

xvhptr_base‡

xvhptr_top‡

xahptr_base‡

xahptr_top‡

read-set & write-set*

TCB1

TCB2

TCB3

Nesting
Level

3

2

1

TCB Stack
Transaction Control Block

xtcbptr_base

xtcbptr_top

* Kept in caches (logically part of the TCB).
† Must be stored in registers (logically part of the TCB).
‡ TCB fields stored in thread-private memory.

arg. 0

...

arg. n

...

Abort Handler
Stack

arg. 0

...

arg. n

...

Violation
Handler Stack

Handler PC

arg. 0

...

arg. n

Handler PC

...

Commit Handler
Stack

Register Checkpoint

Figure 2. The Transaction Stack containing three Transaction Control Blocks (TCBs), one per active nested transac-
tion. The second entry is shown in detail, complete with commit, violation, and abort handler stacks.

dlers immediately and discard violation and abort handlers.
On nested rollback, we automatically discard its handlers
without modifying the parent’s pointers.

With nesting, conflicts can be detected for a transaction at
any active nesting level and some conflicts may affect mul-
tiple levels at once. On a conflict, the hardware sets a bit-
mask, the xvcurrent register, to indicate which level(s)
are affected. Similarly, the xvpending register uses a bit-
mask to remember any conflicts while conflict reporting is
disabled. We always jump to the violation handler of the
innermost transaction (top TCB), even if the conflict in-
volves one of its parents. This is convenient as it allows
software to run violation handlers at all levels as needed.
It is also required for open-nested transactions that execute
system code, as system handlers should be the first to be
invoked. Note that it is up to software to clear the bit-
mask in the xvcurrent at conflicts are handled using the
xrwsetclear instruction. Upon return from the viola-
tion handler, if any bits in xvpending or xvcurrent
remain, xvpending is logically OR’d into xvcurrent
and the innermost violation handler is invoked.

4.7 Discussion

Transactions often access thread-private data such as var-
ious fields in their TCB. To reduce the pressure on HTM
mechanisms on such accesses, we provide immediate loads
and store (see Table 2). An immediate load (imld) does not
add the address to the current transaction read-set. An im-
mediate store (imst) updates memory immediately with-
out a commit and does not add the address to the current
write-set. We also introduce an idempotent immediate store
(imstid) that does not maintain undo information for the

store in the write-buffer or the undo-log either. Immediate
accesses can be interleaved with regular accesses tracked
by HTM mechanisms. However, they should only be used
when the compiler or system developer can prove it ac-
cesses thread-private or read-only data.

We also provide an early release instruction (release),
which removes an address from the transaction’s read-set.
This instruction is attractive for performance tuning, but can
complicate programming. We use it in low-level code for
the conditional synchronization scheduler, but do not advo-
cate its use in a high-level programming language [7]. Early
release is difficult to implement consistently in some HTM
systems: if the read-set is tracked at cache-line granularity,
and an early release instruction provides a word address, it
is not safe to release the entire cache line.

We do not support mechanisms to temporarily pause or
escape a transaction and run non-transactional code. While,
such mechanisms may seem attractive for invoking sys-
tem calls, we find them redundant and dangerous. Open-
nested transactions allow us to run (system) code indepen-
dently of the atomicity of the currently running user transac-
tion. Moreover, open-nesting provides independent atomic-
ity and isolation for the system code as well. With paus-
ing or escaping, a system programmer would have to use
lock-based synchronization and deal with all its shortcom-
ings (deadlocks, races, etc.). We believe the benefits of TM
synchronization should be pervasive even in system code.

5 Language and System Code Uses
Section 4 generally described the uses of the proposed

HTM mechanisms. This section provides specific exam-
ples that implement language or system code functionality
to showcase the expressiveness of the mechanisms.

Transactional Programming Languages: We studied the
proposed languages for programming with TM includ-
ing Harris et al. [15, 13], Welc et al. [37], Transactional
Haskell [14], X10 [8], Chapel [7], Fortress [2], Atom-
Caml [29], and Atomos [6]. The proposed ISA seman-
tics are sufficient to implement these languages on HTM
systems. Some languages formally support closed nest-
ing [14, 6], and Atomos supports open nesting [6]. Ad-
ditionally, open nesting can be used to implement the
AbortException construct in Harris [13], conditional
synchronization [14, 8, 29, 6], and transactional I/O [14, 6].
Two-phase commit and commit handers are used for I/O as
well. Violation and abort handlers are used for error han-
dling [14], the tryatomic construct in X10 [8], and in
most implementations of conditional synchronization and
I/O.

