
Scsh Reference Manual
For Scsh release 0.3
December 25, 1994

Olin Shivers and Brian D. Carlstrom

December 21, 1994 – 02 : 25 DRAFT

Acknowledgements

Who should I thank? My so-called “colleagues,” who laugh at me behind my
back, all the while becoming famous on my work? My worthless graduate stu-
dents, whose computer skills appear to be limited to downloading bitmaps off
of netnews? My parents, who are still waiting for me to quit “fooling around
with computers,” go to med school, and become a radiologist? My department
chairman, a manager who gives one new insight into and sympathy for dis-
gruntled postal workers?

My God, no one could blame me—no one!—if I went off the edge and just
lost it completely one day. I couldn’t get through the day as it is without the
Prozac and Jack Daniels I keep on the shelf, behind my Tops-20 JSYS manuals.
I start getting the shakes real bad around 10am, right before my advisor meet-
ings. A 10 oz. Jack ’n Zac helps me get through the meetings without one of my
students winding up with his severed head in a bowling-ball bag. They look at
me funny; they think I twitch a lot. I’m not twitching. I’m controlling my im-
pulse to snag my 9mm Sig-Sauer out from my day-pack and make a few strong
points about the quality of undergraduate education in Amerika.

If I thought anyone cared, if I thought anyone would even be reading this,
I’d probably make an effort to keep up appearances until the last possible mo-
ment. But no one does, and no one will. So I can pretty much say exactly what
I think.

Oh, yes, the acknowledgements. I think not. I did it. I did it all, by myself.

Olin Shivers
Cambridge
September 4, 1994

ii DRAFT December 21, 1994 – 02 : 25

Contents

1 Introduction 1

1.1 Caveats : 1

1.2 Naming conventions : 2

1.3 Lexical issues : 3

1.4 A word about Unix standards : 4

2 Process notation 5

2.1 Extended process forms and i/o redirections : : : : : : : : : : : 5

2.1.1 Port and file descriptor sync : : : : : : : : : : : : : : : : 6

2.2 Process forms : 7

2.3 Using extended process forms in Scheme : : : : : : : : : : : : : 8

2.3.1 Procedures and special forms : : : : : : : : : : : : : : : : 8

2.3.2 Interfacing process output to Scheme : : : : : : : : : : : 9

2.4 More complex process operations : : : : : : : : : : : : : : : : : : 11

2.4.1 Pids and ports together : : : : : : : : : : : : : : : : : : : 11

2.4.2 Multiple stream capture : : : : : : : : : : : : : : : : : : : 12

2.5 Conditional process sequencing forms : : : : : : : : : : : : : : : 14

2.6 Process filters : 14

3 System Calls 15

3.1 Errors : 15

3.1.1 Interactive mode and error handling : : : : : : : : : : : : 17

3.2 I/O : 18

3.2.1 Standard R4RS I/O procedures : : : : : : : : : : : : : : : 18

3.2.2 Port manipulation and standard ports : : : : : : : : : : : 18

3.2.3 String ports : 19

December 21, 1994 – 02 : 25 DRAFT iii

3.2.4 Revealed ports and file descriptors : : : : : : : : : : : : : 20

3.2.5 Port-mapping machinery : : : : : : : : : : : : : : : : : : 23

3.2.6 Unix I/O : 24

3.3 File system : 28

3.4 Processes : 39

3.5 Process state : 43

3.6 User and group db access : 44

3.7 Accessing command-line arguments : : : : : : : : : : : : : : : : 45

3.8 System parameters : 47

3.9 Signal system : 47

3.10 Time : 48

3.10.1 Terminology : 48

3.10.2 Basic data types : 48

3.10.3 Time zones : 50

3.10.4 Procedures : 50

3.11 Environment variables : 54

3.11.1 Path lists and colon lists : : : : : : : : : : : : : : : : : : : 56

3.11.2 $USER, $HOME, and $PATH : : : : : : : : : : : : : : : : : : : 56

4 Networking 57

4.1 High-level interface : 57

4.2 Sockets : 58

4.3 Socket addresses : 59

4.4 Socket primitives : 60

4.5 Performing input and output on sockets : : : : : : : : : : : : : : 62

4.6 Socket options : 63

4.7 Database-information entries : 64

5 Strings and characters 66

5.1 String manipulation : 66

5.1.1 Regular expressions : 66

5.1.2 Other string manipulation facilities : : : : : : : : : : : : 68

5.1.3 Manipulating file-names : : : : : : : : : : : : : : : : : : 69

5.2 ASCII encoding : 74

5.3 Character sets : 74

5.3.1 Creating character sets : 75

iv DRAFT December 21, 1994 – 02 : 25

5.3.2 Querying character sets : : : : : : : : : : : : : : : : : : : 75

5.3.3 Character set algebra : 75

5.3.4 Standard character sets : : : : : : : : : : : : : : : : : : : 76

6 Awk, record I/O, and field parsing 77

6.1 Record I/O and field parsing : 77

6.1.1 Reading delimited strings : : : : : : : : : : : : : : : : : : 77

6.1.2 Reading records : 78

6.1.3 Parsing fields : 79

6.1.4 Field readers : 82

6.1.5 Forward-progress guarantees and empty string matches : 83

6.1.6 Reader limitations : 85

6.2 Awk : 85

6.2.1 Examples : 88

7 Miscellaneous routines 90

7.1 Integer bitwise ops : 90

7.2 List procedures : 90

7.3 Top level : 90

8 Running scsh 92

8.1 VM arguments : 93

8.1.1 The meta argument : 93

8.1.2 VM options : 94

8.1.3 End options : 95

8.2 Scsh arguments : 95

8.3 Compiling shell scripts : 95

8.4 Standard file locations : 96

9 Todo 97

December 21, 1994 – 02 : 25 DRAFT v

vi DRAFT December 21, 1994 – 02 : 25

Chapter 1

Introduction

This is a draft manual for scsh, a Unix shell that is embedded within Scheme.
Scsh comes built on top of Scheme 48, and it has two components: a process
notation for running programs and setting up pipelines and redirections, and a
complete syscall library for low-level access to the OS. This manual gives a com-
plete description of scsh. A general discussion of the design principles behind
scsh can be found in a companion paper, “A Scheme Shell.”

1.1 Caveats

It is important to note what scsh is not, as well as what it is. Scsh, in the current
release, is primarily designed for the writing of shell scripts—programming.
It is not a very comfortable system for interactive command use: the current
release lacks job control, command-line editing, a terse, convenient command
syntax, and it can not be made to read in an initialisation file analogous to.loginor .profile. We hope to address all of these problems in future releases;
we even have designs for several of these features; but the system as-released
does not currently address these issues.

As a first release, the system has some rough edges. It is quite slow to start
up; we hope to fix that by providing a static-heap linker in the next release. For
now, the initial image load takes about a cpu second.

This manual is very, very rough: incomplete, inconsistent, and misleading.
At some point, we will polish it up, finish it off, and re-typeset it using markup,
so we can generate html, info nodes, and TEX output from the single source
without having to deal with Texinfo. But it’s all there is, for now.

December 21, 1994 – 02 : 25 DRAFT 1

1.2 Naming conventions

Scsh follows a general naming scheme that consistently employs a set of abbre-
viations. This is intended to make it easier to remember the names of things.
Some of the common ones are:fdes Means “file descriptor,” a small integer used in Unix to represent I/O

channels.: : :* A given bit of functionality sometimes comes in two related forms, the first
being a special form that contains a body of Scheme code to be executed in
some context, and the other being a procedure that takes a procedural argu-
ment (a “thunk”) to be called in the same context. The procedure variant
is named by taking the name of the special form, and appending an aster-
isk. For example:;;; Special form:(with-cwd "/etc"(for-each print-file (directory-files))(display "All done"));;; Procedure:(with-cwd* "/etc"(lambda ()(for-each print-file (directory-files))(display "All done")))

action/modifier The infix “/” is pronounced “with,” as in exec/env—“exec with
environment.”call/: : : Procedures that call their argument on some computed value are usu-
ally named “call/: : : ,” e.g., (call/fdes port proc), which calls proc on
port’s file descriptor, returning whatever proc returns. The abbreviated
name means “call with file descriptor.”with-: : : Procedures that call their argument, and special forms that execute
their bodies in some special dynamic context frequently have names of the
form with-: : : . For example, (with-env env body1 : : :) and (with-env*
env thunk). These forms set the process environment body, execute their
body or thunk, and then return after resetting the environment to its orig-
inal state.create- Procedures that create objects in the file system (files, directories, temp
files, fifos, etc), begin with create-: : : .

2 DRAFT December 21, 1994 – 02 : 25

delete- Procedures that delete objects from the file system (files, directories,
temp files, fifos, etc), begin with delete-: : : .

record:field Procedures that access fields of a record are usually written with
a colon between the name of the record and the name of the field, as inuser-info:home-dir.%: : : A percent sign is used to prefix lower-level scsh primitives that are not
commonly used.-info Data structures packaging up information about various OS entities fre-
quently end in : : : -info. Examples: user-info, file-info, group-info,
and host-info.

Enumerated constants from some set s are usually named s/const1, s/const2, : : : .
For example, the various Unix signal integers have the names signal/cont,signal/kill, signal/int, signal/hup, and so forth.

1.3 Lexical issues

Scsh’s lexical syntax is just R4RS Scheme, with the following exceptions.

Scsh differs from R4RS Scheme in the following ways:� In scsh, symbol case is preserved by read and is significant on symbol
comparison. This means(run (less Readme))
displays the right file.� “-” and “+” are allowed to begin symbols. So the following are legitimate
symbols:-O2 -geometry +Wn

Scsh also extends R4RS lexical syntax in the following ways:� “|” and “.” are symbol constituents. This allows | for the pipe symbol,
and .. for the parent-directory symbol. (Of course, “.” alone is not a sym-
bol, but a dotted-pair marker.)� A symbol may begin with a digit. So the following are legitimate symbols:9x15 80x36-3+440� Strings are allowed to contain the ANSI C escape sequences such as \n and\161.

December 21, 1994 – 02 : 25 DRAFT 3

� #! is a comment read-macro similar to ;. This is used to write shell scripts.
When the reader encounters #!, it skips characters until it finds the se-
quence newline/exclamation-point/sharp-sign/newline.

It is unfortunate that the single-dot token, “.”, is both a fundamental Unix
file name and a deep, primitive syntactic token in Scheme—it means the follow-
ing will not parse correctly in scsh:(run/strings (find . -name *.c -print))
You must instead quote the dot:(run/strings (find "." -name *.c -print))
1.4 A word about Unix standards

“The wonderful thing about Unix standards is that there are so many to choose
from.” You may be totally bewildered about the multitude of various standards
that exist. Rest assured that this nowhere in this manual will you encounter
an attempt to spell it all out for you; you could not read and internalise such a
twisted account without bleeding from the nose and ears.

However, you might keep in mind the following simple fact: of all the stan-
dards, POSIX, as far as I have been able to determine, is the least common de-
nominator. So when this manual repeatedly refers to POSIX, the point is “the
thing we are describing should be portable just about anywhere.” Scsh sticks to
POSIX when at all possible; it’s major departure is symbolic links, which aren’t
in POSIX (see—it really is a least common denominator).

However, just because POSIX is the l.c.d. standard doesn’t mean everyone
supports all of it. The guerilla PC Unix implementations that have been spring-
ing up on the net (e.g., NetBSD, Linux, FreeBSD, and so forth) are only recently
coming into compliance with the standard—although they are getting there.
We’ve found a few small problems with NeXTSTEP’s POSIX support that we
had to work around.

4 DRAFT December 21, 1994 – 02 : 25

Chapter 2

Process notation

Scsh has a notation for controlling Unix processes that takes the form of s-
expressions; this notation can then be embedded inside of standard Scheme
code. The basic elements of this notation are process forms, extended process forms,
and redirections.

2.1 Extended process forms and i/o redirections

An extended process form is a specification of a Unix process to run, in a particular
I/O environment:

epf ::= (pf redir1 : : : redirn)
where pf is a process form and the rediri are redirection specs. A redirection spec
is one of:(< [fdes] file-name) ; Open file for read.(> [fdes] file-name) ; Open file create/truncate.(<< [fdes] object) ; Use object's printed rep.(>> [fdes] file-name) ; Open file for append.(= fdes fdes/port) ; Dup2(- fdes/port) ; Close fdes/port.stdports ; 0,1,2 dup'd from standard ports.
The input redirections default to file descriptor 0; the output redirections de-
fault to file descriptor 1.

The subforms of a redirection are implicitly backquoted, and symbols
stand for their print-names. So (> ,x) means “output to the file named
by Scheme variable x,” and (< /usr/shivers/.login) means “read from/usr/shivers/.login.”

December 21, 1994 – 02 : 25 DRAFT 5

Here are two more examples of i/o redirection:(< ,(vector-ref fv i))(>> 2 /tmp/buf)
These two redirections cause the file fv[i] to be opened on stdin, and /tmp/buf
to be opened for append writes on stderr.

The redirection (<< object) causes input to come from the printed represen-
tation of object. For example,(<< "The quick brown fox jumped over the lazy dog.")
causes reads from stdin to produce the characters of the above string. The object
is converted to its printed representation using the display procedure, so(<< (A five element list))
is the same as(<< "(A five element list)")
is the same as(<< ,(reverse '(list element five A))).

(Here we use the implicit backquoting feature to compute the list to be printed.)

The redirection (= fdes fdes/port) causes fdes/port to be dup’d into file de-
scriptor fdes. For example, the redirection(= 2 1)
causes stderr to be the same as stdout. fdes/port can also be a port, for example:(= 2 ,(current-output-port))
causes stderr to be dup’d from the current output port. In this case, it is an error
if the port is not a file port (e.g., a string port). More complex redirections can
be accomplished using the begin process form, discussed below, which gives
the programmer full control of i/o redirection from Scheme.

2.1.1 Port and file descriptor sync

It’s important to remember that rebinding Scheme’s current I/O ports (e.g.,
using call-with-input-file to rebind the value of (current-input-port))
does not automatically “rebind” the file referenced by the Unix stdio file de-
scriptors 0, 1, and 2. This is impossible to do in general, since some Scheme
ports are not representable as Unix file descriptors. For example, many Scheme
implementations provide “string ports,” that is, ports that collect characters
sent to them into memory buffers. The accumulated string can later be retrieved
from the port as a string. If a user were to bind (current-output-port) to

6 DRAFT December 21, 1994 – 02 : 25

such a port, it would be impossible to associate file descriptor 1 with this port,
as it cannot be represented in Unix. So, if the user subsequently forked off
some other program as a subprocess, that program would of course not see the
Scheme string port as its standard output.

To keep stdio synced with the values of Scheme’s current i/o ports, use the
special redirection stdports. This causes 0, 1, 2 to be redirected from the cur-
rent Scheme standard ports. It is equivalent to the three redirections:(= 0 ,(current-input-port))(= 1 ,(current-output-port))(= 2 ,(error-output-port))
The redirections are done in the indicated order. This will cause an error if
the one of current i/o ports isn’t a Unix port (e.g., if one is a string port). This
Scheme/Unix i/o synchronisation can also be had in Scheme code (as opposed
to a redirection spec) with the (stdports->stdio)procedure.

2.2 Process forms

A process form specifies a computation to perform as an independent Unix pro-
cess. It can be one of the following:(begin . scheme-code)(| pf1 : : : pfn)(|+ connect-list pf1 : : : pfn)(epf . epf)(prog arg1 : : : argn) ; Run scheme-code in a fork.; Simple pipeline; Complex pipeline; An extended process form.; Default: exec the program.
The default case (prog arg1 : : : argn) is also implicitly backquoted. That is, it
is equivalent to:(begin (apply exec-path `(prog arg1 : : : argn)))Exec-path is the version of the exec() system call that uses scsh’s path list
to search for an executable. The program and the arguments must be either
strings, symbols, or integers. Symbols and integers are coerced to strings. A
symbol’s print-name is used. Integers are converted to strings in base 10. Us-
ing symbols instead of strings is convenient, since it suppresses the clutter of the
surrounding ": : : " quotation marks. To aid this purpose, scsh reads symbols in
a case-sensitive manner, so that you can say(more Readme)
and get the right file.

A connect-list is a specification of how two processes are to be wired together
by pipes. It has the form ((from1 from2 : : : to) : : :) and is implicitly back-
quoted. For example,

December 21, 1994 – 02 : 25 DRAFT 7

(|+ ((1 2 0) (3 1)) pf1 pf2)
runs pf1 and pf2. The first clause (1 2 0) causes pf1’s stdout (1) and stderr (2) to
be connected via pipe to pf2’s stdin (0). The second clause (3 1) causes pf1’s file
descriptor 3 to be connected to pf2’s file descriptor 1.

Note that R4RS does not specify whether or not | and |+ are readable sym-
bols. Scsh does.

2.3 Using extended process forms in Scheme

Process forms and extended process forms are not Scheme. They are a differ-
ent notation for expressing computation that, like Scheme, is based upon s-
expressions. Extended process forms are used in Scheme programs by embed-
ding them inside special Scheme forms. There are three basic Scheme forms that
use extended process forms: exec-epf, &, and run.(exec-epf . epf) �! no return value syntax(& . epf) �! integer syntax(run . epf) �! integer syntax

The (exec-epf . epf) form nukes the current process: it establishes the
i/o redirections and then overlays the current process with the requested
computation.

The (& . epf) form is similar, except that the process is forked off in back-
ground. The form returns the subprocess’ pid.

The (run . epf) form runs the process in foreground: after forking off the
computation, it waits for the subprocess to exit, and returns its exit status.