Conditional Synchronization: Figure 3 illustrates the con-
cept of conditional synchronization for producer/consumer
code in the Atomos programming language [6]. When a
transaction wishes to wait for a value to change, it adds the
corresponding addresses to a watch-set and yields the pro-
cessor. If any values in the watch-set change, the thread is
re-scheduled. This has the attractive property of avoiding
the need for an explicit notify statement: the notifier does
not need to know explicitly that someone is waiting for this
value as the system automatically detects the change using
conflict detection.

We implement this functionality using open nesting and
violation handlers. An open-nested transaction communi-
cates a waiting thread’s watch-set to a scheduling thread that
incorporates it as part of its read-set. Hence, the scheduler
will then receive conflicts when any values in the watch-
set change. Its violation handler will then add the proper
thread to the run queue. To communicate with the sched-
uler, the waiting thread uses open nesting to write to a com-
mand queue and then violates the scheduler via the shared
schedComm variable. Further details about conditional
scheduling in Atomos are available [6]. With the proposed
HTM mechanisms, we can implement similar runtime sys-
tems for other languages that support conditional synchro-
nization within transactional code [14, 29, 8].

System Calls and I/O: To illustrate the implementation of
system calls within transactions, we discuss I/O such as
read and write calls without serialization. For input,
we perform the system call immediately but register a vi-
olation handler that restores the file position or the data in
case of a conflict. The system call itself executes within
an open-nested transaction to avoid dependencies through
system code. For output, we provide code that temporar-
ily stores data in user buffers and registers a commit han-
dler to perform the actual system call. This transactional
scheme works with simple request/reply I/O, often the com-
mon case in applications [25, 9]. In a similar manner, we

can implement other system calls within transactions that
read or write system state. For example, a memory alloca-
tor can execute as an open-nested transaction including the
brk call. For C and C++, a violation handler is registered to
free the memory if the transaction aborts. For managed lan-
guages like Java and C#, no handler is needed, as garbage
collection will eventually deallocate the memory.

6 Hardware Implementation
This section summarizes the hardware implementation

of the mechanisms presented in Section 4. Our goal is to
demonstrate that they have practical implementations com-
patible with current HTM proposals [12, 4, 28, 23].

6.1 Two-Phase Commit
The xvalidate instruction is a no-op for closed-nested

transactions. For outer-most or open-nested transactions,
the implementation must guarantee that the transaction can-
not violate due to prior memory accesses once xvalidate
completes. For HTM systems with eager conflict detec-
tion [4, 23], xvalidate must block until all previous
loads and stores are known to be conflict-free by acquiring
exclusive (for stores) or shared (for loads) access to the cor-
responding data. If timestamps are used for conflict resolu-
tion, the conflict algorithm must guarantee that a validated
transaction is never violated by an active one even if it has a
younger timestamp. For HTM systems that check conflicts
when a transaction completes [12], xvalidate triggers
conflict resolution, which typically involves acquiring own-
ership of cache lines in the write-set. For a system using
tokens to serialize commits [22], xvalidate corresponds
to acquiring the token.

The xcommit instruction atomically changes the trans-
action status to committed. Finishing the transaction also
involves either resetting the undo-log or merging the con-
tents of the write-buffer to shared memory. These steps
can be executed within xcommit or in a lazy manner af-
ter xcommit returns. We discuss the implementation of
xcommit for nested transactions in Section 6.3.

6.2 Commit, Violation, and Abort Handlers
The stack management for handlers is done in software

without additional hardware support, other than some TCB
fields stored in registers (see Table 1). Handlers allow for
additional functionality in HTM systems at the cost of addi-
tional overhead for commit, violation, or abort events. Since
transactions with a few hundred of instructions are com-
mon [9], our handler registration and management code is
based on carefully tuned assembly. The code is also opti-
mized for the common case of a commit without any regis-
tered commit handler or a violation that restarts the transac-
tion without any registered violation handler. We present
quantitative results in Section 7. Note that the same as-
sembly code for handler management can be used by all
languages or system code that builds upon the proposed se-
mantics.

6.3 Nested Transactions
For nested transactions, the hardware must separately

manage the speculative state, read-set, and write-set for

watch (void* addr) {
 atomic_open {

1. enqueue (tid, addr)
2. write schedComm to cause violation
} }

watch(void* address)

Scheduler Command
Queue

...

schedComm

Scheduler Command
Memory Location

schedComm in
scheduler’s read-set: on
modification, scheduler’s
violation handler is run.

Scheduling Queues:
wait and run

...

...

schedVioHandler

atomic_open {
 if (xvaddr == schedComm) {

 } else {

return(); // return to scheduler

1. while dequeue (tid, COMMAND)!= NULL
 2a. if COMMAND is address, add address to

 scheduler’s read-set
b. add (address, tid) to waiting
 hash table

 3. If COMMAND is CANCEL, remove
 all tid’s entries from waiting

4. goto 1

1. tidToWake = waiting.remove(xvaddr)
2. add tidToWake to the run queue } }

cancel

atomic_open {
1. enqueue (tid, CANCEL)

 2. write schedComm to cause violation }
rollback(); // restart

Consumer:
atomic {
 if(!available) {

 regVioHandler(cancel);
 watch(&available);
 wait(); }

 available = false;
 consume(); }

wait()
wait() {

atomic_open {
1. move this thread from run to wait

 2. abort and yield processor
 } }

Producer:
atomic {
 if(available) {

regVioHandler(cancel);
watch(&available);
wait(); }

 available = true;
 produce(); }

atomic {
 regVioHandler(schedVioHandler);
 read(schedComm)
 while (TRUE) {

1. process run and wait queues
 } }

Scheduler

Figure 3. Conditional synchronization using open nesting and violation handlers for producer/consumer code in the
Atomos programming language [6].

each active transaction. On a nested commit, we must
merge its speculative state, read-set, and write-set with
those of its parent. An additional complication is that mul-
tiple transactions in a nest may be writing the same cache
line, which requires support for multiple active versions of
the same data. While it is attractive to disallow this case,
this will overly complicate the development of transpar-
ent libraries where arguments and return values can be fre-
quently written by two transactions in a nest.

Hence, nesting requires significant changes to the caches
used in HTM systems for read-/write-set tracking and spec-
ulative buffering. We propose two basic approaches: (1) the
multi-tracking scheme that allows each cache line to track
the read-set and write-set for multiple transactions, and (2)
the associativity scheme that uses different lines in the same
cache set to track multiple versions of the same data [35].
Even though there are numerous possible combinations of
these two schemes with all other HTM design options (see
Section 2.2), we will briefly describe two practical design
points that illustrate their implementation details.

6.3.1 Nesting Support with Multi-tracking Lines
We consider the multi-tracking scheme for HTM designs
using undo-logs [4, 23]. Each cache line tracks read-/write-
set membership for multiple transactions in the nest, but the
multiple versions of the data are buffered in the undo-log.
The log is a stack structure in thread-private memory that
holds the old version of data modified by an active trans-
action. When a nested transaction writes a cache line for
the first time, we push the previous value in the undo-log.
Hence, the undo-log may contain up to one entry per cache

V D E R4R1 R2 R3 W4W1 W2 W3

NL1

(a)

NL1:0

= Address

(b)
Nesting Level

Data
...
...Tag

NL2 NL3

V D E Tag Data
...
...

NL4

Match?

= Address Match?

R W

Figure 4. Cache line structure for (a) multi-tracking, and
(b) associativity schemes with four levels of nesting.

line per nested transaction. Each transaction tracks the base
point of its entries in the undo-log using a separate register
or TCB field. On a closed-nested commit, the log entries
are automatically appended to those of its parent without
any action. On a nested conflict, we can roll back by pro-
cessing the undo-log entries for this nesting level in FILO
order. The only complication is that if an open-nested com-
mit overwrites data also written by its parent, we must up-
date the log entry of the parent to avoid restoring an incor-
rect value if the parent is later rolled back. This requires an
expensive search through the undo-log.