These special forms are macros that expand into the equivalent series of
system calls. The definition of the exec-epfmacro is non-trivial, as it pro-
duces the code to handle i/o redirections and set up pipelines. However,
the definitions of the & and run macros are very simple:(& . epf) � (fork (� () (exec-epf . epf)))(run . epf) � (wait (& . epf))

2.3.1 Procedures and special forms

It is a general design principle in scsh that all functionality made available
through special syntax is also available in a straightforward procedural form.
So there are procedural equivalents for all of the process notation. In this way,
the programmer is not restricted by the particular details of the syntax. Here
are some of the syntax/procedure equivalents:

8 DRAFT December 21, 1994 – 02 : 25

Notation Procedure| fork/pipe|+ fork/pipe+exec-epf exec-path
redirection open, dup& forkrun wait+ fork

Having a solid procedural foundation also allows for general notational experi-
mentation using Scheme’s macros. For example, the programmer can build his
own pipeline notation on top of the fork and fork/pipeprocedures. Chapter 3
gives the full story on all the procedures in the syscall library.

2.3.2 Interfacing process output to Scheme

There is a family of procedures and special forms that can be used to capture
the output of processes as Scheme data.(run/port . epf) �! port syntax(run/file . epf) �! string syntax(run/string . epf) �! string syntax(run/strings . epf) �! string list syntax(run/sexp . epf) �! object syntax(run/sexps . epf) �! list syntax

These forms all fork off subprocesses, collecting the process’ output to std-
out in some form or another.run/port Value is a port open on process’s stdout. Re-

turns immediately after forking child.run/file Value is name of a temp file containing pro-
cess’s output. Returns when process exits.run/string Value is a string containing process’ output.
Returns when eof read.run/strings Splits process’ output into a list of newline-
delimited strings. Returns when eof read.run/sexp Reads a single object from process’ stdout
with read. Returns as soon as the read
completes.run/sexps Repeatedly reads objects from process’ std-
out with read. Returns accumulated list
upon eof.

December 21, 1994 – 02 : 25 DRAFT 9

The delimiting newlines are not included in the strings returned byrun/strings.

These special forms just expand into calls to the following analogous pro-
cedures.(run/port* thunk) �! port procedure(run/file* thunk) �! string procedure(run/string* thunk) �! string procedure(run/strings* thunk) �! string list procedure(run/sexp* thunk) �! object procedure(run/sexps* thunk) �! object list procedure

For example, (run/port . epf) expands into(run/port* (� () (exec-epf . epf))).
The following procedures are also of utility for generally parsing input

streams in scsh:(port->string port) �! string procedure(port->sexp-list port) �! list procedure(port->string-list port) �! string list procedure(port->list reader port) �! list procedurePort->string reads the port until eof, then returns the accumulated
string. Port->sexp-list repeatedly reads data from the port until eof,
then returns the accumulated list of items. Port->string-list repeat-
edly reads newline-terminated strings from the port until eof, then re-
turns the accumulated list of strings. The delimiting newlines are not
part of the returned strings. Port->list generalises these two pro-
cedures. It uses reader to repeatedly read objects from a port. It ac-
cumulates these objects into a list, which is returned upon eof. Theport->string-list and port->sexp-list procedures are trivial to de-
fine, being merely port->list curried with the appropriate parsers:(port->string-list port) � (port->list read-line port)(port->sexp-list port) � (port->list read port)
The following compositions also hold:run/string* � port->string � run/port*run/strings* � port->string-list � run/port*run/sexp* � read � run/port*run/sexps* � port->sexp-list � run/port*(reduce-port port reader op . seeds) �! object� procedure

10 DRAFT December 21, 1994 – 02 : 25

This procedure can be used to perform a variety of iterative operations
over an input stream. It repeatedly uses reader to read an object from port.
If the first read returns eof, then the entire reduce-portoperation returns
the seeds as multiple values. If the first read operation returns some other
value v, then op is applied to v and the seeds: (op v . seeds). This should
return a new set of seed values, and the reduction then loops, reading a
new value from the port, and so forth. (If multiple seed values are used,
then op must return multiple values.)

For example, (port->list reader port) could be defined as(reverse (reduce-port port reader cons '()))
An imperative way to look at reduce-port is to say that it abstracts the
idea of a loop over a stream of values read from some port, where the seed
values express the loop state.

2.4 More complex process operations

The procedures and special forms in the previous section provide for the com-
mon case, where the programmer is only interested in the output of the process.
These special forms and procedures provide more complicated facilities for ma-
nipulating processes.

2.4.1 Pids and ports together(run/port+pid . epf) �! [port fixnum] syntax(run/port+pid* thunk) �! [port fixnum] procedure

This special form and its analogous procedure can be used if the program-
mer also wishes access to the process’ pid, exit status, or other informa-
tion. They both fork off a subprocess, returning two values: a port open
on the process’ stdout, and the subprocess’s pid.

For example, to uncompress a tech report, reading the uncompressed data
into scsh, and also be able to track the exit status of the decompression
process, use the following:(receive (port pid) (run/port+pid (zcat tr91-145.tex.Z))(let* ((paper (port->string port))(status (wait pid))): : :use paper, status, and pid here: : :))
Note that you must first do the port->string and then do the wait—
the other way around may lock up when the zcat fills up its output pipe
buffer.

December 21, 1994 – 02 : 25 DRAFT 11

2.4.2 Multiple stream capture

Occasionally, the programmer may want to capture multiple distinct out-
put streams from a process. For instance, he may wish to read the stdout
and stderr streams into two distinct strings. This is accomplished with therun/collecting form and its analogous procedure, run/collecting*.(run/collecting fds . epf) �! [port: : :] syntax(run/collecting* fds thunk) �! [port: : :] procedureRun/collecting and run/collecting* run processes that produce mul-

tiple output streams and return ports open on these streams. To avoid is-
sues of deadlock, run/collectingdoesn’t use pipes. Instead, it first runs
the process with output to temp files, then returns ports open on the temp
files. For example,(run/collecting (1 2) (ls))
runs ls with stdout (fd 1) and stderr (fd 2) redirected to temporary files.
When the ls is done, run/collecting returns three values: the ls pro-
cess’ exit status, and two ports open on the temporary files. The files
are deleted before run/collecting returns, so when the ports are closed,
they vanish. The fds list of file descriptors is implicitly backquoted by the
special-form version.

For example, if Kaiming has his mailbox protected, then(receive (status out err)(run/collecting (1 2) (cat /usr/kmshea/mbox))(list status (port->string out) (port->string err)))
might produce the list(256 "" "cat: /usr/kmshea/mbox: Permission denied")
What is the deadlock hazard that causes run/collecting to use temp
files? Processes with multiple output streams can lock up if they use pipes
to communicate with Scheme i/o readers. For example, suppose some
Unix program myprog does the following:

1. First, outputs a single “(” to stderr.

2. Then, outputs a megabyte of data to stdout.

3. Finally, outputs a single “)” to stderr, and exits.

Our scsh programmer decides to run myprogwith stdout and stderr redi-
rected via Unix pipes to the ports port1 and port2, respectively. He gets
into trouble when he subsequently says (read port2). The Scheme read
routine reads the open paren, and then hangs in a read() system call try-
ing to read a matching close paren. But before myprog sends the close

12 DRAFT December 21, 1994 – 02 : 25

paren down the stderr pipe, it first tries to write a megabyte of data to the
stdout pipe. However, Scheme is not reading that pipe—it’s stuck waiting
for input on stderr. So the stdout pipe quickly fills up, and myprog hangs,
waiting for the pipe to drain. The myprog child is stuck in a stdout/port1
write; the Scheme parent is stuck in a stderr/port2 read. Deadlock.

Here’s a concrete example that does exactly the above:(receive (status port1 port2)(run/collecting (1 2)(begin;; Write an open paren to stderr.(run (echo "(") (= 1 2));; Copy a lot of stuff to stdout.(run (cat /usr/dict/words));; Write a close paren to stderr.(run (echo ")") (= 1 2))));; OK. Here, I have a port PORT1 built over a pipe;; connected to the BEGIN subproc's stdout, and;; PORT2 built over a pipe connected to the BEGIN;; subproc's stderr.(read port2) ; Should return the empty list.(port->string port1)) ; Should return a big string.
In order to avoid this problem, run/collecting and run/collecting*
first run the child process to completion, buffering all the output streams
in temp files (using the temp-file-channelprocedure, see below). When
the child process exits, ports open on the buffered output are returned.
This approach has two disadvantages over using pipes:� The total output from the child output is temporarily written to the

disk before returning from run/collecting. If this output is some
large intermediate result, the disk could fill up.� The child producer and Scheme consumer are serialised; there is no
concurrency overlap in their execution.

However, it remains a simple solution that avoids deadlock. More
sophisticated solutions can easily be programmed up as needed—run/collecting* itself is only 12 lines of simple code.

See temp-file-channel for more information on creating temp files as
communication channels.

December 21, 1994 – 02 : 25 DRAFT 13

2.5 Conditional process sequencing forms

These forms allow conditional execution of a sequence of processes.(|| pf1 : : : pfn) �! boolean syntax

Run each proc until one completes successfully (i.e., exit status zero). Re-
turn true if some proc completes successfully; otherwise #f.(&& pf1 : : : pfn) �! boolean syntax

Run each proc until one fails (i.e., exit status non-zero). Return true if all
procs complete successfully; otherwise #f.

2.6 Process filters

These procedures are useful for forking off processes to filter text streams.(char-filter filter) �! procedure procedure

The filter argument is a character!character procedure. Returns a proce-
dure that when called, repeatedly reads a character from the current input
port, applies filter to the character, and writes the result to the current out-
put port. The procedure returns upon reaching eof on the input port.

For example, to downcase a stream of text in a spell-checking pipeline,
instead of using the Unix tr A-Z a-z command, we can say:(run (| (delatex)(begin ((char-filter char-downcase))) ; tr A-Z a-z(spell)(sort)(uniq))(< scsh.tex)(> spell-errors.txt))(string-filter filter [buflen]) �! procedure procedure

The filter argument is a string!string procedure. Returns a procedure
that when called, repeatedly reads a string from the current input port,
applies filter to the string, and writes the result to the current output port.
The procedure returns upon reaching eof on the input port.

The optional buflen argument controls the number of characters each in-
ternal read operation requests; this means that filter will never be applied
to a string longer than buflen chars. The default buflen value is 1024.

14 DRAFT December 21, 1994 – 02 : 25

Chapter 3

System Calls

Scsh provides (almost) complete access to the basic Unix kernel services: pro-
cesses, files, signals and so forth. These procedures comprise a first cut at a
Scheme binding for POSIX, with a few extras thrown in (e.g., symbolic links,fchown, fstat). A few have been punted for the current release (tty control,
ioctl, and a few others.)

3.1 Errors

Scsh syscalls never return error codes, and do not use a global errno variable to
report errors. Errors are consistently reported by raising exceptions. This frees
up the procedures to return useful values, and allows the programmer to as-
sume that if a syscall returns, it succeeded. This greatly simplifies the flow of the
code from the programmer’s point of view.

Since Scheme does not yet have a standard exception system, the scsh defini-
tion remains somewhat vague on the actual form of exceptions and exception
handlers. When a standard exception system is defined, scsh will move to it.
For now, scsh uses the Scheme 48 exception system, with a simple sugaring on
top to hide the details in the common case.

System call error exceptions contain the Unix errno code reported by the
system call. Unlike C, the errno value is a part of the exception packet, it is not
accessed through a global variable.

For reference purposes, the Unix errno numbers are bound to the variableserrno/perm,errno/noent, etc. System calls never return error/intr—theyau-
tomatically retry. (Currently only true for I/O calls.)(errno-error errno syscall . data) �! no return value procedure

December 21, 1994 – 02 : 25 DRAFT 15

Raises a Unix error exception for Unix error number errno. The syscall and
data arguments are packaged up in the exception packet passed to the ex-
ception handler.(with-errno-handler* handler thunk) �! value(s) of thunk procedure(with-errno-handler handler-spec . body) �! value of body syntax

Unix syscalls raise error exceptions by calling errno-error. Programs
can use with-errno-handler* to establish handlers for these exceptions.

If a Unix error arises while thunk is executing, handler is called on two ar-
guments:(handler errno packet)
packet is a list of the form

packet = (errno-msg syscall . data);
where errno-msg is the standard Unix error message for the error, syscall
is the procedure that generated the error, and data is a list of information
generated by the error, which varies from syscall to syscall.

If handler returns, the handler search continues upwards. Handler can ac-
quire the exception by invoking a saved continuation. This procedure can
be sugared over with the following syntax:(with-errno-handler((errno packet) clause : : :)

body1
body2: : :)

This form executes the body forms with a particular errno handler in-
stalled. When an errno error is raised, the handler search machinery will
bind variable errno to the error’s integer code, and variable packet to the er-
ror’s auxiliary data packet. Then, the clauses will be checked for a match.
The first clause that matches is executed, and its value is the value of
the entire with-errno-handler form. If no clause matches, the handler
search continues.

Error clauses have two forms((errno : : :) body : : :)(else body : : :)
In the first type of clause, the errno forms are integer expressions. They
are evaluated and compared to the error’s errno value. An else clause

16 DRAFT December 21, 1994 – 02 : 25

matches any errno value. Note that the errno and data variables are lexi-
cally visible to the error clauses.

Example:(with-errno-handler((errno packet) ; Only handle 3 particular errors.((errno/wouldblock errno/again)(loop))((errno/acces)(format #t "Not allowed access!")#f))(foo frobbotz)(blatz garglemumph))
It is not defined what dynamic context the handler executes in, so fluid
variables cannot reliably be referenced.

Note that Scsh system calls always retry when interrupted, so that theerrno/intr exception is never raised. If the programmer wishes to abort
a system call on an interrupt, he should have the interrupt handler explic-
itly raise an exception or invoke a stored continuation to throw out of the
system call.

Remark: This is not strictly true in the current implementation—only
some of the i/o syscalls loop. But BSD variants never returnEINTR any-
way, unless you explicitly request it, so we’ll live w/it for now.

3.1.1 Interactive mode and error handling

Scsh runs in two modes: interactive and script mode. It starts up in interac-
tive mode if the scsh interpreter is started up with no script argument. Other-
wise, scsh starts up in script mode. The mode determines whether scsh prints
prompts in between reading and evaluating forms, and it affects the default er-
ror handler. In interactive mode, the default error handler will report the error,
and generate an interactive breakpoint so that the user can interact with the sys-
tem to examine, fix, or dismiss from the error. In script mode, the default error
handler causes the scsh process to exit.

When scsh forks a child with (fork), the child resets to script mode. This
can be overridden if the programmer wishes.

December 21, 1994 – 02 : 25 DRAFT 17

3.2 I/O

3.2.1 Standard R4RS I/O procedures

In scsh, most standard R4RS i/o operations (such as display or read-char)
work on both integer file descriptors and Scheme ports. When doing i/o with
a file descriptor, the i/o operation is done directly on the file, bypassing any
buffered data that may have accumulated in an associated port. Note that
character-at-a-time operations (e.g., read-char and read-line) are likely to be
quite slow when performed directly upon file descriptors.

The standard R4RS procedures read-char, char-ready?, write, display,newline, and write-char are all generic, accepting integer file descriptor ar-
guments as well as ports. Scsh also mandates the availability of format, and
further requires format to accept file descriptor arguments as well as ports.

The procedurespeek-charandreaddo not accept file descriptor arguments,
since these functions require the ability to read ahead in the input stream, a fea-
ture not supported by Unix I/O.

3.2.2 Port manipulation and standard ports(close-after port consumer) �! value(s) of consumer procedure

Returns (consumer port), but closes the port on return. No dynamic-wind
magic.

Remark: Is there a less-awkward name?(error-output-port) �! port procedure

This procedure is analogous to current-output-port, but produces a
port used for error messages—the scsh equivalent of stderr.(with-current-input-port* port thunk) �! value(s) of thunk procedure(with-current-output-port* port thunk) �! value(s) of thunk procedure(with-error-output-port* port thunk) �! value(s) of thunk procedure

These procedures install port as the current input, current output, and er-
ror output port, respectively, for the duration of a call to thunk.(with-current-input-port port . body) �! value(s) of body syntax(with-current-output-port port . body) �! value(s) of body syntax(with-error-output-port port . body) �! value(s) of body syntax

These special forms are simply syntactic sugar for the with-current-input-port* procedure and friends.

18 DRAFT December 21, 1994 – 02 : 25

(close port/fd) �! undefined procedure

Close the port or file descriptor.

If port/fd is a file descriptor, and it has a port allocated to it, the port is
shifted to a new file descriptor created with (dup port/fd) before clos-
ing port/fd. The port then has its revealed count set to zero. This reflects
the design criteria that ports are not associated with file descriptors, but
with open files.

To close a file descriptor, and any associated port it might have, you must
instead say one of (as appropriate):(close (fdes->inport fd))(close (fdes->outport fd))(stdports->stdio) �! undefined procedure(stdio->stdports thunk) �! value(s) of thunk procedure(stdports->stdio) is exactly equivalent to the series of redirections:1(dup (current-input-port) 0)(dup (current-output-port) 1)(dup (error-output-port) 2)stdio->stdports binds the standard ports (current-input-port),(current-output-port), and (error-output-port) to be ports on file
descriptors 0, 1, 2, and then calls thunk. It is equivalent to:(with-current-input-port (fdes->inport 0)(with-current-output-port (fdes->inport 1)(with-error-output-port (fdes->outport 2)(thunk))))

3.2.3 String ports

Scheme 48 has string ports, which you can use. Scsh has not committed to the
particular interface or names that Scheme 48 uses, so be warned that the inter-
face described herein may be liable to change.(make-string-input-port string) �! port procedure

Returns a port that reads characters from the supplied string.(make-string-output-port) �! port procedure(string-output-port-output port) �! port procedure1Why not move->fdes? Because the current output port and error port might be the same port.

December 21, 1994 – 02 : 25 DRAFT 19

A string output port is a port collects the characters given to it
into a string. The accumulated string is retrieved by applyingstring-output-port-output to the port.(call-with-string-output-port procedure) �! string procedure

The procedure is called on a port. When it returns,call-with-string-output-port returns a string containing the charac-
ters written to the port.