Figure 4-(a) shows the cache line organization for multi-
tracking. A line has multiple copies of the Ri and Wi

bits that indicate membership in the read-set and write-set
for the transaction at nesting level i (NLi). If word-level
tracking is implemented, we need per-word R and W bits.
On a memory access, the hardware uses the nesting level
counter in xstatus to determine which bits to set. On an
cache lookup for conflict detection, all R and W bits are

checked in parallel. Hence, we can detect conflicts for all
active transactions in parallel and properly set the bitmasks
in xvpending and xvcurrent. On a rollback at NLi,
we gang invalidate (flash clear) all Ri and Wi bits. On a
closed-nested commit at NLi, we must merge (logical OR)
all Ri bits into Ri−1 and all Wi bits into Wi−1. Such merg-
ing is difficult to implement as a fast gang operation. To
avoid latency proportional to the read-set and write-set size
of the nested transaction, we can merge lazily while con-
tinuing the execution at NLi−1: on a load or store access
to a cache line, we perform the merging if needed with a
read-modify-write as we lookup the cache line and update
its LRU bits. During the lazy merge, the conflict resolution
logic should consider R and W bits at both levels as one.
The merging must complete before a new transaction at the
level NLi level is started. On an open-nested commit at
NLi, we simply gang invalidate all Ri and Wi bits.

6.3.2 Nesting Support with Associative Caches

We consider the associativity scheme for HTM designs us-
ing a write-buffer [27, 12]. As always, the cache tracks
read-/write-set membership, but also buffers multiple ver-
sion of old data for nested transactions. Figure 4-(b) shows
the new cache line organization. Each line has a single set of
R and W bits, but also includes a nesting level field (NL)
to specify which transaction it holds data for. We reserve
NL = 0 for cached data that do not yet belong to any
read- or write-set. If the same data is accessed by multi-
ple nested transactions, we use different lines in the same
cache set. The most recent version is in the line with the
highest NL field. Hence, cache lookups can return multiple
hits and additional comparisons are necessary to identify the
proper data to return, so cache access latency may increase
in highly associative caches. On an access by a transaction
at NLi, we first locate the most recent version. If the cache
line has NL = 0 (potentially after a cache refill), we change
NL = i and set the R or W bits. If there is another spec-
ulative version at level i − 1 or below, we first allocate a
new line in the same set that gets a copy of the latest data
and uses NL = i. On an external lookup for conflict detec-
tion, we check all lines in the set with NL �= 0 to detect, in
parallel, conflicts at all nesting levels.

On a rollback at NLi, we must invalidate all cache en-
tries with NL = i. This can be implemented as a gang
invalidate operation if the NL field uses CAM bits. Alter-
natively, the invalidation can occur lazily as we access cache
lines and before we start a new transaction at NLi. On a
closed nested commit at NLi, we must change all lines with
NL = i to NL = i − 1. If an NL = i − 1 entry already
exists, we merge its read-set and write-set information into
the older entry and then discard it. Again, the best way to
implement this is lazily. While lazily merging, the conflict
detection logic must consider cache lines with NL = i and
NL = i − 1 to belong to the same transaction. An open
nested commit is similar, but now we change entries from
NL = i to NL = 0. If there are more versions of the same
data for other active transactions, we also update their data
with that of the NL = i entry without changing their R or
W bits.

6.3.3 Discussion
Each nesting scheme has different advantages. The multi-
tracking scheme does not complicate cache lookups and
avoids replication for lines with multiple readers. The as-
sociativity scheme scales to a number of nesting levels
equal to the total associativity of private caches without
significant per-line overhead. A hybrid scheme with multi-
tracking in the L1 cache and associativity in the L2 cache
can provide the best of both approaches.

Any practical HTM implementation can only support a
limited number of nesting levels. Hence, nesting levels
must be virtualized just like any other buffering resource
in HTM systems. Virtualization schemes like Rajwar et
al. [28] can be extended to support unlimited nesting levels
by adding a nesting level field in each entry in the overflow
tables in virtual memory. Early studies have shown that the
common case is 2 to 3 levels of nesting [9], which is easy to
support in hardware. The hardware support for nesting can
also be used to overlap the execution of independent trans-
actions (double buffering), which can be useful with hiding
any commit or abort overheads [22].

Moss and Hosking discuss a nesting implementation sim-
ilar to our associativity scheme [24]. Apart from the differ-
ent semantics for open nesting (see Section 4.5), their ap-
proach is overly complex. In addition to the NL field, each
line includes a variable length stack with pointers to all child
transactions with new versions of the data. To maintain the
stacks, we need to push or pop values from multiple cache
lines on stores, commits, and aborts. The two schemes we
propose are simpler and introduce lower area and timing
overheads.