3.2.4 Revealed ports and file descriptors

The material in this section and the following one is not critical for most appli-
cations. You may safely skim or completely skip this section on a first reading.

Dealing with Unix file descriptors in a Scheme environment is difficult. In
Unix, open files are part of the process environment, and are referenced by small
integers called file descriptors. Open file descriptors are the fundamental way
i/o redirections are passed to subprocesses, since file descriptors are preserved
across fork’s and exec’s.

Scheme, on the other hand, uses ports for specifying i/o sources. Ports are
garbage-collected Scheme objects, not integers. Ports can be garbage collected;
when a port is collected, it is also closed. Because file descriptors are just inte-
gers, it’s impossible to garbage collect them—you wouldn’t be able to close file
descriptor 3 unless there were no 3’s in the system, and you could further prove
that your program would never again compute a 3. This is difficult at best.

If a Scheme program only used Scheme ports, and never actually used file
descriptors, this would not be a problem. But Scheme code must descend to the
file descriptor level in at least two circumstances:� when interfacing to foreign code� when interfacing to a subprocess.

This causes a problem. Suppose we have a Scheme port constructed on top of
file descriptor 2. We intend to fork off a program that will inherit this file de-
scriptor. If we drop references to the port, the garbage collector may prema-
turely close file 2 before we fork the subprocess. The interface described below
is intended to fix this and other problems arising from the mismatch between
ports and file descriptors.

The Scheme kernel maintains a port table that maps a file descriptor to the
Scheme port allocated for it (or, #f if there is no port allocated for this file de-
scriptor). This is used to ensure that there is at most one open port for each open
file descriptor.

20 DRAFT December 21, 1994 – 02 : 25

The port data structure for file ports has two fields besides the descriptor: re-
vealed and closed?. When a file port is closed with (close port), the port’s file
descriptor is closed, its entry in the port table is cleared, and the port’s closed?
field is set to true.

When a file descriptor is closed with (close fdes), any associated port is
shifted to a new file descriptor created with (dup fdes). The port has its re-
vealed count reset to zero. See discussion below. To really put a stake through
a descriptor’s heart, you must say one of(close (fdes->inport fdes))(close (fdes->output fdes))

The revealed field is an aid to garbage collection. It is an integer semaphore.
If it is zero, the port’s file descriptor can be closed when the port is collected.
Essentially, the revealed field reflects whether or not the port’s file descriptor
has escaped to the Scheme user. If the Scheme user doesn’t know what file de-
scriptor is associated with a given port, then he can’t possibly retain an “integer
handle” on the port after dropping pointers to the port itself, so the garbage col-
lector is free to close the file.

Ports allocated with open-output-file and open-input-file are unre-
vealed ports—i.e., revealed is initialised to 0. No one knows the port’s file de-
scriptor, so the file descriptor can be closed when the port is collected.

The functions fdes->output-port, fdes->input-port, port->fdes
are used to shift back and forth between file descriptors and ports. Whenport->fdes reveals a port’s file descriptor, it increments the port’s re-
vealed field. When the user is through with the file descriptor, he can call(release-port-handle port), which decrements the count. The function(call/fdes fdes/port proc) automates this protocol. call/fdes usesdynamic-wind to enforce the protocol. If proc throws out of the call/fdes,
unwind handler releases the descriptor handle; if the user subsequently tries
to throw back into proc’s context, the wind handler raises an error. When the
user maps a file descriptor to a port with fdes->outport or fdes->inport, the
port has its revealed field incremented.

Not all file descriptors are created by requests to make ports. Some are in-
herited on process invocation via exec(2), and are simply part of the global
environment. Subprocesses may depend upon them, so if a port is later al-
located for these file descriptors, is should be considered as a revealed port.
For example, when the Scheme shell’s process starts up, it opens ports on
file descriptors 0, 1, and 2 for the initial values of (current-input-port),(current-output-port), and (error-output-port). These ports are ini-
tialised with revealed set to 1, so that stdin, stdout, and stderr are not closed
even if the user drops the port. A fine point: the stdin file descriptor is allocated
an unbuffered port. Because shells frequently share stdin with subprocesses, if

December 21, 1994 – 02 : 25 DRAFT 21

the shell does buffered reads, it might “steal” input intended for a subprocess.
For this reason, all shells, including sh, csh, and scsh, read stdin unbuffered.
Responsibility for deciding which other files must be opened unbuffered rests
with the shell programmer.

Unrevealed file ports have the nice property that they can be closed when all
pointers to the port are dropped. This can happen during gc, or at an exec()—
since all memory is dropped at an exec(). No one knows the file descriptor
associated with the port, so the exec’d process certainly can’t refer to it.

This facility preserves the transparent close-on-collect property for file ports
that are used in straightforward ways, yet allows access to the underlying Unix
substrate without interference from the garbage collector. This is critical, since
shell programming absolutely requires access to the Unix file descriptors, as
their numerical values are a critical part of the process interface.

A port’s underlying file descriptor can be shifted around with dup(2)when
convenient. That is, the actual fd on top of which a port is constructed can be
shifted around underneath the port by the scsh kernel when necessary. This
is important, because when the user is setting up file descriptors prior to aexec(2), he may explicitly use a file descriptor that has already been allocated
to some port. In this case, the scsh kernel just shifts the port’s file descriptor to
some new location with dup, freeing up its old descriptor. This prevents errors
from happening in the following scenario. Suppose we have a file open on portf. Now we want to run a program that reads input on file 0, writes output to
file 1, errors to file 2, and logs execution information on file 3. We want to run
this program with input from f. So we write:(run (/usr/shivers/bin/prog)(> 1 output.txt)(> 2 error.log)(> 3 trace.log)(= 0 ,f))
Now, suppose by ill chance that, unbeknownst to us, when the operating sys-
tem opened f’s file, it allocated descriptor 3 for it. If we blindly redirecttrace.log into file descriptor 3, we’ll clobber f! However, the port-shuffling
machinery saves us: when the run form tries to dup trace.log’s file descrip-
tor to 3, dup will notice that file descriptor 3 is already associated with an un-
revealed port (i.e., f). So, it will first move f to some other file descriptor. This
keeps f alive and well so that it can subsequently be dup’d into descriptor 0 forprog’s stdin.

The port-shifting machinery makes the following guarantee: a port is only
moved when the underlying file descriptor is closed, either by a close() or adup2() operation. Otherwise a port/file-descriptor association is stable.

22 DRAFT December 21, 1994 – 02 : 25

Under normal circumstances, all this machinery just works behind the
scenes to keep things straightened out. The only time the user has to think about
it is when he starts accessing file descriptors from ports, which he should al-
most never have to do. If a user starts asking what file descriptors have been
allocated to what ports, he has to take responsibility for managing this infor-
mation.

3.2.5 Port-mapping machinery

The procedures provided in this section are almost never needed. You may
safely skim or completely skip this section on a first reading.

Here are the routines for manipulating ports in scsh. The important points
to remember are:� A file port is associated with an open file, not a particular file descriptor.� The association between a file port and a particular file descriptor is never

changed except when the file descriptor is explicitly closed. “Closing” in-
cludes being used as the target of a dup2, so the set of procedures below
that close their targets are close, two-argument dup, and move->fdes. If
the target file descriptor of one of these routines has an allocated port,
the port will be shifted to another freshly-allocated file descriptor, and
marked as unrevealed, thus preserving the port but freeing its old file de-
scriptor.

These rules are what is necessary to “make things work out” with no surprises
in the general case.(fdes->inport fd) �! port procedure(fdes->outport fd) �! port procedure(port->fdes port) �! fixnum procedure

These increment the port’s revealed count.(port-revealed port) �! integer or #f procedure

Return the port’s revealed count if positive, otherwise #f.(release-port-handle port) �! undefined procedure

Decrement the port’s revealed count.(call/fdes fd/port consumer) �! value(s) of consumer procedure

December 21, 1994 – 02 : 25 DRAFT 23

Calls consumer on a file descriptor; takes care of revealed bookkeeping. If
fd/port is a file descriptor, this is just (consumer fd/port). If fd/port is a port,
calls consumer on its underlying file descriptor. While consumer is running,
the port’s revealed count is incremented.

When call/fdes is called with port argument, you are not allowed to
throw into consumer with a stored continuation, as that would violate the
revealed-count bookkeeping.(move->fdes fd/port target-fd) �! port or fdes procedure

Maps fd!fd and port!port.

If fd/port is a file-descriptor not equal to target-fd, dup it to target-fd and
close it. Returns target-fd.

If fd/port is a port, it is shifted to target-fd, by duping its underlying file-
descriptor if necessary. Fd/port’s original file descriptor is closed (if it was
different from target-fd). Returns the port. This operation resets fd/port’s
revealed count to 1.

In all cases when fd/port is actually shifted, if there is a port already using
target-fd, it is first relocated to some other file descriptor.

3.2.6 Unix I/O(dup port/fd [newfd]) �! port/fd procedure(dup->inport port/fd [newfd]) �! port procedure(dup->outport port/fd [newfd]) �! port procedure(dup->fdes port/fd [newfd]) �! fd procedure

These procedures subsume the functionality of C’s dup() and dup2().
The different routines return different types of values: dup->inport,dup->outport, and dup->fdes return input ports, output ports, and in-
teger file descriptors, respectively. dup’s return value depends on on the
type of port/fd—it maps fd!fd and port!port.

These procedures use the Unix dup() syscall to replicate the file descrip-
tor or file port port/fd. If a newfd file descriptor is given, it is used as the
target of the dup operation, i.e., the operation is a dup2(). In this case,
procedures that return a port (such as dup->inport) will return one with
the revealed count set to one. For example, (dup (current-input-port)5) produces a new port with underlying file descriptor 5, whose revealed
count is 1. If newfd is not specified, then the operating system chooses the
file descriptor, and any returned port is marked as unrevealed.

If the newfd target is given, and some port is already using that file de-
scriptor, the port is first quietly shifted (with another dup) to some other
file descriptor (zeroing its revealed count).

24 DRAFT December 21, 1994 – 02 : 25

Since Scheme doesn’t provide read/write ports, dup->inport anddup->outport can be useful for getting an output version of an input
port, or vice versa. For example, if p is an input port open on a tty, and we
would like to do output to that tty, we can simply use (dup->outport p)
to produce an equivalent output port for the tty.(file-seek fd/port offset whence) �! undefined procedure

whence is one of fseek/set, seek/delta, seek/endg.

Oops: The current implementation doesn’t handle offset arguments
that are not immediate integers (i.e., representable in 30 bits).(open-file fname flags [perms]) �! port procedure

Perms defaults to #o666. Flags is an integer bitmask, composed by or’ing
together the following constants:open/read ; You may onlyopen/write ; choose oneopen/read+write ; of these threeopen/no-control-ttyopen/nonblockingopen/appendopen/createopen/truncateopen/exclusive. ; Your Unix may have. ; a few more.
Returns a port. The port is an input port if the flags permit it, otherwise
an output port. R4RS/Scheme 48/scsh do not have input/output ports,
so it’s one or the other. This should be fixed. (You can hack simultaneous
i/o on a file by opening it r/w, taking the result input port, and duping it
to an output port with dup->outport.)(open-input-file fname [flags]) �! port procedure(open-output-file fname [flags perms]) �! port procedure

These are equivalent to open-file, after first setting the read/write bits
of the flags argument to open/read or open/write, respectively. Flags de-
faults to zero for open-input-file, and(bitwise-ior open/create open/truncate)

December 21, 1994 – 02 : 25 DRAFT 25

for open-output-file. These defaults make the procedures backwards-
compatible with their unary R4RS definitions.(open-fdes fname flags [perms]) �! integer procedure

Returns a file descriptor.(pipe) �! [rport wport] procedure

Returns two ports, the read and write end-points of a Unix pipe.(read-line [fd/port retain-newline?]) �! string or eof-object procedure

Reads and returns one line of text; on eof, returns the eof object. A line is
terminated by newline or eof.

retain-newline? defaults to #f; if true, a terminating newline is included in
the result string, otherwise it is trimmed. Using this argument allows one
to tell whether or not the last line of input in a file is newline terminated.(read-string nbytes [fd/port]) �! string or #f procedure(read-string! str [fd/port start end]) �! nread or #f procedure

These calls read exactly as much data as you requested, unless there is not
enough data (eof). read-string! reads the data into string str at the in-
dices in the half-open interval [start; end); the default interval is the whole
string: start = 0 and end = (string-length string). They will persis-
tently retry on partial reads and when interrupted until (1) error, (2) eof, or
(3) the input request is completely satisfied. Partial reads can occur when
reading from an intermittent source, such as a pipe or tty.read-string returns the string read; read-string! returns the number
of characters read. They both return false at eof. A request to read zero
bytes returns immediately, with no eof check.

The values of start and end must specify a well-defined interval in str, i.e.,0 � start � end � (string-length str).

Any partially-read data is included in the error exception packet. Error
returns on non-blocking input are considered an error.(read-string/partial nbytes [fd/port]) �! string or #f procedure(read-string!/partial str [fd/port start end]) �! nread or #f procedure

26 DRAFT December 21, 1994 – 02 : 25

These are atomic best-effort/forward-progress calls. Best effort: they may
read less than you request if there is a lesser amount of data immediately
available (e.g., because you are reading from a pipe or a tty). Forward
progress: if no data is immediately available (e.g., empty pipe), they will
block. Therefore, if you request an n > 0 byte read, while you may not get
everything you asked for, you will always get something (barring eof).

There is one case in which the forward-progress guarantee is cancelled:
when the programmer explicitly sets the port to non-blocking i/o. In this
case, if no data is immediately available, the procedure will not block, but
will immediately return a zero-byte read.read-string/partial reads the data into a freshly allocated string,
which it returns as its value. read-string!/partial reads the data into
string str at the indices in the half-open interval [start; end); the default in-
terval is the whole string: start = 0 and end = (string-length string).
The values of start and end must specify a well-defined interval in str, i.e.,0 � start � end � (string-length str). It returns the number of bytes
read.

A request to read zero bytes returns immediatedly, with no eof check.

In sum, there are only three ways you can get a zero-byte read: (1) you
request one, (2) you turn on non-blocking i/o, or (3) you try to read at eof.

These are the routines to use for non-blocking input. They are also useful
when you wish to efficiently process data in large blocks, and your algo-
rithm is insensitive to the block size of any particular read operation.(select readfds writefds exceptfds timeout) �! rfds wfds efds procedure

Remark: Unimplemented. Should we implement a set-of abstraction
first, Or just use a twos-complement bitvector encoding with bignums?(write-string string [fd/port start end]) �! undefined procedure

This procedure writes all the data requested. If the procedure cannot per-
form the write with a single kernel call (due to interrupts or partial writes),
it will perform multiple write operations until all the data is written or an
error has occurred. A non-blocking i/o error is considered an error. (Er-
ror exception packets for this syscall include the amount of data partially
transferred before the error occurred.)

The data written are the characters of string in the half-open interval[start; end). The default interval is the whole string: start = 0 and end =(string-length string). The values of start and end must specify a well-
defined interval in str, i.e., 0 � start � end � (string-length str). A
zero-byte write returns immediately, with no error.

December 21, 1994 – 02 : 25 DRAFT 27

Output to buffered ports: write-string’s efforts end as soon as all the
data has been placed in the output buffer. Errors and true output may not
happen until a later time, of course.(write-string/partial string [fd/port start end]) �! nwritten procedure

This routine is the atomic best-effort/forward-progress analog towrite-string. It returns the number of bytes written, which may be
less than you asked for. Partial writes can occur when (1) we write off
the physical end of the media, (2) the write is interrrupted, or (3) the file
descriptor is set for non-blocking i/o.

If the file descriptor is not set up for non-blocking i/o, then a successful
return from these procedures makes a forward progress guarantee—that
is, a partial write took place of at least one byte:� If we are at the end of physical media, and no write takes place, an

error exception is raised. So a return implies we wrote something.� If the call is interrupted after a partial transfer, it returns immedi-
ately. But if the call is interrupted before any data transfer, then the
write is retried.

If we request a zero-byte write, then the call immediately returns 0. If the
file descriptor is set for non-blocking i/o, then the call may return 0 if it
was unable to immediately write anything (e.g., full pipe). Barring these
two cases, a write either returns nwritten > 0, or raises an error exception.

Non-blocking i/o is only available on file descriptors and unbuffered
ports. Doing non-blocking i/o to a buffered port is not well-defined, and
is an error (the problem is the subsequent flush operation).(force-output [fd/port]) �! no return value procedure

This procedure does nothing when applied to an integer file descriptor or
unbuffered port. It flushes buffered output when applied to a buffered
port, and raises a write-error exception on error. Returns no value.

3.3 File system

Besides the following procedures, which allow access to the computer’s file sys-
tem, scsh also provides a set of procedures which manipulate file names. These
string-processing procedures are documented in section 5.1.3.

28 DRAFT December 21, 1994 – 02 : 25

(create-directory fname [perms override?]) �! undefined procedure(create-fifo fname [perms override?]) �! undefined procedure(create-hard-link oldname newname [override?]) �! undefined procedure(create-symlink old-name new-name [override?]) �! undefined procedure

These procedures create objects of various kinds in the file system.

The override? argument controls the action if there is already an object in
the file system with the new name:#f signal an error (default)'query prompt the user

other delete the old object (with delete-file ordelete-directory, as appropriate) before
creating the new object.

Perms defaults to #o777 (but is masked by the current umask).

Remark: Currently, if you try to create a hard or symbolic link from a
file to itself, you will error out with override? false, and simply delete
your file with override? true. Catching this will require some sort of
true-name procedure, which I currently do not have.(delete-directory fname) �! undefined procedure(delete-file fname) �! undefined procedure(delete-filesys-object fname) �! undefined procedure

These procedures delete objects from the file system. The delete-filesys-objectprocedure will delete an object of any type from the file
system: files, (empty) directories, symlinks, fifos, etc..(read-symlink fname) �! string procedure

Return the filename referenced by symbolic link fname.(rename-file old-fname new-fname [override?]) �! undefined procedure

If you override an existing object, then old-fname and new-fname must
type-match—either both directories, or both non-directories. This is re-
quired by the semantics of Unix rename().

Remark: There is an unfortunate atomicity problem with therename-file procedure: if you specify no-override, but create filenew-fname sometime between rename-file’s existence check and the
actual rename operation, your file will be clobbered with old-fname.
There is no way to fix this problem, given the semantics of Unixrename(); at least it is highly unlikely to occur in practice.

December 21, 1994 – 02 : 25 DRAFT 29

(set-file-mode fname/fd/port mode) �! undefined procedure(set-file-owner fname/fd/port uid) �! undefined procedure(set-file-group fname/fd/port gid) �! undefined procedure

These procedures set the permission bits, owner id, and group id of a file,
respectively. The file can be specified by giving the file name, or either an
integer file descriptor or a port open on the file. Setting file user or group
ownership usually requires root privileges.(sync-file fd/port) �! undefined procedure(sync-file-system) �! undefined procedure

Calling sync-file causes Unix to update the disk data structures for a
given file. If fd/port is a port, any buffered data it may have is first flushed.
Calling sync-file-system synchronises the kernel’s entire file system
with the disk.

These procedures are not POSIX. Interestingly enough, sync-file-system doesn’t actually do what it is claimed to do. We just threw it in
for humor value. See the sync(2) man page for Unix enlightenment.(truncate-file fname/fd/port len) �! undefined procedure

The specified file is truncated to len bytes in length.(file-attributes fname/fd/port [chase?]) �! file-info-record procedure

The file-attributesprocedure returns a record structure containing ev-
erything there is to know about a file. If the chase? flag is true (the default),
then the procedure chases symlinks and reports on the files to which they
refer. If chase? is false, then the procedure checks the actual file itself, even
if it’s a symlink. The chase? flag is ignored if the file argument is a file de-
scriptor or port.

The value returned is a file-info record, defined to have the following struc-
ture:

30 DRAFT December 21, 1994 – 02 : 25

(define-record file-infotype ; fblock-special, char-special, directory,; fifo, regular, socket, symlinkgdevice ; Device file resides on.inode ; File's inode.mode ; File's mode bits: permissions, setuid, setgidnlinks ; Number of hard links to this file.uid ; Owner of file.gid ; File's group id.size ; Size of file, in bytes.atime ; Last access time.mtime ; Last status-change time.ctime) ; Creation time.
The uid field of a file-info record is accessed with the procedure(file-info:uid x)

and similarly for the other fields. The type field is a symbol; all other
fields are integers. A file-info record is discriminated with the file-info?
predicate.

The following procedures all return selected information about a file; they
are built on top of file-attributes, and are called with the same argu-
ments that are passed to it.

Procedure returnsfile-type typefile-inode inodefile-mode modefile-nlinks nlinksfile-owner uidfile-group gidfile-size sizefile-last-access atimefile-last-mod mtimefile-last-status-change ctime

Example:;; All my files in /usr/tmp:(filter (� (f) (= (file-owner f) (user-uid)))(directory-files "/usr/tmp")))(file-directory? fname/fd/port [chase?]) �! boolean procedure(file-fifo? fname/fd/port [chase?]) �! boolean procedure

December 21, 1994 – 02 : 25 DRAFT 31

(file-regular? fname/fd/port [chase?]) �! boolean procedure(file-socket? fname/fd/port [chase?]) �! boolean procedure(file-special? fname/fd/port [chase?]) �! boolean procedure(file-symlink? fname/fd/port) �! boolean procedure

These procedures are file-type predicates that test the type of a given file.
The are applied to the same arguments to which file-attributes is ap-
plied; the sole exception is file-symlink?, which does not take the op-
tional chase? second argument.

For example,(file-directory? "/usr/dalbertz") =) #t(file-not-readable? fname) �! boolean procedure(file-not-writeable? fname) �! boolean procedure(file-not-executable? fname) �! boolean procedure

Returns:

Value meaning#f Access permitted'search-denied Can’t stat—a protected directory
is blocking access.'permission Permission denied.'no-directory Some directory doesn’t exist.'nonexistent File doesn’t exist.

A file is considered writeable if either (1) it exists and is writeable or (2)
it doesn’t exist and the directory is writeable. Since symlink permission
bits are ignored by the filesystem, these calls do not take a chase? flag.

Oops: file-not-writeable? does not currently do the directory
check.(file-readable? fname) �! boolean procedure(file-writable? fname) �! boolean procedure(file-executable? fname) �! boolean procedure

These procedures are the logical negation of the preceding file-not-: : :?
procedures.(file-not-exists? fname [chase?]) �! object procedure

Returns:

32 DRAFT December 21, 1994 – 02 : 25

#f Exists.#t Doesn’t exist.'search-denied Some protected directory is
blocking the search.(file-exists? fname [chase?]) �! boolean procedure

This is simply (not (file-not-exists? fname [chase?]))(directory-files [dir dotfiles?]) �! string list procedure

Return the list of files in directory dir, which defaults to the current work-
ing directory. The dotfiles? flag (default #f) causes dot files to be included
in the list. Regardless of the value of dotfiles?, the two files . and .. are
never returned.

The directory dir is not prepended to each file name in the result list. That
is, (directory-files "/etc")
returns("chown" "exports" "fstab" : : :)
not ("/etc/chown" "/etc/exports" "/etc/fstab" : : :)
To use the files in returned list, the programmer can either manually
prepend the directory:(map (� (f) (string-append dir "/" f)) files)
or cd to the directory before using the file names:(with-cwd dir(for-each delete-file (directory-files)))
or use the glob procedure, defined below.

A directory list can be generated by (run/strings (ls)), but this is un-
reliable, as filenames with whitespace in their names will be split into sep-
arate entries. Using directory-files is reliable.(glob pat1 : : :) �! string list procedure

December 21, 1994 – 02 : 25 DRAFT 33

Glob each pattern against the filesystem and return the sorted list. Du-
plicates are not removed. Patterns matching nothing are not included
literally.2 C shell {a,b,c} patterns are expanded. Backslash quotes char-
acters, turning off the special meaning of {, }, *, [,], and ?.

Note that the rules of backslash for Scheme strings and glob patterns work
together to require four backslashes in a row to specify a single literal
backslash. Fortunately, this should be a rare occurrence.

A glob subpattern will not match against dot files unless the first character
of the subpattern is a literal “.”. Further, a dot subpattern will not match
the files . or .. unless it is a constant pattern, as in (glob "../*/*.c").
So a directory’s dot files can be reliably generated with the simple glob
pattern ".*".

Some examples:(glob "*.c" "*.h");; All the C and #include files in my directory.(glob "*.c" "*/*.c");; All the C files in this directory and;; its immediate subdirectories.(glob "lexer/*.c" "parser/*.c")(glob "{lexer,parser}/*.c");; All the C files in the lexer and parser dirs.(glob "\\{lexer,parser\\}/*.c");; All the C files in the strange;; directory "{lexer,parser}".(glob "**");; All the files ending in "*", e.g.;; ("foo*" "bar*")(glob "*lexer*")("mylexer.c" "lexer1.notes");; All files containing the string "lexer".(glob "lexer");; Either ("lexer") or ().
If the first character of the pattern (after expanding braces) is a slash, the
search begins at root; otherwise, the search begins in the current working
directory.2Why bother to mention such a silly possibility? Because that is what sh does.

34 DRAFT December 21, 1994 – 02 : 25

If the last character of the pattern (after expanding braces) is a slash, then
the result matches must be directories, e.g.,(glob "/usr/man/man?/") =)("/usr/man/man1/" "/usr/man/man2/" : : :)
Globbing can sometimes be useful when we need a list of a directory’s
files where each element in the list includes the pathname for the file.
Compare:(directory-files "../include") =)("cig.h" "decls.h" : : :)(glob "../include/*") =)("../include/cig.h" "../include/decls.h" : : :)(glob-quote str) �! string procedure

Returns a constant glob pattern that exactly matches str. All wild-card
characters in str are quoted with a backslash.(glob-quote "Any *.c files?")=) "Any *.c files\?"(file-match root dot-files? pat1 pat2 : : : patn) �! string list procedurefile-match provides a more powerful file-matching service, at the ex-
pense of a less convenient notation. It is intermediate in power between
most shell matching machinery and recursive find(1).

Each pattern is a regexp. The procedure searches from root, matching the
first-level files against pattern pat1, the second-level files against pat2, and
so forth. The list of files matching the whole path pattern is returned, in
sorted order. The matcher uses Spencer’s regular expression package.

The files . and .. are never matched. Other dot files are only matched if
the dot-files? argument is #t.

A given pati pattern is matched as a regexp, so it is not forced to match the
entire file name. E.g., pattern "t" matches any file containing a “t” in its
name, while pattern "^t$" matches only a file whose entire name is “t”.

The pati patterns can be more general than stated above.� A single pattern can specify multiple levels of the path by em-
bedding / characters within the pattern. For example, the pattern"a/b/c"gives a match equivalent to the list of patterns "a" "b" "c".

December 21, 1994 – 02 : 25 DRAFT 35

� A pati pattern can be a procedure, which is used as a match predicate.
It will be repeatedly called with a candidate file-name to test. The
file-name will be the entire path accumulated.

Some examples:(file-match "/usr/lib" #f "m$" "^tab") =)("/usr/lib/term/tab300" "/usr/lib/term/tab300-12" : : :)(file-match "." #f "^lex|parse|codegen$" "\\.c$") =)("lex/lex.c" "lex/lexinit.c" "lex/test.c""parse/actions.c" "parse/error.c" parse/test.c""codegen/io.c" "codegen/walk.c")(file-match "." #f "^lex|parse|codegen$/\\.c$");; The same.(file-match "." #f file-directory?);; Return all subdirs of the current directory.(file-match "/" #f file-directory?) =)("/bin" "/dev" "/etc" "/tmp" "/usr");; All subdirs of root.(file-match "." #f "\\.c");; All the C files in my directory.(define (ext extension)(� (fn) (string-suffix? fn extension)))(define (true . x) #t)(file-match "." #f "./\\.c")(file-match "." #f "" "\\.c")(file-match "." #f true "\\.c")(file-match "." #f true (ext "c"));; All the C files of all my immediate subdirs.(file-match "." #f "lexer") =)("mylexer.c" "lexer.notes");; Compare with (glob "lexer"), above.
Note that when root is the current working directory ("."), when it is con-
verted to directory form, it becomes "", and doesn’t show up in the result
file-names.

36 DRAFT December 21, 1994 – 02 : 25

It is regrettable that the regexp wild card char, “.”, is such an important
file name literal, as dot-file prefix and extension delimiter.(create-temp-file [prefix]) �! string procedureCreate-temp-filecreates a new temporary file and return its name. The
optional argument specifies the filename prefix to use, and defaults to"/usr/tmp/pid", where pid is the current process’ id. The procedure gen-
erates a sequence of filenames that have prefix as a common prefix, look-
ing for a filename that doesn’t already exist in the file system. When it
finds one, it creates it, with permission #o600 and returns the filename.
(The file permission can be changed to a more permissive permission withset-file-mode after being created).

This file is guaranteed to be brand new. No other process will have it
open. This procedure does not simply return a filename that is very likely
to be unused. It returns a filename that definitely did not exist at the mo-
ment create-temp-file created it.

It is not necessary for the process’ pid to be a part of the filename for the
uniqueness guarantees to hold. The pid component of the default prefix
simply serves to scatter the name searches into sparse regions, so that col-
lisions are less likely to occur. This speeds things up, but does not affect
correctness.

Security note: doing i/o to files created this way in /usr/tmp/ is not nec-
essarily secure. General users have write access to /usr/tmp/, so even if
an attacker cannot access the new temp file, he can delete it and replace
it with one of his own. A subsequent open of this filename will then give
you his file, to which he has access rights. There are several ways to defeat
this attack,

1. Use temp-file-iterate, below, to return the file descriptor allo-
cated when the file is opened. This will work if the file only needs
to be opened once.

2. If the file needs to be opened twice or more, create it in a protected
directory, , $HOME.

3. Ensure that /usr/tmp has its sticky bit set. This requires system ad-
ministrator privileges.

The actual default prefix used is controlled by the dynamic variable*temp-file-template*, and can be overridden for increased security.
See temp-file-iterate.(temp-file-iterate maker [template]) �! object+ procedure

December 21, 1994 – 02 : 25 DRAFT 37

temp-file-template string

This procedure can be used to perform certain atomic transactions on the
file system involving filenames. Some examples:� Linking a file to a fresh backup temp name.� Creating and opening an unused, secure temp file.� Creating an unused temporary directory.

This procedure uses template to generate a series of trial file names.
Template is a format control string, and defaults to"/usr/tmp/pid.~a"
where pid is the current process’ process id. File names are generated by
calling format to instantiate the template’s ~a field with a varying string.

Maker is a procedure which is serially called on each file name generated.
It must return at least one value; it may return multiple values. If the
first return value is #f or if maker raises the errno/exist errno excep-
tion, temp-file-iteratewill loop, generating a new file name and call-
ing maker again. If the first return value is true, the loop is terminated,
returning whatever value(s) maker returned.

After a number of unsuccessful trials, temp-file-iterate may give up
and signal an error.

Thus, if we ignore its optional prefix argument, create-temp-file could
be defined as:(define (create-temp-file)(let ((flags (bitwise-ior open/create open/exclusive)))(temp-file-iterate(� (f)(close (open-output-file f flags #o600))f))))
To rename a file to a temporary name:(temp-file-iterate (� (backup)(create-hard-link old-file backup)backup)".#temp.~a") ; Keep link in cwd.(delete-file old-file)
Recall that scsh reports syscall failure by raising an error exception, not by
returning an error code. This is critical to to this example—the program-
mer can assume that if the temp-file-iteratecall returns, it returns suc-
cessully. So the following delete-file call can be reliably invoked, safe
in the knowledge that the backup link has definitely been established.

38 DRAFT December 21, 1994 – 02 : 25

To create a unique temporary directory:(temp-file-iterate (� (dir) (create-directory dir) dir)"/usr/tmp/tempdir.~a")
Similar operations can be used to generate unique symlinks and fifos, or
to return values other than the new filename (e.g., an open file descriptor
or port).

The default template is in fact taken from the value of the dynamic vari-
able *temp-file-template*, which itself defaults to "/usr/tmp/pid.~a",
where pid is the scsh process’ pid. For increased security, a user may wish
to change the template to use a directory not allowing world write access
(e.g., his home directory).(temp-file-channel) �! [inp outp] procedure

This procedure can be used to provide an interprocess communications
channel with arbitrary-sized buffering. It returns two values, an input
port and an output port, both open on a new temp file. The temp file it-
self is deleted from the Unix file tree before temp-file-channel returns,
so the file is essentially unnamed, and its disk storage is reclaimed as soon
as the two ports are closed.Temp-file-channel is analogous to port-pipe with two exceptions:� If the writer process gets ahead of the reader process, it will not hang

waiting for some small pipe buffer to drain. It will simply buffer the
data on disk. This is good.� If the reader process gets ahead of the writer process, it will also not
hang waiting for data from the writer process. It will simply see and
report an end of file. This is bad.

In order to ensure that an end-of-file returned to the reader is legit-
imate, the reader and writer must serialise their i/o. The simplest
way to do this is for the reader to delay doing input until the writer
has completely finished doing output, or exited.

3.4 Processes(exec prog arg1 : : : argn) �! no return value procedure(exec-path prog arg1 : : : argn) �! no return value procedure(exec/env prog env arg1 : : : argn) �! no return value procedure(exec-path/env prog env arg1 : : : argn) �! no return value procedure

The : : : /env variants take an environment specified as a string!string al-
ist. An environment of #t is taken to mean the current process’ environ-
ment (i.e., the value of the external char **environ).

December 21, 1994 – 02 : 25 DRAFT 39

[Rationale: #f is a more convenient marker for the current environment
than #t, but would cause an ambiguity on Schemes that identify #f and().]

The path-searching variants search the directories in the list exec-path-list for the program. A path-search is not performed if the program
name contains a slash character—it is used directly. So a program with a
name like "bin/prog" always executes the program bin/prog in the cur-
rent working directory. See $path and exec-path-list, below.

Note that there is no analog to the C function execv(). To get the effect
just do(apply exec prog arglist)
All of these procedures flush buffered output and close unrevealed ports
before executing the new binary. To avoid flushing buffered output, see%exec below.

Note that the C exec() procedure allows the zeroth element of the argu-
ment vector to be different from the file being executed, e.g.char *argv[] = {"-", "-f", 0};exec("/bin/csh", argv, envp);
The scsh exec, exec-path, exec/env, and exec-path/env procedures do
not give this functionality—element 0 of the arg vector is always identi-
cal to the prog argument. In the rare case the user wishes to differentiate
these two items, he can use the low-level %exec and exec-path-search
procedures. These procedures never return under any circumstances. As
with any other system call, if there is an error, they raise an exception.(%exec prog arglist env) �! undefined procedure(exec-path-search fname pathlist) �! string procedure

Arglist is a list of arguments; env is either a string!string alist or #t. The
new program’s argv[0] will be taken from (car arglist), not from prog.
An environment of #t means the current process’ environment. %exec
does not flush buffered output (see flush-all-ports).exec-path-search searches the directories of pathlist looking for an oc-
currence of file fname. If no executable file is found, it returns #f. If fname
contains a slash character, the path search is short-circuited, but the pro-
cedure still checks to ensure that the file exists and is executable—if not,
it still returns #f.

See $path and exec-path-list, below.

All exec procedures, including %exec, coerce the prog and arg values to
strings using the usual conversion rules: numbers are converted to deci-
mal numerals, and symbols converted to their print-names.