The proposed nesting schemes do not support nested par-
allelism: the ability to execute a single transaction atomi-
cally over multiple processors [20, 2]. Nested parallelism
requires that we can merge read-sets and write-sets across
processors as parallel tasks complete within a transaction.
Such functionality can be implemented using a shared L2
or L3 cache between collaborating processors that serves as
a directory for the latest version of any data. Note, how-
ever, that the semantics of nesting defined in Section 4.5 are
correct even for nested parallelism.

7 Evaluation
We implemented the proposed mechanisms as an exten-

sion to the PowerPC ISA using an execution-driven simula-
tor for HTM chip-multiprocessors. Our goal is to examine
optimization opportunities and use the new mechanisms to
implement the programming constructs and runtime code
functionality discussed in Section 3. An extensive compari-
son of alternative implementations for the proposed seman-
tics is beyond the scope of this paper.

We model a chip-multiprocessor with up to 16 cores,
private L1 caches (32KB, 1-cycle access), and private L2
caches (512KB, 12-cycle access). The processors com-
municate over a 16-byte, split-transaction bus. All non-
memory instructions in our simulator have CPI of one, but
we model all details in the memory hierarchy for loads and
stores, including inter-processor communication and con-
tention. We use an HTM system with a write-buffer for

speculative writes, lazy conflict detection, and continuous
transactional execution [22]. We support three levels of
nesting using the associativity scheme with lazy merging.
None of the evaluated programs uses more than NL = 2.

We model all overheads associated with two-phase com-
mit and the software for TCB and handler management. We
have carefully optimized the assembly code for common
events to avoid large overheads for small transactions. Start-
ing a transaction requires 6 instructions for TCB allocation.
A commit without any handlers requires 10 instructions,
while a rollback without handlers requires 6 instructions.
Registering a handler without arguments takes 9 instruc-
tions. Note that some of these instructions access thread-
private data in memory and may lead to cache misses. Yet,
such misses are rare as private stacks cache well. Over-
all, the new HTM functionality does not introduce signif-
icant overheads that may force programmers to reconsider
the size of their transactions.

7.1 Performance Optimizations with Nesting
We used nested transactions to reduce the overhead or

frequency of conflicts in scientific and enterprise appli-
cations. We used swim and tomcatv from the SPEC-
cpu2000 suite [33]; barnes, fmm, mp3d, and water-
nsquared (called simply water) from the SPLASH and
SPLASH-2 suites [32, 36]; and a C version of moldyn
from the Java Grande suite [18]. For these applications, we
used transactions to speculatively parallelize loops. We also
used a modified version of SPECjbb2000 [34] running on
the Jikes RVM [3].

Figure 5 plots the performance improvement achieved
with the proposed nesting implementation over the con-
ventional HTM approach that simply flattens nested trans-
actions. The results were produced running 8 processors.
The number above each bar reports the overall speedup
achieved with nesting over sequential execution on one pro-
cessor (maximum speedup is 8). Overall, no application
is affected negatively by the overhead of TCB and han-
dler management for nested transactions. Most outer trans-
actions are long and can amortize the short overheads of
the new functionality. Most inner transactions are short,
hence lazy merging at commit does not become a bottle-
neck. On the other hand, several applications benefit sig-
nificantly from the reduced cost of conflicts compared to
flattening. For the scientific benchmarks, we applied closed
nesting mainly to update reduction variables within larger
transactions. This allows us to avoid several outer trans-
action rollbacks, particularly when the inner transaction is
near the end of the outer one. The improvements are dra-
matic for mp3d (4.93×) where we also used nesting to elim-
inate expensive violations due to particle updates on colli-
sions.