40 DRAFT December 21, 1994 – 02 : 25

(exit [status]) �! no return value procedure(%exit [status]) �! no return value procedure

These procedures terminate the current process with a given exit status.
The default exit status is 0. The low-level %exit procedure immediately
terminates the process without flushing buffered output.(suspend) �! undefined procedure

Suspend the current process with a SIGSTOP signal.(fork [thunk]) �! pid or #f procedure(%fork [thunk]) �! pid or #f procedurefork with no arguments is like C fork(). In the parent process, it returns
the child’s pid. In the child process, it returns #f.fork with an argument only returns in the parent process, returning the
child pid. The child process calls thunk and then exits.fork flushes buffered output before forking, and sets the child process
to non-interactive. %fork does not perform this bookkeeping; it simply
forks.(fork/pipe [thunk]) �! pid or #f procedure(%fork/pipe [thunk]) �! pid or #f procedure

Like fork and %fork, but the parent and child communicate via a pipe
connecting the parent’s stdin to the child’s stdout. These procedures side-
effect the parent by changing his stdin.

In effect, fork/pipe splices a process into the data stream immediately
upstream of the current process. This is the basic function for creat-
ing pipelines. Long pipelines are built by performing a sequence offork/pipe calls. For example, to create a background two-process pipea | b, we write:(fork (� () (fork/pipe a) (b)))
which returns the pid of b’s process.

To create a background three-process pipe a | b | c, we write:(fork (� () (fork/pipe a)(fork/pipe b)(c)))
which returns the pid of c’s process.

December 21, 1994 – 02 : 25 DRAFT 41

(fork/pipe+ conns [thunk]) �! pid or #f procedure(%fork/pipe+ conns [thunk]) �! pid or #f procedure

Like fork/pipe, but the pipe connections between the child and parent
are specified by the connection list conns. See the(|+ conns pf1 : : : pfn)
process form for a description of connection lists.(wait [pid]) �! status [pid] procedure

Simply calling (wait)will wait for any child to die, then return the child’s
exit status and pid as multiple values.

With an argument, (wait pid)waits for that specific process, then returns
its exit status as a single value.

If a candidate child has already exited but not yet been waited for, wait
returns immediately.

Remark: Describe the way that wait reaps defunct processes into the
internal table. Document all the architected wait machinery.

When a child process dies, its parent can call the wait procedure to recover
the exit status of the child. The exit status is a small integer that can be encodes
information describing how the child terminated. The bit-level format of the
exit status is not defined by POSIX (you must use the following three functions
to decode one). However, if a child terminates normally with exit code 0, POSIX

does require wait to return an exit status that is exactly zero. So (zero? status)
is a correct way to test for non-error, normal termination.(status:exit-val status) �! integer or #f procedure(status:stop-sig status) �! integer or #f procedure(status:term-sig status) �! integer or #f procedure

For a given status value produced by calling wait, exactly one of these
routines will return a true value.

If the child process exited normally, status:exit-val returns the exit
code for the child process (i.e., the value the child passed to exit or re-
turned from main). Otherwise, this function returns false.

If the child process was suspended by a signal, status:stop-sig returns
the signal that suspended the child. Otherwise, this function returns false.

If the child process terminated abnormally, status:term-sig returns the
signal that terminated the child. Otherwise, this function returns false.(call-terminally thunk) �! no return value procedure

42 DRAFT December 21, 1994 – 02 : 25

call-terminallycalls its thunk. When the thunk returns, the process ex-
its. Although call-terminally could be implemented as(� (thunk) (thunk) (exit 0))
an implementation can take advantage of the fact that this procedure
never returns. For example, the runtime can start with a fresh stack and
also start with a fresh dynamic environment, where shadowed bindings
are discarded. This can allow the old stack and dynamic environment to
be collected (assuming this data is not reachable through some live con-
tinuation).

3.5 Process state(umask) �! fixnum procedure(set-umask perms) �! undefined procedure(with-umask* perms thunk) �! values of thunk procedure(with-umask perms . body) �! values of body syntax

The process’ current umask is retrieved with umask, and set with(set-umask perms). Calling with-umask*changes the umask to perms for
the duration of the call to thunk. If the program throws out of thunk by in-
voking a continuation, the umask is reset to its external value. If the pro-
gram throws back into thunk by calling a stored continuation, the umask
is restored to the perms value. The special form with-umask is equivalent
in effect to the procedure with-umask*, but does not require the program-
mer to explicitly wrap a (� () : : :) around the body of the code to be ex-
ecuted.(chdir [fname]) �! undefined procedure(cwd) �! string procedure(with-cwd* fname thunk) �! value(s) of thunk procedure(with-cwd fname . body) �! value(s) of body syntax

These forms manipulate the current working directory. The cwd can be
changed with chdir (although in most cases, with-cwd is preferrable). Ifchdir is called with no arguments, it changes the cwd to the user’s home
directory. The with-cwd*procedure calls thunkwith the cwd temporarily
set to fname; when thunk returns, or is exited in a non-local fashion (e.g., by
raising an exception or by invoking a continuation), the cwd is returned
to its original value. The special form with-cwd is simply syntactic sugar
for with-cwd*.

December 21, 1994 – 02 : 25 DRAFT 43

(pid) �! fixnum procedure(parent-pid) �! fixnum procedure(process-group [pid]) �! fixnum procedure(set-process-group [pid] pgrp) �! undefined procedure(pid) and (parent-pid) retrieve the process id for the current process
and its parent. If the OS supports process groups, a process’ process group
can be retrieved and set with process-group and set-process-group.
The affected process for these two procedures defaults to the current pro-
cess.(set-priority which who priority) �! undefined procedure(priority which who) �! fixnum procedure(nice [pid delta]) �! undefined procedure

These procedures set and access the priority of processes. I can’t remem-
ber how set-priorityandprioritywork, so no documentation, and be-
sides, they aren’t implemented yet, anyway.(user-login-name) �! string procedure(user-uid) �! fixnum procedure(user-effective-uid) �! fixnum procedure(user-gid) �! fixnum procedure(user-effective-gid) �! fixnum procedure(user-supplementary-gids) �! fixnum list procedure(set-uid uid) �! undefined procedure(set-gid gid) �! undefined procedure

These routines get and set the effective and real user and group ids. Theset-uid and set-gid routines correspond to the POSIX setuid() andsetgid() procedures.(process-times) �! [fixnum fixnum fixnum fixnum] procedure

Returns four values:
user CPU time in clock-ticks
system CPU time in clock-ticks
user CPU time of all descendant processes
system CPU time of all descendant processes

3.6 User and group db access

These procedures are used to access the user and group database (e.g., the ones
traditionally stored in /etc/passwd and /etc/group.)(user-info uid/name) �! record procedure

44 DRAFT December 21, 1994 – 02 : 25

Return a user-info record giving the recorded information for a particu-
lar user:(define-record user-infoname uid gid home-dir shell)
The uid/name argument is either an integer uid or a string user-name.(->uid uid/name) �! fixnum procedure(->username uid/name) �! string procedure

These two procedures coerce integer uid’s and user names to a particular
form.(group-info gid/name) �! record procedure

Return a group-info record giving the recorded information for a partic-
ular user:(define-record group-infoname gid members)
The gid/name argument is either an integer gid or a string user-name.

3.7 Accessing command-line argumentscommand-line-arguments string list(command-line) �! string list procedure

The list of strings command-line-arguments contains the arguments
passed to the scsh process on the command line. Calling (command-line)
returns the complete argv string list, including the program. So if we run
a shell script/usr/shivers/bin/myls -CF src
then command-line-arguments is("-CF" "src")
and (command-line) returns("/usr/shivers/bin/myls" "-CF" "src")command-line returns a fresh list each time it is called. In this way,
the programmer can get a fresh copy of the original argument list ifcommand-line-arguments has been modified or is lexically shadowed.

December 21, 1994 – 02 : 25 DRAFT 45

(arg arglist n [default]) �! string procedure(arg* arglist n [default-thunk]) �! string procedure(argv n [default]) �! string procedure

These procedures are useful for accessing arguments from argument lists.arg returns the nth element of arglist. The index is 1-based. If n is too large,
default is returned; if no default, then an error is signaled.arg* is similar, except that the default-thunk is called to generate the de-
fault value.(argv n) is simply (arg (command-line) (+ n 1)). The +1 offset en-
sures that the two forms(arg command-line-arguments n)(argv n)
return the same argument (assuming the user has not rebound or modi-
fied command-line-arguments).

Example:(if (null? command-line-arguments)(& (xterm -n ,host -title ,host-name ,(string-append "xterm_" host)))(let* ((progname (file-name-nondirectory (argv 1)))(title (string-append host ":" progname)))(& (xterm -n ,title-title ,title-e ,@command-line-arguments))))
A subtlety: there are two ways to invoke a scsh program. One is as a sim-
ple binary, the other is as an interpreted script via the Unix #! exec(2) fea-
ture. When a binary is running with scsh code, (command-line) returns
exactly the command line. However, when the scsh interpreter is invoked
with a scsh script specified on the command line, then the scsh startup
code doctors the list returned by (command-line) to make the shell script
itself be the program (i.e., (argv 0)), instead of the string "scsh", or what-
ever the real (argv 0) value is. In addition, scsh will delete scsh-specific
flags from the argument list. So if we have a shell script in file fullecho:#!/usr/local/bin/scsh -s!#(for-each (� (arg) (display arg) (display " "))(command-line))
and we run the programfullecho hello world

46 DRAFT December 21, 1994 – 02 : 25

the program will print outfullecho hello world
not /usr/local/bin/scsh -s fullecho hello world
This argument line processing ensures that if a scsh script is subse-
quently compiled into a standalone executable, that its semantics will be
unchanged—the arglist processing is invariant. In effect, the/usr/local/bin/scsh -s
is not part of the program; it’s a specification for the machine to execute
the program on, so it is not properly part of the program’s argument list.

Remark: The truth: The above discussion assumes some things that
don’t exist:� An implementation of scsh that allows scsh scripts to be compiled

to native code binaries.� A native code binary implementation of the scsh interpreter.

What there is right now is just the Scheme 48 virtual machine, invoked
with a scsh heap image.

3.8 System parameters(maximum-fds) �! fixnum procedure(page-size) �! fixnum procedure(system-name) �! string procedure

Only system-name is implemented.

3.9 Signal system

Signal numbers are bound to the variables signal/hup, signal/int, : : :(signal-process pid sig) �! undefined procedure(signal-procgroup prgrp sig) �! undefined procedure

These two procedures send signals to a specific process, and all the pro-
cesses in a specific process group, respectively.

December 21, 1994 – 02 : 25 DRAFT 47

I haven’t done signal handlers yet. Should be straightforward: a mechanism
to assign procedures to signals.(itimer ???) �! undefined procedure(pause-until-interrupt) �! undefined procedure(sleep secs) �! undefined procedure

Sleeping is defined, but we don’t offer a way to sleep for a more precise
interval (e.g., a microsecond timer), as this is not in POSIX.

3.10 Time

This time package, does not currently work with NeXTSTEP, as NeXTSTEP
does not provide a Posix-compliant time interface that will successfully link.

Scsh’s time system is fairly sophisticated, particularly with respect to its
careful treatment of time zones. However, casual users shouldn’t be intimi-
dated; most of the complexity is optional, and defaulting all the optional argu-
ments reduces the system to a simple interface.

3.10.1 Terminology

“UTC” and “UCT” stand for “universal coordinated time,” which is the official
name for what is colloquially referred to as “Greenwich Mean Time.”

Posix allows a single time zone to specify two different offsets from UTC: one
standard one, and one for “summer time.” Summer time is frequently some sort
of daylight savings time.

The scsh time package consistently uses this terminology: we never say
“gmt” or “dst;” we always say “utc” and “summer time.”

3.10.2 Basic data types

We have two types: time and date.

A time specifies an instant in the history of the universe. It is location and
time-zone independent. A time is a real value giving the number of elapsed
seconds since the Unix “epoch” (Midnight, January 1, 1970 UTC). Time values
provide arbitrary time resolution, limited only by the number system of the un-
derlying Scheme system.

A date is a name for an instant in time that is specified relative to some
location/time-zone in the world, e.g.:

Friday October 31, 1994 3:47:21 pm EST.

48 DRAFT December 21, 1994 – 02 : 25

Dates provide one-second resolution, and are expressed with the following
record type:(define-record date ; A Posix tm structseconds ; Seconds after the minute [0-59]minute ; Minutes after the hour [0-59]hour ; Hours since midnight [0-23]month-day ; Day of the month [1-31]month ; Months since January [0-11]year ; Years since 1900tz-name ; Time-zone name: #f or a string.tz-secs ; Time-zone offset: #f or an integer.summer? ; Summer (Daylight Savings) time in effect?week-day ; Days since Sunday [0-6]year-day) ; Days since Jan. 1 [0-365]
If the tz-secs field is given, it specifies the time-zone’s offset from UTC in sec-
onds. If it is specified, the tz-name and summer? fields are ignored when using
the date structure to determine a specific instant in time.

If the tz-name field is given, it is a time-zone string such as "EST" or"HKT" understood by the OS. Since Posix time-zone strings can specify dual
standard/summer time-zones (e.g., ”EST5EDT” specifies U.S. Eastern Stan-
dard/Eastern Daylight Time), the value of the summer? field is used to resolve
the amiguous boundary cases. For example, on the morning of the Fall day-
light savings change-over, 1:00am–2:00am happens twice. Hence the date 1:30
am on this morning can specify two different seconds; the summer? flag says
which one.

A date with tz-name = tz-secs = #f is a date that is specified in terms of
the system’s current time zone.

There is redundancy in the date data structure. For example, the year-day
field is redundant with the month-day and month fields. Either of these implies
the values of the week-dayfield. The summer? and tz-namefields are redundant
with the tz-secs field in terms of specifying an instant in time. This redun-
dancy is provided because consumers of dates may want it broken out in dif-
ferent ways. The scsh procedures that produce date records fill them out com-
pletely. However, when date records produced by the programmer are passed
to scsh procedures, the redundancy is resolved by ignoring some of the sec-
ondary fields. This is described for each procedure below.(make-date s min h mday mon y [tzn tzs summ? wday yday]) �! date procedure

When making a date record, the last five elements of the record are op-
tional, and default to #f, #f, #f, 0, and 0 respectively. This is useful when
creating a date record to pass as an argument to time.

December 21, 1994 – 02 : 25 DRAFT 49

3.10.3 Time zones

Several time procedures take time zones as arguments. When optional, the time
zone defaults to local time zone. Otherwise the time zone can be one of:#f Local time

Integer Seconds of offset from UTC. For example, New
York City is -18000 (-5 hours), San Francisco is
-28800 (-8 hours).

String A Posix time zone string understood by the OS
(i.e.., the sort of time zone assigned to the $TZ
environment variable).

An integer time zone gives the number of seconds you must add to UTC to get
time in that zone. It is not “seconds west” of UTC—that flips the sign.

To get UTC time, use a time zone of either 0 or "UCT0".

3.10.4 Procedures(time+ticks) �! [secs ticks] procedure(ticks/sec) �! real procedure

The current time, with sub-second resolution. Sub-second resolution is
not provided by Posix, but is available on many systems. The time is re-
turned as elapsed seconds since the Unix epoch, plus a number of sub-
second “ticks.” The length of a tick may vary from implementation to im-
plementation; it can be determined from (ticks/sec).

The system clock is not required to report time at the full resolution given
by (ticks/sec). For example, on BSD, time is reported at 1�s resolu-
tion, so (ticks/sec) is 1,000,000. That doesn’t mean the system clock has
micro-second resolution.

If the OS does not support sub-second resolution, the ticks value is always
0, and (ticks/sec) returns 1.

Remark: I chose to represent system clock resolution as ticks/sec in-
stead of sec/tick to increase the odds that the value could be repre-
sented as an exact integer, increasing efficiency and making it easier for
Scheme implementations that don’t have sophisticated numeric sup-
port to deal with the quantity.

You can convert seconds and ticks to seconds with the expression(+ secs (/ ticks (ticks/sec)))
Given that, why not have the fine-grain time procedure just return a
non-integer real for time? Following Common Lisp, I chose to allow
the system clock to report sub-second time in its own units to lower
the overhead of determining the time. This would be important for a

50 DRAFT December 21, 1994 – 02 : 25

system that wanted to precisely time the duration of some event. Time
stamps could be collected with little overhead, deferring the overhead
of precisely calculating with them until after collection.

This is all a bit academic for the Scheme 48 implementation, where we
determine time with a heavyweight system call, but it’s nice to plan for
the future.(date) �! date-record procedure(date [time tz]) �! date-record procedure

Simple (date) returns the current date, in the local time zone.

With the optional arguments, date converts the time to the date as spec-
ified by the time zone tz. Time defaults to the current time; tz defaults to
local time, and is as described in the time-zone section.

If the tz argument is an integer, the date’s tz-name field is a Posix time
zone of the form “UTC+hh:mm :ss ”; the trailing :mm :ss portion is deleted
if it is zeroes.(time) �! integer procedure(time [date]) �! integer procedure

Simple (time) returns the current time.

With the optional date argument, time converts a date to a time. Date de-
faults to the current date.

Note that the input date record is overconstrained. time ignores date’sweek-day and year-day fields. If the date’s tz-secs field is set, thetz-name and summer? fields are ignored.

If the tz-secs field is #f, then the time-zone is taken from the tz-name
field. A false tz-name means the system’s current time zone. When cal-
culating with time-zones, the date’s summer? field is used to resolve am-
biguities:#f Resolve an ambiguous time in favor of non-summer time.

true Resolve an ambiguous time in favor of summer time.
This is useful in boundary cases during the change-over. For example, in
the Fall, when US daylight savings time changes over at 2:00 am, 1:30 am
happens twice—it names two instants in time, an hour apart.