As a three-tier enterprise benchmark, SPECjbb2000 is
far more interesting from the point of view of concurrency.
We parallelized SPECjbb2000within a single warehouse,
where customer tasks such as placing new orders, mak-
ing payments, and checking status manipulate shared data-
structures (B-trees) that maintain customer, order, and stock
information. Conceptually, there is significant concurrency

barn
es

fm
m

moldyn
mp3d

sw
im

tomca
tv

water

SPECjbb2000-cl
ose

d

SPECjbb2000-o
pen

0

0.5

1

1.5

2

4.5

5

S
pe

ed
up

 O
ve

r
F

la
tte

ni
ng

5.24 4.61

7.70

7.58 7.30 6.78

5.10

4.33 4.25

Figure 5. Performance improvement with full nesting
support over flattening for 8 processors. Values shown
above each bar are speedups of nested versions over
sequential execution with one processor.

within a single warehouse, as different customers operate
mostly on different objects. Nevertheless, conflicts are pos-
sible and are difficult to statically predict. We defined one
outer-most transaction for each SPECjbb2000 operation
(order, payment, etc.). Even though we achieved a speedup
of 1.92 using this flat-transaction approach, rollbacks sig-
nificantly degrade performance. With nesting support, we
developed two additional versions of the code. The first ver-
sion, SPECjbb2000-closed, uses closed-nested trans-
actions to surround searches and updates to B-trees. Perfor-
mance is improved by 2.26× (total speedup of 4.33) as the
violations occur frequently within the small inner transac-
tions and do not cause the outer-most operation to roll back.
The second version, SPECjbb2000-open, uses an open-
nested transaction to generate a unique global order ID for
new order operations. Without open nesting, all new order
tasks executing in parallel will experience conflicts on the
global order counter. With open nesting, we observe a per-
formance improvement of 2.22× (total speedup of 4.25) as
new orders can commit the counter value independently be-
fore they complete the rest of their work. Hence, conflicts
are less frequent and less expensive. Note that no compen-
sation code is needed for the open-nested transaction as the
order IDs must be unique, but not necessarily sequential.
We could use both open and closed nesting to obtain the ad-
vantages of both approaches, but we did not evaluate this.

7.2 I/O within Transactions
We designed a C microbenchmark where each thread re-

peatedly performs a small computation within a transaction
and outputs a message into a log. We designed a transac-
tional library function that buffers output in a private buffer
and registers a commit handler before returning control to
the application (see Section 5). If the transaction violates,
the local buffer is automatically discarded because it is part

1 2 4 8 16
0.5

1

1.5

2

2.5

3

3.5

S
pe

ed
up

CPUs

HTM

Coarse-Grain Locks

Fine-Grain Locks

Figure 6. Speedup for the I/O microbenchmark with HTM,
fine-grain locks, and coarse-grain locks.

of the write-set. If the transaction successfully validates, the
commit handler copies the local buffer to a shared buffer in
the operating system.

We evaluated three versions of this I/O microbenchmark:
the transactional one described above and two using con-
ventional lock-based synchronization. The coarse-grain
version acquires a lock at the boundaries of the library func-
tion call; so it formats and copies the log message into the
shared buffer while holding the lock. The fine-grain ver-
sion holds the lock only while copying to the shared buffer.
Figure 6 compares the performance of the three versions as
we scale from 1 to 16 processors. Since there is little work
per repetition except printing to the log, the coarse-grain
version completely serializes and shows no scalability. The
fine-grain version allows for concurrency in message for-
matting. Still, its scalability is limited by serialization on
buffer updates and the overhead of acquiring and releasing
the lock. Initially, the performance of the transactional ver-
sion suffers because it performs two copies: one to a local
buffer then one to the shared buffer. However, because the
overhead is fixed and does not scale with the number of
threads, as the lock overhead does, the transactional version
continues to scale. With more processors, we would notice
the HTM version flattening as well due to conflicts when
updating the shared buffer.

Despite its simplicity, the I/O benchmark shows that the
proposed semantics allow for I/O calls within transactions.
Moreover, despite the overhead of extra copying, transac-
tional I/O in a parallel system scales well.

7.3 Conditional Synchronization within Transactions

To measure the effectiveness of the conditional syn-
chronization scheme in Figure 3, we use the Atomos
TestWait microbenchmark, which mimics an experience
from Harris and Frasier [15], that stresses thread scheduling
in a producer-consumer scenario. TestWait creates 16
threads, arranged in a ring of producers and consumers with
a shared buffer between each pair. The benchmark scales
the number of tokens in the ring and begins passing a fixed
number of tokens from one thread to the next. Every thread
uses a transaction to perform one token operation (dequeue
from receiving buffer and copy to the outgoing buffer). An
efficient system should scale with the number of tokens.

1 2 4 8 16
0

5

10

15

20

25

30

35

S
pe

ed
up

Tokens

TestWait

Figure 7. Speedup of token exchanges for TestWait
with 16 processors, scaling the number of tokens from
1 to 16.

Figure 7 shows that passing the tokens scales super-
linearly with the number of tokens in the ring; this is ex-
pected since with more tokens, a consumer may find an
available token immediately without having to synchronize
with the producer. See further discussion in the evaluation
of the Atomos programming language [6]. Hence, condi-
tional synchronization within transactions using open nest-
ing and violation handlers is quite effective for the studied
system. Both the open-nested transactions and the violation
handlers are quite small and introduce negligible overhead.

8 Conclusions
For HTM systems to become useful to programmers

and achieve widespread acceptance, we need rich seman-
tics at the instruction set level that support modern pro-
gramming languages and system code. This paper pro-
posed the first comprehensive ISA for HTM that includes
three key mechanisms (two-phase commit, transactional
handlers, and open- and closed-nested transactions). We
described the hardware and software conventions necessary
to implement these mechanisms in various HTM systems.
Moreover, we have quantitatively evaluated the proposed
mechanisms by showing their use for both system code
functionality (scalable I/O and conditional synchronization)
and performance optimizations through nested transactions.

Armed with these implementation-independent seman-
tics at the instruction set level, the TM community can ef-
fectively develop and evaluate hardware proposals that are
practical for programmers and support a wide range of ap-
plications. Similarly, software researchers can design ef-
ficient languages and runtime systems for HTM on top of
a rich interface between their programs and the underlying
hardware.

Acknowledgments
This research was sponsored by the Defense Advanced

Research Projects Agency (DARPA) through the Depart-
ment of the Interior National Business Center under grant
number NBCH104009. The views and conclusions con-
tained in this document are those of the authors and should
not be interpreted as representing the official policies, ei-
ther expressed or implied, of the Defense Advanced Re-
search Projects Agency (DARPA) or the U.S. Government.

Additional support was also available through NSF grant
0444470 and through the MARCO Focus Center for Cir-
cuit & System Solutions (C2S2), under contract 2003-CT-
888. Brian D. Carlstrom is supported by an Intel Foundation
Ph.D. Fellowship.

References
[1] A.-R. Adl-Tabatabai et al. Compiler and Runtime Support

for Efficient Software Transactional Memory. In Proceed-
ings of the Conference on Programming Language Design
and Implementation, June 2006.

[2] E. Allen et al. The Fortress Language Specification. Sun
Microsystems, 2005.

[3] B. Alpern et al. The Jalapeño Virtual Machine. IBM Systems
Journal, 39(1):211–238, 2000.

[4] S. Ananian et al. Unbounded Transactional Memory. In Pro-
ceedings of the 11th Intl. Symposium on High Performance
Computer Architecture, Feb. 2005.

[5] C. Blundell, E. C. Lewis, and M. Martin. Deconstructing
Transactional Semantics: The Subtleties of Atomicity. In
ISCA Workshop on Duplicating, Deconstructing, and De-
bunking, June 2005.

[6] B. D. Carlstrom et al. The Atomos Transactional Pro-
gramming Language. In Proceedings of the Conference on
Programming Language Design and Implementation, June
2006.

[7] Chapel Specification. Cray, February 2005.
[8] P. Charles et al. X10: An Object-oriented Approach to Non-

uniform Cluster Computing. In Proceedings of the 20th
Conference on Object-oriented Programing, Systems, Lan-
guages, and Applications. ACM Press, Oct. 2005.

[9] J. Chung et al. The Common Case Transactional Behav-
ior of Multithreaded Programs. In Proceedings of the 12th
Intl. Conference on High Performance Computer Architec-
ture, Feb. 2006.

[10] J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[11] R. Guerraoui et al. Robust Contention Management in Soft-
ware Transactional Memory. In OOPSLA Workshop on
Synchronization and Concurrency in Object-Oriented Lan-
guages, Oct. 2005.

[12] L. Hammond et al. Transactional memory coherence and
consistency. In Proceedings of the 31st Intl. Symposium on
Computer Architecture, June 2004.

[13] T. Harris. Exceptions and Side-effects in Atomic Blocks.
In PODC Workshop on Concurrency and Synchronization in
Java Programs, July 2004.

[14] T. Harris et al. Composable Memory Transactions. In Pro-
ceedings of the Symposium Principles and Practice of Paral-
lel Programming, July 2005.