Outside of these boundary cases, the summer? flag is ignored. For ex-
ample, if the standard/summer change-overs happen in the Fall and the
Spring, then the value of summer? is ignored for a January or July date. A
January date would be resolved with standard time, and a July date with
summer time, regardless of the summer? value.

The summer? flag is also ignored if the time zone doesn’t have a summer
time—for example, simple UTC.

December 21, 1994 – 02 : 25 DRAFT 51

(date->string date) �! string procedure(format-date fmt date) �! string procedureDate->string formats the date as a 24-character string of the form:
Sun Sep 16 01:03:52 1973Format-date formats the date according to the format string fmt. The for-

mat string is copied verbatim, except that tilde characters indicate conver-
sion specifiers that are replaced by fields from the date record. Figure 3.1
gives the full set of conversion specifiers supported by format-date.(fill-in-date! date) �! date procedure

This procedure fills in missing, redundant slots in a date record. In de-
creasing order of priority:� year, month, month-day) year-day

If the year, month, and month-day fields are all defined (are all inte-
gers), the year-day field is set to the corresponding value.� year, year-day) month, month-day
If the month and month-day fields aren’t set, but the year andyear-day fields are set, then month and month-day are calculated.� year, month, month-day, year-day) week-day
If either of the above rules is able to determine what day it is, theweek-day field is then set.� tz-secs) tz-name
If tz-secs is defined, but tz-name is not, it is assigned a time-zone
name of the form “UTC+hh:mm:ss ”; the trailing :mm:ss portion is
deleted if it is zeroes.� tz-name, date, summer?) tz-secs, summer?
If the date information is provided up to second resolution, tz-name
is also provided, and tz-secs is not set, then tz-secs and summer?
are set to their correct values. Summer-time ambiguities are resolved
using the original value of summer?. If the time zone doesn’t have a
summer time variant, then summer? is set to #f.� local time, date, summer?) tz-name, tz-secs, summer?
If the date information is provided up to second resolution, but no
time zone information is provided (both tz-name and tz-secs aren’t
set), then we proceed as in the above case, except the system’s cur-
rent time zone is used.

These rules allow one particular ambiguity to escape: if both tz-name andtz-secs are set, they are not brought into agreement. It isn’t clear how to
do this, nor is it clear which one should take precedence.

Oops: fill-in-date! isn’t implemented yet.

52 DRAFT December 21, 1994 – 02 : 25

~~ Converted to the ~ character.~a abbreviated weekday name~A full weekday name~b abbreviated month name~B full month name~c time and date using the time and date representation for the locale
(~X ~x)~d day of the month as a decimal number (01-31)~H hour based on a 24-hour clock as a decimal number (00-23)~I hour based on a 12-hour clock as a decimal number (01-12)~j day of the year as a decimal number (001-366)~m month as a decimal number (01-12)~M minute as a decimal number (00-59)~p AM/PM designation associated with a 12-hour clock~S second as a decimal number (00-61)~U week number of the year; Sunday is first day of week (00-53)~w weekday as a decimal number (0-6), where Sunday is 0~W week number of the year; Monday is first day of week (00-53)~x date using the date representation for the locale~X time using the time representation for the locale~y year without century (00-99)~Y year with century (e.g.1990)~Z time zone name or abbreviation, or no characters if no time zone is
determinable

Figure 3.1: format-date conversion specifiers

December 21, 1994 – 02 : 25 DRAFT 53

3.11 Environment variables(setenv var val) �! undefined procedure(getenv var) �! string procedure

These functions get and set the process environment, stored in the exter-
nal C variable char **environ. An environment variable var is a string.
If an environment variable is set to a string val, then the process’ global
environment structure is altered with an entry of the form "var=val". If
val is #f, then any entry for var is deleted.(env->alist) �! string!string alist procedure

The env->alist procedure converts the entire environment into an alist,
e.g., (("TERM" . "vt100")("SHELL" . "/bin/csh")("EDITOR" . "emacs"): : :)(alist->env alist) �! undefined procedure

Alist must be an alist whose keys are all strings, and whose values are all
either strings or string lists. String lists are converted to colon lists (see be-
low). The alist is installed as the current Unix environment (i.e., converted
to a null-terminated C vector of "var=val" strings which is assigned to the
global char **environ).

The following three functions help the programmer manipulate alist tables
in some generally useful ways. They are all defined using equal? for key com-
parison.(alist-delete key alist) �! alist procedure

Delete any entry labelled by value key.(alist-update key val alist) �! alist procedure

Delete key from alist, then cons on a (key . val) entry.(alist-compress alist) �! alist procedure

Compresses alist by removing shadowed entries. Example:

54 DRAFT December 21, 1994 – 02 : 25

;;; Shadowed (1 . c) entry removed.(alist-compress '((1 . a) (2 . b) (1 . c) (3 . d)))=) ((1 . a) (2 . b) (3 . d))(with-env* env-alist-delta thunk) �! value(s) of thunk procedure(with-total-env* env-alist thunk) �! value(s) of thunk procedure

These procedures call thunk in the context of an altered environment.
They return whatever values thunk returns. Non-local returns restore the
environment to its outer value; throwing back into the thunk by invoking
a stored continuation restores the environment back to its inner value.

The env-alist-delta argument specifies a modification to the current environ-
ment—thunk’s environment is the original environment overridden with
the bindings specified by the alist delta.

The env-alist argument specifies a complete environment that is installed
for thunk.(with-env env-alist-delta . body) �! value(s) of body syntax(with-total-env env-alist . body) �! value(s) of body syntax

These special forms provide syntactic sugar for with-env* and with-total-env*. The env alists are not evaluated positions, but are implicitly
backquoted. In this way, they tend to resemble binding lists for let andlet* forms.

Example: These four pieces of code all run the mailer with special $TERM and$EDITOR values.(with-env (("TERM" . "xterm") ("EDITOR" . ,my-editor))(run (mail shivers@lcs.mit.edu)))(with-env* `(("TERM" . "xterm") ("EDITOR" . ,my-editor))(� () (run (mail shivers@csd.hku.hk))))(run (begin (setenv "TERM" "xterm") ; Env mutation happens(setenv "EDITOR" my-editor) ; in the subshell.(exec-epf (mail shivers@research.att.com))));; In this example, we compute an alternate environment ENV2;; as an alist, and install it with an explicit call to the;; EXEC-PATH/ENV procedure.(let* ((env (env->alist)) ; Get the current environment,(env1 (alist-update env "TERM" "xterm")) ; and compute(env2 (alist-update env1 "EDITOR" my-editor))) ; the new env.(run (begin (exec-path/env "mail" env2 "shivers@cs.cmu.edu"))))
December 21, 1994 – 02 : 25 DRAFT 55

3.11.1 Path lists and colon lists

Environment variables such as $PATH encode a list of strings by separating the
list elements with colon delimiters. Once parsed into actual lists, these ordered
lists can be manipulated with the following two functions. To convert between
the colon-separated string encoding and the list-of-strings representation, see
the field-reader and join-strings functions in section 6.1.

Remark: An earlier release of scsh provided the split-colon-list andstring-list->colon-list functions. These have been removed from scsh,
and are replaced by the more general parsers and unparsers of the field-
reader module.(add-before elt before list) �! list procedure(add-after elt after list) �! list procedure

These functions are for modifying search-path lists, where element order
is significant.add-before adds elt to the list immediately before the first occurrence of
before in the list. If before is not in the list, elt is added to the end of the list.add-after is similar: elt is added after the last occurrence of after. If after
is not found, elt is added to the beginning of the list.

Neither function destructively alters the original path-list. The result may
share structure with the original list. Both functions use equal? for com-
paring elements.

3.11.2 $USER, $HOME, and $PATH
Like sh and unlike csh, scsh has no interactive dependencies on environment
variables. It does, however, initialise certain internal values at startup time from
the initial process environment, in particular $HOME and $PATH. Scsh never uses$USER at all. It computes (user-login-name) from the system call (user-uid).home-directory stringexec-path-list string list

Scsh accesses $HOME at start-up time, and stores the value in the global
variable home-directory. It uses this value for ~ lookups and for return-
ing to home on (chdir).

Scsh accesses $PATH at start-up time, colon-splits the path list, and stores
the value in the global variable exec-path-list. This list is used forexec-path and exec-path/env searches.

56 DRAFT December 21, 1994 – 02 : 25

Chapter 4

Networking

The Scheme Shell provides a BSD-style sockets interface. There is not an offi-
cial standard for a network interface for scsh to adopt (this is the subject of the
forthcoming Posix.8 standard). However, Berkeley sockets are a de facto stan-
dard, being found on most Unix workstations and PC operating systems.

Future releases of scsh will contain more high-level support for networking
applications. We have Scheme implementations for the ftp, telnet, smtp, finger,
and http protocols, as well as an html parser. When this code is included in a fu-
ture release, this chapter will describe the interfaces. We are also contemplating
a tail-recursive RPC mechanism, but have done no development work.

4.1 High-level interface

For convenience, and too avoid some of the messy details of the socket interface,
we provide a high level socket interface. These routines attempt to make it easy
to write simple clients and servers without having to think of many of the de-
tails of initiating socket connections. We welcome suggested improvements to
this interface, including better names, which right now are solely descriptions
of the procedure’s action.. This might be fine for people who already under-
stand sockets, but does not help the new networking programmer.(socket-connect protocol-family socket-type . args) �! socket proceduresocket-connect is intended for creating client applications.

protocol-family is specified as either the protocol-family/internet
or protocol-family/unix. socket-type is specified as eithersocket-type/stream or socket-type/datagram. See socket for a
more complete description of these terms.

December 21, 1994 – 02 : 25 DRAFT 57

The variable args list is meant to specify protocol family specific informa-
tion. For Internet sockets, this consists of two arguments: a host name and
a port number. For Unix sockets, this consists of a pathname.socket-connect returns a socketwhich can be used for input and output
from a remote server. See socket for a description of the socket record.(bind-listen-accept-loop protocol-family proc arg) �! does-not-return procedurebind-listen-accept-loop is intended for creating server applications.
protocol-family is specified as either the protocol-family/internet orprotocol-family/unix. proc is a procedure of two arguments: a socket
and a socket-address. arg specifies a port number for Internet sockets or a
pathname for Unix sockets. See socket for a more complete description
of these terms.

proc is called with a socket and a socket address each time there is a con-
nection from a client application. The socket allows communications with
the client. The socket address specifies the address of the remote client.

This procedure does not return, but loops indefinitely accepting connec-
tions from client programs.

4.2 Sockets(create-socket protocol-family type [protocol]) �! socket procedure(create-socket-pair type) �! [socket1 socket2] procedure(close-socket socket) �! undefined procedure

A socket is one end of a network connection. Three specific properties of
sockets are specified at creation time: the protocol-family, type, and pro-
tocol.

The protocol-family specifies the protocol family to be used with the socket.
This also determines the address family of socket addresses, which are de-
scribed in more detail below. Scsh currently supports the Unix internal
protocols and the Internet protocols using the following constants:protocol-family/unspecifiedprotocol-family/unixprotocol-family/internet
The type specifies the style of communication. Examples that your oper-
ating system probably provides are stream and datagram sockets. Others
maybe available depending on your system. Typical values are:

58 DRAFT December 21, 1994 – 02 : 25

socket-type/streamsocket-type/datagramsocket-type/raw
The protocol specifies a particular protocol to use within a protocol family
and type. Usually only one choice exists, but it’s probably safest to set this
explicitly. See the protocol database routines for information on looking
up protocol constants.

New sockets are typically created with create-socket. However,create-socket-pair can also be used to create a pair of connected sock-
ets in the protocol-family/unixprotocol-family. The value of a returned
socket is a socket record, defined to have the following structure:(define-record socketfamily ; protocol familyinport ; input-portoutport) ; output-port
The family specifies the protocol family of the socket. The inport andoutport fields are ports that can be used for input and output, respec-
tively. For a stream socket, they are only usable after a connection has
been established via connect-socketor accept-connection. For a data-
gram socket, outport can be immediately using send-message, and inport
can be used after bind has created a local address.close-socketprovides a convenient way to close a socket’s port. It is pre-
ferred to explicitly closing the inport and outport because using close on
sockets is not currently portable across operating systems.

4.3 Socket addresses

The format of a socket-address depends on the address family of the socket.
Address-family-specific routines are provided to convert protocol-specific ad-
dresses to socket addresses. The value returned by these routines is a socket-
address record, defined to have the following visible structure:(define-record socket-addressfamily) ; address family

The family is one of the following constants:address-family/unspecifiedaddress-family/unixaddress-family/internet
December 21, 1994 – 02 : 25 DRAFT 59

(unix-address->socket-address pathname) �! socket-address procedureunix-address->socket-address returns a socket-address based on the
string pathname. There is a system dependent limit on the length of
pathname.(internet-address->socket-address host-address service-port) �! socket-address procedureinternet-address->socket-addressreturns a socket-address based on an
integer host-address and an integer service-port. Besides being a 32-bit host
address, an Internet host address can also be one of the following con-
stants:internet-address/anyinternet-address/loopbackinternet-address/broadcast
The use of internet-address/any is described below in bind-socket.internet-address/loopback is an address that always specifies the lo-
cal machine. internet-address/broadcast is used for network broad-
cast communications.

For information on obtaining a host’s address, see the host-info func-
tion.(socket-address->unix-address socket-address) �! pathname procedure(socket-address->internet-address socket-address) �! [host-address service-port] procedure

The routines socket-address->internet-address andsocket-address->unix-address return the address-family-specific
addresses. Be aware that most implementations don’t correctly re-
turn anything more than an empty string for addresses in the Unix
address-family.

4.4 Socket primitives

The procedures in this section are presented in the order in which a typical pro-
gram will use them. Consult a text on network systems programming for more
information on sockets. 1 The last two tutorials are freely available as part of1Some recommended ones are:� “Unix Network Programming” by W. Richard Stevens� “An Introductory 4.3BSD Interprocess Communication Tutorial.” (reprinted in UNIX Pro-

grammer’s Supplementary Documents Volume 1, PS1:7)� “An Advanced 4.3BSD Interprocess Communication Tutorial.” (reprinted in UNIX Pro-
grammer’s Supplementary Documents Volume 1, PS1:8)

60 DRAFT December 21, 1994 – 02 : 25

BSD. In the absence of these, your Unix manual pages for socket might be a
good starting point for information.(connect-socket socket socket-address) �! undefined procedureconnect-socket sets up a connection from a socket to a remote

socket-address. A connection has different meanings depending on
the socket type. A stream socket must be connected before use. A
datagram socket can be connected multiple times, but need not be con-
nected at all if the remote address is specified with each send-message,
described below. Also, datagram sockets may be disassociated from a
remote address by connecting to a null remote address.(bind-socket socket socket-address) �! undefined procedurebind-socket assigns a certain local socket-address to a socket. Binding a
socket reserves the local address. To receive connections after binding the
socket, use listen-socket for stream sockets and receive-message for
datagram sockets.

Binding an Internet socket with a host address of internet-address/any
indicates that the caller does not care to specify from which local network
interface connections are received. Binding an Internet socket with a ser-
vice port number of zero indicates that the caller has no preference as to
the port number assigned.

Binding a socket in the Unix address family creates a socket special file in
the file system that must be deleted before the address can be reused. Seedelete-file.(listen-socket socket backlog) �! undefined procedurelisten-socket allows a stream socket to start receiving connections, al-
lowing a queue of up to backlog connection requests. Queued connections
may be accepted by accept-connection.(accept-connection socket) �! [new-socket socket-address] procedureaccept-connection receives a connection on a socket, returning a new
socket that can be used for this connection and the remote socket address
associated with the connection.(socket-local-address socket) �! socket-address procedure(socket-remote-address socket) �! socket-address procedure

Sockets can be associated with a local address or a remote address or both.socket-local-address returns the local socket-address record associated
with socket. socket-remote-address returns the remote socket-address
record associated with socket.

December 21, 1994 – 02 : 25 DRAFT 61

(shutdown-socket socket how-to) �! undefined procedureshutdown-socket shuts down part of a full-duplex socket. The method
of shutting done is specified by the how-to argument, one of:shutdown/receivesshutdown/sendsshutdown/sends+receives

4.5 Performing input and output on sockets(receive-message socket length [flags]) �! [string-or-#fsocket-address] procedure(receive-message! socket string [start] [end] [flags]) �! [count-or-#fsocket-address] procedure(receive-message/partial socket length [flags]) �! [string-or-#fsocket-address] procedure(receive-message!/partial socket string [start] [end] [flags]) �! [count-or-#fsocket-address] procedur(send-message socket string [start] [end] [flags] [socket-address]) �! undefined procedure(send-message/partial socket string [start] [end] [flags] [socket-address]) �! count procedure

For most uses, standard input and output routines such as read-string
and write-string should suffice. However, in some cases an extended
interface is required. The receive-message and send-message calls par-
allel the read-string and write-string calls with a similar naming
scheme.

One additional feature of these routines is that receive-message re-
turns the remote socket-address and send-message takes an optional remotesocket-address. This allows a program to know the source of input from
a datagram socket and to use a datagram socket for output without first
connecting it.

All of these procedures take an optional flags field. This argument is an
integer bit-mask, composed by or’ing together the following constants:message/out-of-bandmessage/peekmessage/dont-route
See read-stringand write-string for a more detailed description of the
arguments and return values.

62 DRAFT December 21, 1994 – 02 : 25

4.6 Socket options(socket-option socket level option) �! value procedure(set-socket-option socket level option value) �! undefined proceduresocket-option and set-socket-option allow the inspection and modi-
fication, respectively, of several options available on sockets. The level ar-
gument specifies what protocol level is to be examined or affected. A level
of level/socket specifies the highest possible level that is available on all
socket types. A specific protocol number can also be used as provided byprotocol-info, described below.