[15] T. Harris and K. Fraser. Language Support for Lightweight
Transactions. In Proceedings of the 18th Conference on
Object-oriented programing, Systems, Languages, and Ap-
plications, pages 388–402. ACM Press, Oct. 2003.

[16] M. Herlihy et al. Software Transactional Memory for
Dynamic-sized Data Structures. In Proceedings of the 22nd
Symposium on Principles of Distributed Computing, July
2003.

[17] M. Herlihy and J. E. B. Moss. Transactional Memory: Archi-
tectural Support for Lock-Free Data Structures. In Proceed-
ings of the 20th Intl. Symposium on Computer Architecture,
May 1993.

[18] Java Grande Forum, Java Grande Benchmark Suite. http:
//www.epcc.ed.ac.uk/javagrande/, 2000.

[19] J. Larus. It’s the Software Stupid. Talk at the Workshop on
Transactional Systems, Apr. 2005.

[20] V. Luchangco and V. Marathe. Transaction Synchronizers.
In OOPSLA Workshop on Synchronization and Concurrency
in Object-Oriented Languages, Oct. 2005.

[21] V. Marathe, W. Scherer, and M. Scott. Adaptive Software
Transactional Memory. In Proceedings of the 19th Intl. Sym-
posium on Distributed Computing, Sept. 2005.

[22] A. McDonald et al. Characterization of TCC on Chip-
Multiprocessors. In Proceedings of the 14th Intl. Conference
on Parallel Architectures and Compilation Techniques, Sept.
2005.

[23] K. Moore et al. LogTM: Log-Based Transactional Memory.
In Proceedings of the 12th Intl. Conference on High Perfor-
mance Computer Architecture, Feb. 2006.

[24] E. Moss and T. Hosking. Nested Transactional Memory:
Model and Preliminary Architecture Sketches. In OOPSLA
Workshop on Synchronization and Concurrency in Object-
Oriented Languages, Oct. 2005.

[25] J. Nakano et al. ReViveI/O: Efficient Handling of I/O in
Highly-Available Rollback-Recovery Servers. In Proceed-
ings of the 12th Intl. Conference on High Performance Com-
puter Architecture, Feb. 2006.

[26] J. Oplinger and M. S. Lam. Enhancing Software Reliability
with Speculative Threads. In Proceedings of the 10th Intl.
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Oct. 2002.

[27] R. Rajwar and J. Goodman. Transactional Lock-Free Exe-
cution of Lock-Based Programs. In Proceedings of the 10th
Intl. Conference on Architectural Support for Programming
Languages and Operating Systems, Oct. 2002.

[28] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing Transac-
tional Memory. In Proceedings of the 32nd Intl. Symposium
on Computer Architecture, June 2005.

[29] M. F. Ringenburg and D. Grossman. AtomCaml: First-class
Atomicity via Rollback. In Proceedings of the 10th Intl. Con-
ference on Functional Programming, Sept. 2005.

[30] B. Saha et al. A High Performance Software Transactional
Memory System for a Multi-core Runtime. In Proceedings
of the Symposium Principles and Practice of Parallel Pro-
gramming, Mar. 2005.

[31] N. Shavit and S. Touitou. Software Transactional Memory.
In Proceedings of the 14th Symposium on Principles of Dis-
tributed Computing, Aug. 1995.

[32] J. P. Singh, W. Weber, and A. Gupta. SPLASH: Stanford
Parallel Applications for Shared-Memory. Computer Archi-
tecture News, 1992.

[33] Standard Performance Evaluation Corporation, SPEC CPU
Benchmarks. http://www.specbench.org/, 2000.

[34] Standard Performance Evaluation Corporation,
SPECjbb2000 Benchmark. http://www.spec.
org/jbb2000/, 2000.

[35] G. Steffan, C. Colohan, Z. Zhai, and T. Mowry. A Scalable
Approach to Thread-level Speculation. In the Proceedings
of the 27th Intl. Symposium on Computer Architecture, June
2000.

[36] S.Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH2 Programs: Characterization and Methodological
Considerations. In Proceedings of the 22nd Intl. Symposium
on Computer Architecture, June 1995.

[37] A. Welc, S. Jagannathan, and A. L. Hosking. Transactional
Monitors for Concurrent Objects. In Proceedings of the Eu-
ropean Conference on Object-Oriented Programming, June
2004.