There are several different classes of socket options. The first class con-
sists of boolean options which can be either true or false. Examples of this
option type are:socket/debugsocket/accept-connectsocket/reuse-addresssocket/keep-alivesocket/dont-routesocket/broadcastsocket/use-loop-backsocket/oob-inlinesocket/use-privilegedsocket/cant-signaltcp/no-delay
Value options are another category of socket options. Options of this type
are an integer value. Examples of this option type are:socket/send-buffersocket/receive-buffersocket/send-low-watersocket/receive-low-watersocket/errorsocket/typeip/time-to-livetcp/max-segment
A third option type specifies how long for data to linger after a socket has
been closed. There is only one option of this type: socket/linger. It is
set with either #fto disable it or an integer number of seconds to linger
and returns a value of the same type upon inspection.

The fourth and final option type of this time is a timeout option.
There are two examples of this option type: socket/send-timeout and

December 21, 1994 – 02 : 25 DRAFT 63

socket/receive-timeout. These are set with a real number of microsec-
onds resolution and returns a value of the same type upon inspection.

4.7 Database-information entries(host-info name-or-socket-address) �! host-info procedure(network-info name-or-socket-address) �! network-info procedure(service-info name-or-number [protocol-name]) �! service-info procedure(protocol-info name-or-number) �! protocol-info procedurehost-info allows a program to look up a host entry based on either its
string name or socket-address. The value returned by this routine is a host-
info record, defined to have the following structure:(define-record host-infoname ; Host namealiases ; Alternative namesaddresses) ; Host addresseshost-info could fail and raise an error for one of the following reasons:herror/host-not-foundherror/try-againherror/no-recoveryherror/no-dataherror/no-addressnetwork-info allows a program to look up a network entry based on ei-
ther its string name or socket-address. The value returned by this routine is
a network-info record, defined to have the following structure:(define-record network-infoname ; Network namealiases ; Alternative namesnet) ; Network numberservice-info allows a program to look up a service entry based on ei-
ther its string name or integer port. The value returned by this routine is a
service-info record, defined to have the following structure:(define-record service-infoname ; Service namealiases ; Alternative namesport ; Port numberprotocol) ; Protocol name

64 DRAFT December 21, 1994 – 02 : 25

protocol-infoallows a program to look up a protocol entry based on ei-
ther its string name or integer number. The value returned by this routine
is a protocol-info record, defined to have the following structure:(define-record protocol-infoname ; Protocol namealiases ; Alternative namesnumber) ; Protocol number)

December 21, 1994 – 02 : 25 DRAFT 65

Chapter 5

Strings and characters

Scsh provides a set of procedures for processing strings and characters. The
procedures provided match regular expressions, search strings, parse file-
names, and manipulate sets of characters.

Also see chapter 6 on record I/O, field parsing, and the awk loop. The pro-
cedures documented there allow you to read character-delimited records from
ports, use regular expressions to split the records into fields (for example, split-
ting a string at every occurrence of colon or white-space), and loop over streams
of these records in a convenient way.

5.1 String manipulation

Strings are the basic communication medium for Unix processes, so a shell lan-
guage must have reasonable facilities for manipulating them.

5.1.1 Regular expressions

The following functions perform regular expression matching. The code uses
Henry Spencer’s regular expression package.(string-match regexp string [start]) �! match or false procedure

Search string starting at position start, looking for a match for regexp. If a
match is found, return a match structure describing the match, otherwise#f. Start defaults to 0.(regexp-match? obj) �! boolean procedure

66 DRAFT December 21, 1994 – 02 : 25

Is the object a regular expression match?(match:start match [match-number]) �! fixnum procedure

Returns the start position of the match denoted by match-number The
whole regexp is 0. Each further number represents positions enclosed by(: : :) sections. Match-number defaults to 0.(match:end match [match-number]) �! fixnum procedure

Returns the end position of the match denoted by match-number.
Match-number defaults to 0 (the whole match).(match:substring match [match-number]) �! string procedure

Returns the substring matched by match match-number. Match-number de-
faults to 0 (the whole match).

Remark: What do these guys do when there is no match corresponding
to match-number? Return #f or signal error? #f probably best.

Regular expression matching compiles patterns into special data structures
which can be efficiently used to match against strings. The overhead of com-
piling patterns that will be used for multiple searches can be avoided by these
lower-level routines:(make-regexp str) �! re procedure

Generate a compiled regular expression from the given string.(regexp? obj) �! boolean procedure

Is the object a regular expression?(regexp-exec regexp str [start]) �! match or false procedure

Apply the regular expression regexp to the string str starting at position
start. If the match succeeds it returns a regexp-match, otherwise #f. Start
defaults to 0.

Remark: The truth: S48 doesn’t have the facilities for extending the
garbage collector to malloc’d C storage (unlike elk). So we do not really ex-
port regular expression compilation. What we currently do is this:

December 21, 1994 – 02 : 25 DRAFT 67

(define regexp? string?)(define (make-regexp str) str)(define (regexp-exec regexp str [start])(string-match regexp str [start]))
This could be improved upon in another implementation (like elk).(regexp-quote str) �! string procedure

Returns a regular expression that matches the string str exactly. In other
words, it quotes the regular expression, prepending backslashes to all the
special regexp characters in str.(regexp-quote "*Hello* world.")=) "*Hello* world\."
Oops: Scsh regex matching doesn’t currently flag un-matched subex-
pressions in the match:begin, match:end, and match:substring functions.
This needs to be fixed.

5.1.2 Other string manipulation facilities(index string char [start]) �! fixnum or false procedure(rindex string char [start]) �! fixnum or false procedure

These procedures search through string looking for an occurrence of char-
acter char. index searches left-to-right; rindex searches right-to-left.index returns the smallest index i of string greater than or equal to start
such that string[i] = char. The default for start is zero. If there is no such
match, index returns false.rindex returns the largest index i of string less than start such that
string[i] = char. The default for start is (string-length string). If there
is no such match, rindex returns false.

I should probably snarf all the MIT Scheme string functions, and stick them
in a package. Unix programs need to mung character strings a lot.

MIT string match commands:[sub]string-match-forward,backward[-ci][sub]string-prefix,suffix[-ci]?[sub]string-find-next,previous-char[-ci][sub]string-find-next,previous-char-in-set[sub]string-replace[!]: : : etc.
These are not currently provided.(substitute-env-vars fname) �! string procedure

68 DRAFT December 21, 1994 – 02 : 25

Replace occurrences of environment variables with their values. An en-
vironment variable is denoted by a dollar sign followed by alphanumeric
chars and underscores, or is surrounded by braces.(substitute-env-vars "$USER/.login")=) "shivers/.login"(substitute-env-vars "$fUSERg_log") =) "shivers_log"

5.1.3 Manipulating file-names

These procedures do not access the file-system at all; they merely operate on
file-name strings. Much of this structure is patterned after the gnu emacs de-
sign. Perhaps a more sophisticated system would be better, something like
the pathname abstractions of COMMON LISP or MIT Scheme. However, being
Unix-specific, we can be a little less general.

Terminology

These procedures carefully adhere to the POSIX standard for file-name resolu-
tion, which occasionally entails some slightly odd things. This section will de-
scribe these rules, and give some basic terminology.

A file-name is either the file-system root (“/”), or a series of slash-terminated
directory components, followed by a a file component. Root is the only file-
name that may end in slash. Some examples:

File name Dir components File componentsrc/des/main.c ("src" "des") "main.c"/src/des/main.c ("" "src" "des") "main.c"main.c () "main.c"
Note that the relative filename src/des/main.c and the absolute filename/src/des/main.c are distinguished by the presence of the root component ""

in the absolute path.

Multiple embedded slashes within a path have the same meaning as a sin-
gle slash. More than two leading slashes at the beginning of a path have the
same meaning as a single leading slash—they indicate that the file-name is an
absolute one, with the path leading from root. However, POSIX permits the OS
to give special meaning to two leading slashes. For this reason, the routines in
this section do not simplify two leading slashes to a single slash.

A file-name in directory form is either a file-name terminated by a slash, e.g.,
“/src/des/”, or the empty string, “”. The empty string corresponds to the cur-
rent working directory, who’s file-name is dot (“.”). Working backwards from

December 21, 1994 – 02 : 25 DRAFT 69

the append-a-slash rule, we extend the syntax of POSIX file-names to define the
empty string to be a file-name form of the root directory “/”. (However, “/” is
also acceptable as a file-name form for root.) So the empty string has two inter-
pretations: as a file-name form, it is the file-system root; as a directory form, it
is the current working directory. Slash is also an ambiguous form: / is both a
directory-form and a file-name form.

The directory form of a file-name is very rarely used. Almost all of the proce-
dures in scsh name directories by giving their file-name form (without the trail-
ing slash), not their directory form. So, you say “/usr/include”, and “.”, not
“/usr/include/” and “”. The sole exceptions are file-name-as-directory
and directory-as-file-name, whose jobs are to convert back-and-forth be-
tween these forms, and file-name-directory, whose job it is to split out the
directory portion of a file-name. However, most procedures that expect a di-
rectory argument will coerce a file-name in directory form to file-name form if
it does not have a trailing slash. Bear in mind that the ambiguous case, empty
string, will be interpreted in file-name form, i.e., as root.

Procedures(file-name-as-directory fname) �! string procedure

Convert a file-name to directory form. Basically, add a trailing slash if
needed:(file-name-as-directory "src/des") =) "src/des/"(file-name-as-directory "src/des/") =) "src/des/"., /, and "" are special:(file-name-as-directory ".") =) ""(file-name-as-directory "/") =) "/"(file-name-as-directory "") =) "/"(directory-as-file-name fname) �! string procedure

Convert a directory to a simple file-name. Basically, kill a trailing slash if
one is present:(directory-as-file-name "foo/bar/") =) "foo/bar"/ and "" are special:(directory-as-file-name "/") =) "/"(directory-as-file-name "") =) "." (i.e., the cwd)(file-name-absolute? fname) �! boolean procedure

70 DRAFT December 21, 1994 – 02 : 25

Does fname begin with a root or ~ component? (Recognising ~ as a home-
directory specification is an extension of POSIX rules.)(file-name-absolute? "/usr/shivers") =) #t(file-name-absolute? "src/des") =) #f(file-name-absolute? "~/src/des") =) #t

Non-obvious case:(file-name-absolute? "") =) #t (i.e., root)(file-name-directory fname) �! string or false procedure

Return the directory component of fname in directory form. If the file-
name is already in directory form, return it as-is.(file-name-directory "/usr/bdc") =) "/usr/"(file-name-directory "/usr/bdc/") =) "/usr/bdc/"(file-name-directory "bdc/.login") =) "bdc/"(file-name-directory "main.c") =) ""

Root has no directory component:(file-name-directory "/") =) ""(file-name-directory "") =) ""(file-name-nondirectory fname) �! string procedure

Return non-directory component of fname.(file-name-nondirectory "/usr/ian") =) "ian"(file-name-nondirectory "/usr/ian/") =) ""(file-name-nondirectory "ian/.login") =) ".login"(file-name-nondirectory "main.c") =) "main.c"(file-name-nondirectory "") =) ""(file-name-nondirectory "/") =) "/"(split-file-name fname) �! string list procedure

Split a file-name into its components.

December 21, 1994 – 02 : 25 DRAFT 71

(split-file-name "src/des/main.c")=) ("src" "des" "main.c")(split-file-name "/src/des/main.c")=) ("" "src" "des" "main.c")(split-file-name "main.c")=) ("main.c")(split-file-name "/")=) ("")(path-list->file-name path-list [dir]) �! string procedure

Inverse of split-file-name.(path-list->file-name '("src" "des" "main.c"))=) "src/des/main.c"(path-list->file-name '("" "src" "des" "main.c"))=) "/src/des/main.c"
Optional dir arg anchors relative path-lists:(path-list->file-name '("src" "des" "main.c")"/usr/shivers")=) "/usr/shivers/src/des/main.c"

The optional dir argument is usefully (cwd).(file-name-extension fname) �! string procedure

Return the file-name’s extension.(file-name-extension "main.c") =) ".c"(file-name-extension "main.c.old") =) ".old"(file-name-extension "/usr/shivers") =) ""
Weird cases:(file-name-extension "foo.") =) "."(file-name-extension "foo..") =) "."
Dot files are not extensions:(file-name-extension "/usr/shivers/.login") =) ""(file-name-sans-extension fname) �! string procedure

Return everything but the extension.

72 DRAFT December 21, 1994 – 02 : 25

(file-name-sans-extension "main.c") =) "main"(file-name-sans-extension "main.c.old") =) "main.c""(file-name-sans-extension "/usr/shivers")=) "/usr/shivers"
Weird cases:(file-name-sans-extension "foo.") =) "foo"(file-name-sans-extension "foo..") =) "foo."
Dot files are not extensions:(file-name-sans-extension "/usr/shivers/.login")=) "/usr/shivers/.login

Note that appending the results of file-name-extension and file-name-sans-extension in all cases produces the original file-name.(parse-file-name fname) �! [dir name extension] procedure

Let f be (file-name-nondirectory fname). This function returns the
three values:� (file-name-directory fname)� (file-name-sans-extension f))� (file-name-extension f)
The inverse of parse-file-name, in all cases, is string-append. The
boundary case of / was chosen to preserve this inverse.(replace-extension fname ext) �! string procedure

This procedure replaces fname’s extension with ext. It is exactly equivalent
to (string-append (file-name-sans-extension fname) ext)(simplify-file-name fname) �! string procedure

Removes leading and internal occurrences of dot. A trailing dot is left
alone, as the parent could be a symlink. Removes internal and trailing
double-slashes. A leading double-slash is left alone, in accordance with
POSIX. However, triple and more leading slashes are reduced to a single
slash, in accordance with POSIX. Double-dots (parent directory) are left
alone, in case they come after symlinks or appear in a /../machine/: : :
“super-root” form (which POSIX permits).

December 21, 1994 – 02 : 25 DRAFT 73

(resolve-file-name fname [dir]) �! string procedure� Do ~ expansion.� If dir is given, convert a relative file-name to an absolute file-name,
relative to directory dir.(expand-file-name fname [dir]) �! string procedure

Resolve and simplify the file-name.(home-dir [user]) �! string procedurehome-dir returns user’s home directory. User defaults to the current user.(home-dir) =) "/user1/lecturer/shivers"(home-dir "ctkwan") =) "/user0/research/ctkwan"(home-file [user] fname) �! string procedure

Returns file-name fname relative to user’s home directory; user defaults to
the current user.(home-file "man") =) "/usr/shivers/man"(home-file "fcmlau" "man") =) "/usr/fcmlau/man"

The general substitute-env-vars string procedure, defined in the previ-
ous section, is also frequently useful for expanding file-names.

5.2 ASCII encoding(char->ascii character) �! integer procedure(ascii->char integer) �! character procedure

These are identical to char->integerand integer->charexcept that they
use the ASCII encoding.

5.3 Character sets

Scsh provides a char-set type for expressing sets of characters. These sets are
used by some of the delimited input procedures (section 6.1). The character set
package that scsh uses was taken from Project Mac’s MIT Scheme.(char-set? x) �! boolean procedure

Returns true if the object x is a character set.

74 DRAFT December 21, 1994 – 02 : 25

5.3.1 Creating character sets(char-set char1: : :) �! char-set procedure

Return a character set containing the given characters.(chars->char-set chars) �! char-set procedure

Return a character set containing the characters in the list chars.(string->char-set s) �! char-set procedure

Return a character set containing the characters in the string s.(predicate->char-set pred) �! char-set procedure

Returns a character set containing every character c such that (pred c) re-
turns true.(ascii-range->char-set lower upper) �! char-set procedure

Returns a character set containing every character whose ASCII code lies
in the range [lower; upper] inclusive.

5.3.2 Querying character sets(char-set-members char-set) �! character-list procedure

This procedure returns a list of the members of char-set.(char-set-member? char char-set) �! boolean procedure

This procedure tests char for membership in set char-set.

5.3.3 Character set algebra(char-set-invert char-set) �! char-set procedure(char-set-union char-set1 char-set2) �! char-set procedure(char-set-intersection char-set1 char-set2) �! char-set procedure(char-set-difference char-set1 char-set2) �! char-set procedure

These procedures implement set complement, union, intersection, and
difference for character sets.

December 21, 1994 – 02 : 25 DRAFT 75

5.3.4 Standard character sets

Several character sets are predefined for convenience:char-set:upper-case A–Zchar-set:lower-case a–zchar-set:numeric 0–9char-set:whitespace space, newline, tab, linefeed, page, returnchar-set:not-whitespace Complement of char-set:whitespacechar-set:alphabetic A–Z and a–zchar-set:alphanumeric Alphabetic or numericchar-set:graphic Printing characters and space(char-upper-case? character) �! boolean procedure(char-lower-case? character) �! boolean procedure(char-numeric? character) �! boolean procedure(char-whitespace? character) �! boolean procedure(char-alphabetic? character) �! boolean procedure(char-alphanumeric? character) �! boolean procedure(char-graphic? character) �! boolean procedure

These predicates are defined in terms of the above character sets.

76 DRAFT December 21, 1994 – 02 : 25

Chapter 6

Awk, record I/O, and field
parsing

Unix programs frequently process streams of records, where each record is de-
limited by a newline, and records are broken into fields with other delimiters
(for example, the colon character in /etc/passwd). Scsh has procedures that al-
low the programmer to easily do this kind of processing. Scsh’s field parsers can
also be used to parse other kinds of delimited strings, such as colon-separated$PATH lists. These routines can be used with scsh’s awk loop construct to conve-
niently perform pattern-directed computation over streams of records.

6.1 Record I/O and field parsing

The procedures in this section are used to read records from I/O streams and
parse them into fields. A record is defined as text terminated by some delimiter
(usually a newline). A record can be split into fields by using regular expres-
sions in one of several ways: to match fields, to separate fields, or to terminate
fields. The field parsers can be applied to arbitrary strings (one common use
is splitting environment variables such as $PATH at colons into its component
elements).

6.1.1 Reading delimited strings

These procedures read in strings from ports delimited by characters belonging
to a specific set. See section 5.3 for information on character set manipulation.(read-delimited char-set [port]) �! string or eof procedure

December 21, 1994 – 02 : 25 DRAFT 77

Read until we encounter one of the chars in char-set or eof. The terminat-
ing character is not included in the string returned, nor is it removed from
the input stream; the next input operation will encounter it. If we get a
string back, then (eof-object? (peek-char)) tells if the string was ter-
minated by a delimiter or eof.

The char-set argument may be a charset, a string, a character, or a character
predicate; it is coerced to a charset.

This operation is likely to be implemented very efficiently. In the Scheme
48 implementation, the Unix port case is implemented directly in C, and
is much faster than the equivalent operation performed in Scheme withpeek-char and read-char.(read-delimited! char-set buf [port start end]) �! nchars or eof or #f procedure

A side-effecting variant of read-delimited.

The data is written into the string buf at the indices in the half-open in-
terval [start; end); the default interval is the whole string: start = 0 and
end = (string-length buf). The values of start and end must specify a
well-defined interval in str, i.e., 0 � start � end � (string-length buf).

It returns nbytes, the number of bytes read. If the buffer filled up without
a delimiter character being found, #f is returned. If the port is at eof when
the read starts, the eof object is returned.

If an integer is returned, then (eof-object (peek-char port)) tells if
the string was terminated by a delimiter or eof.

6.1.2 Reading records(record-reader [delims elide-delims? handle-delim]) �! procedure procedure

Returns a procedure that reads records from a port. The procedure is in-
voked as follows:(reader [port]) �! string or eof
A record is a sequence of characters terminated by one of the characters
in delims or eof. If elide-delims? is true, then a contiguous sequence of de-
limiter chars are taken as a single record delimiter. If elide-delims? is false,
then a delimiter char coming immediately after a delimiter char produces
an empty string record. The reader consumes the delimiting char(s) be-
fore returning from a read.

The delims set defaults to the set fnewlineg. It may be a charset, string,
character, or character predicate, and is coerced to a charset. The
elide-delims? flag defaults to #f.

78 DRAFT December 21, 1994 – 02 : 25

The handle-delim controls what is done with the record’s terminating de-
limiter.'trim Delimiters are trimmed. (The default)'split Reader returns delimiter string as a

second argument. If record is termi-
nated by EOF, then the eof object is re-
turned as this second argument.'concat The record and its delimiter are re-
turned as a single string.

The reader procedure returned takes one optional argument, the port
from which to read, which defaults to the current input port. It returns
a string or eof.(read-paragraph [port delimiter?]) �! string or eof procedure

This procedure skips blank lines, then reads text from a port until a blank
line or eof is found. A “blank line” is a (possibly empty) line composed
only of white space. If delimiter? is true, the terminating blank line is in-
cluded in the return string; it defaults to #f. When the delimiter is in-
cluded, (match-string "\n[\t]*\n$" paragraph) can be used to de-
termine if the paragraph was terminated by a blank line or by eof.

6.1.3 Parsing fields(field-splitter [regexp num-fields]) �! procedure procedure(infix-splitter [delim num-fields handle-delim]) �! procedure procedure(suffix-splitter [delim num-fields handle-delim]) �! procedure procedure(sloppy-suffix-splitter [delim num-fields handle-delim]) �! procedure procedure

These functions return a parser function that can be used as follows:(parser string [start]) �! string-list

The returned parsers split strings into fields defined by regular expres-
sions. You can parse by specifying a pattern that separates fields, a pattern
that terminates fields, or a pattern that matches fields:

Procedure Patternfield-splitter matches fieldsinfix-splitter separates fieldssuffix-splitter terminates fieldssloppy-suffix-splitter terminates fields

December 21, 1994 – 02 : 25 DRAFT 79

These parser generators are controlled by a range of options, so that you
can precisely specify what kind of parsing you want. However, these op-
tions default to reasonable values for general use.

Defaults:
delim = "[\t\n]+|$" (suffix delimiter: white space or eos)"[\t\n]+" (infix delimiter: white space)
re = "[^ \t\n]+" (non-white-space)
num-fields = #f (as many fields as possible)
handle-delim = 'trim (discard delimiter chars): : :which means: break the string at white space, discarding the white

space, and parse as many fields as possible.

The regular expression delim is used to match field delimiters. It can be
either a string or a compiled regexp structure (see the make-regexpproce-
dure). In the separator case, it defaults to a regular expression matching
white space; in the terminator case, it defaults to white space or end-of-
string.

The regular expression re is a regular expression used to match fields. It
defaults to non-white-space.

The boolean handle-delim determines what to do with delimiters.'trim Delimiters are thrown away after parsing. (default)'concat Delimiters are appended to the field preceding them.'split Delimiters are returned as separate elements in the field vector.

The num-fields argument used to create the parser specifies how many
fields to parse. If #f (the default), the procedure parses them all. If a pos-
itive integer n, exactly that many fields are parsed; it is an error if there
are more or fewer than n fields in the record. If num-fields is a negative in-
teger or zero, then jnj fields are parsed, and the remainder of the string is
returned in the last element of the field vector; it is an error if fewer thanjnj fields can be parsed.

The field parser produced is a procedure that can be employed as follows:(parse string [start]) =) string-list

The optional start argument (default 0) specifies where in the string to be-
gin the parse. It is an error if start > (string-length string).

The parsers returned by the four parser generators implement different
kinds of field parsing:field-splitter The regular expression specifies the actual field.suffix-splitter Delimiters are interpreted as element terminators. If

vertical-bar is the the delimiter, then the string "" is the empty record(), "foo|" produces a one-field record ("foo"), and "foo" is an er-
ror.

80 DRAFT December 21, 1994 – 02 : 25

The syntax of suffix-delimited records is:<record> ::= "" (Empty record)j <element> <delim><record>
It is an error if a non-empty record does not end with a delimiter.
To make the last delimiter optional, make sure the delimiter regexp
matches the end-of-string (regexp "$").infix-splitter Delimiters are interpreted as element separators. If
comma is the delimiter, then the string "foo," produces a two-field
record ("foo" "").

The syntax of infix-delimited records is:<record> ::= "" (Forced to be empty record)j <real-infix-record><real-infix-record> ::= <element> <delim><real-infix-record>j <element>
Note that separator semantics doesn’t really allow for empty records
– the straightforward grammar (i.e., <real-infix-record>) parses an
empty string as a singleton list whose one field is the empty string,(""), not as the empty record (). This is unfortunate, since it
means that infix string parsing doesn’t make string-append andvector-append isomorphic. For example,((infix-splitter ":") (string-append x ":" y))
doesn’t always equal(vector-append ((infix-splitter ":") x)((infix-splitter ":") y))
It fails when x or y are the empty string. Terminator semantics does
preserve a similar isomorphism.

However, separator semantics is frequently what other Unix soft-
ware uses, so to parse their strings, we need to use it. For example,
Unix $PATH lists have separator semantics. The path list "/bin:" is
broken up into ("/bin" ""), not ("/bin"). Comma-separated lists
should also be parsed this way.sloppy-suffix The same as the suffix case, except that the parser will
skip an initial delimiter string if the string begins with one instead
of parsing an initial empty field. This can be used, for example,
to field-split a sequence of English text at white-space boundaries,
where the string may begin or end with white space, by using regex"[\t]+|$". (But you would be better off using field-splitter in
this case.)

December 21, 1994 – 02 : 25 DRAFT 81

Record : suffix :|$ suffix : infix non-: field"" () () () ()":" ("") ("") ("" "") ()"foo:" ("foo") ("foo") ("foo" "") ("foo")":foo" error ("" "foo") ("" "foo") ("foo")"foo:bar" error ("foo" "bar") ("foo" "bar") ("foo" "bar")
Figure 6.1: Using different grammars to split records into fields.

Figure 6.1 shows how the different parser grammars split apart the same
strings. Having to choose between the different grammars requires you to de-
cide what you want, but at least you can be precise about what you are parsing.
Take fifteen seconds and think it out. Say what you mean; mean what you say.(join-strings string-list [delimiter grammar]) �! string procedure

This procedure is a simple unparser—it pastes strings together using the
delimiter string.

The grammar argument is one of the symbols infix (the default) orsuffix; it determines whether the delimiter string is used as a separator
or as a terminator.

The delimiter is the string used to delimit elements; it defaults to a single
space " ".

Example:(join-strings '("foo" "bar" "baz") ":")=) "foo:bar:baz"
6.1.4 Field readers(field-reader [field-parser rec-reader]) �! procedure procedure

This utility returns a procedure that reads records with field structure from a
port. The reader’s interface is designed to make it useful in the awk loop macro
(section 6.2). The reader is used as follows:(reader [port]) =) [raw-record parsed-record] or [eof ()]

When the reader is applied to an input port (default: the current input port),
it reads a record using rec-reader. If this record isn’t the eof object, it is parsed
with field-parser. These two values—the record, and its parsed representation—
are returned as multiple values from the reader.

When called at eof, the reader returns [eof-object ()].

82 DRAFT December 21, 1994 – 02 : 25

Although the record reader typically returns a string, and the field-parser
typically takes a string argument, this is not required. The record reader can
produce, and the field-parser consume, values of any type. However, the empty
list returned as the parsed value on eof is hardwired into the field reader.

For example, if port p is open on /etc/passwd, then((field-reader (infix-splitter ":" 7)) p)
returns two values:"dalbertz:mx3Uaqq0:107:22:David Albertz:/users/dalbertz:/bin/csh"("dalbertz" "mx3Uaqq0" "107" "22" "David Albertz" "/users/dalbertz""/bin/csh")
The field-parser defaults to the value of (field-splitter), a parser that picks
out sequences of non-white-space strings.

The rec-reader defaults to read-line.

Figure 6.2 shows field-reader being used to read different kinds of Unix
records.

6.1.5 Forward-progress guarantees and empty string matches

A loop that pulls text off a string by repeatedly matching a regexp against that
string can conceivably get stuck in an infinite loop if the regexp matches the
empty string. For example, the regexps ^, $, .*, and foo|[^f]* can all match
the empty string.

The routines in this package that iterate through strings with regular expres-
sions are careful to handle this empty-string case. If a regexp matches the empty
string, the next search starts, not from the end of the match (which in the empty
string case is also the beginning—that’s the problem), but from the next char-
acter over. This is the correct behaviour. Regexps match the longest possible
string at a given location, so if the regexp matched the empty string at locationi, then it is guaranteed it could not have matched a longer pattern starting with
character i. So we can safely begin our search for the next match at char i+ 1.

With this provision, every iteration through the loop makes some forward
progress, and the loop is guaranteed to terminate.

This has the effect you want with field parsing. For example, if you split a
string with the empty pattern, you will explode the string into its individual
characters:((suffix-splitter "") "foo") =) ("" "f" "o" "o")
However, even though this boundary case is handled correctly, we don’t rec-
ommend using it. Say what you mean—just use a field splitter:

December 21, 1994 – 02 : 25 DRAFT 83

;;; /etc/passwd reader(field-reader (infix-splitter ":" 7)); wandy:3xuncWdpKhR.:73:22:Wandy Saetan:/usr/wandy:/bin/csh;;; Two ls -l output readers(field-reader (infix-splitter "[\t]+" 8))(field-reader (infix-splitter "[\t]+" -7)); -rw-r--r-- 1 shivers 22880 Sep 24 12:45 scsh.scm;;; Internet hostname reader(field-reader (field-splitter "[^.]+")); stat.sinica.edu.tw;;; Internet IP address reader(field-reader (field-splitter "[^.]+" 4)); 18.24.0.241;;; Line of integers(let ((parser (field-splitter "[+-]?[0-9]+")))(field-reader (� (s) (map string->number (parser s)))); 18 24 0 241;;; Same as above.(let ((reader (field-reader (field-splitter "[+-]?[0-9]+"))))(� maybe-port (map string->number (apply reader maybe-port)))); Yale beat harvard 26 to 7.
Figure 6.2: Some examples of field-reader

84 DRAFT December 21, 1994 – 02 : 25

((field-splitter ".") "foo") =) ("f" "o" "o")
Or, more efficiently,((� (s) (map string (string->list s))) "foo")
6.1.6 Reader limitations

Since all of the readers in this package require the ability to peek ahead one char
in the input stream, they cannot be applied to raw integer file descriptors, only
Scheme input ports. This is because Unix doesn’t support peeking ahead into
input streams.

6.2 Awk

Scsh provides a loop macro and a set of field parsers that can be used to perform
text processing very similar to the Awk programming language. These basic
functionality of Awk is factored in scsh into its component parts. The control
structure is provided by the awk loop macro; the text I/O and parsers are pro-
vided by the field-reader subroutine library (section 6.1). This factoring allows
the programmer to compose the basic loop structure with any parser or input
mechanism at all. If the parsers provided by the field-reader package are insuf-
ficient, the programmer can write a custom parser in Scheme and use it with
equal ease in the awk framework.

Awk-in-scheme is given by a loop macro called awk. It looks like this:(awk <next-record> <record&field-vars>
[<counter>] <state-var-decls><clause1> : : :)

The body of the loop is a series of clauses, each one representing a kind of
condition/action pair. The loop repeatedly reads a record, and then executes
each clause whose condition is satisfied by the record.

Here’s an example that reads lines from port p and prints the line number
and line of every line containing the string “Church-Rosser”:(awk (read-line) (ln) lineno ()("Church-Rosser" (format #t "~d: ~s~%" lineno ln)))
This example has just one clause in the loop body, the one that tests for matches
against the regular expression “Church-Rosser”.

The <next-record> form is an expression that is evaluated each time through
the loop to produce a record to process. This expression can return multiple

December 21, 1994 – 02 : 25 DRAFT 85

values; these values are bound to the variables given in the <record&field-vars>
list of variables. The first value returned is assumed to be the record; when it is
the end-of-file object, the loop terminates.

For example, let’s suppose we want to read items from etc./etc/password,
and we use the field-reader procedure to define a record parser for/etc/passwd entries:(define read-passwd (field-reader (infix-splitter ":" 7)))
binds read-passwd to a procedure that reads in a line of text when it is called,
and splits the text at colons. It returns two values: the entire line read,
and a seven-element list of the split-out fields. (See section 6.1 for more onfield-reader and infix-splitter.)

So if the <next-record> form in an awk expression is (read-passwd), then<record&field-vars> must be a list of two variables, e.g.,(record field-vec)
since read-passwd returns two values.

Note that awk allows us to use any record reader we want in the loop, return-
ing whatever number of values we like. These values don’t have to be strings or
string lists. The only requirement is that the record reader return the eof object
as its first value when the loop should terminate.

The awk loop allows the programmer to have loop variables. These are de-
clared and initialised by the <state-var-decls> form, a((var init-exp) (var init-exp) : : :)
list rather like the let form. Whenever a clause in the loop body executes, it
evaluates to as many values as there are state variables, updating them.

The optional <counter> variable is an iteration counter. It is bound to 0
when the loop starts. The counter is incremented each time a non-eof record
is read.

There are several kinds of loop clause. When evaluating the body of the
loop, awk evaluates all the clauses sequentially. Unlike cond, it does not stop
after the first clause is satisfied; it checks them all.� (test body1 body2 : : :)

If test is true, execute the body forms. The last body form is the value of the
clause. The test and body forms are evaluated in the scope of the record
and state variables.

The test form can be one of:

86 DRAFT December 21, 1994 – 02 : 25

integer: The test is true for that iteration of the loop. The
first iteration is #1.

string: The string is a regular expression. The test is true
if the regexp matches the record.

expression If not an integer or a string, the test form is a
Scheme expression that is evaluated.� (range start-test stop-test body1 : : :)(:range start-test stop-test body1 : : :)(range: start-test stop-test body1 : : :)(:range: start-test stop-test body1 : : :)

These clauses become activated when start-test is true; they stay active on
all further iterations until stop-test is true.

So, to print out the first ten lines of a file, we use the clause:(:range: 1 10 (display record))
The colons control whether or not the start and stop lines are processed
by the clause. For example:(range 1 5 : : :) Lines 2 3 4(:range 1 5 : : :) Lines 1 2 3 4(range: 1 5 : : :) Lines 2 3 4 5(:range: 1 5 : : :) Lines 1 2 3 4 5

A line can trigger both tests, either simultaneously starting and stopping
an active region, or simultaneously stopping one and starting a new one,
so ranges can abut seamlessly.� (else body1 body2 : : :)
If no other clause has executed since the top of the loop, or since the lastelse clause, this clause executes.� (test => exp)
If evaluating test produces a true value, apply exp to that value. If test is
a regular-expression string, then exp is applied to the match data structure
returned by the regexp match routine.� (after body1 : : :)
This clause executes when the loop encounters EOF. The body forms ex-
ecute in the scope of the state vars and the record-count var, if there are
any. The value of the last body form is the value of the entire awk form.

If there is no after clause, awk returns the loop’s state variables as multi-
ple values.

December 21, 1994 – 02 : 25 DRAFT 87

6.2.1 Examples

Here are some examples of awk being used to process various types of input
stream.(define $ vector-ref) ; Saves typing.;;; Print out the name and home-directory of everyone in /etc/passwd:(let ((read-passwd (field-reader (infix-splitter ":" 7))))(call-with-input-file "/etc/passwd"(lambda (port)(awk (read-passwd port) (record fields) ()(#t (format #t "~a's home directory is ~a~%"($ fields 0)($ fields 5)))))));;; Print out the user-name and home-directory of everyone whose;;; name begins with "S"(let ((read-passwd (field-reader (infix-splitter ":" 7))))(call-with-input-file "/etc/passwd"(lambda (port)(awk (read-passwd port) (record fields) ()("^S" (format #t "~a's home directory is ~a~%"($ fields 0)($ fields 5)))))));;; Read a series of integers from stdin. This expression evaluates;;; to the number of positive numbers were read. Note our "record-reader";;; is the standard Scheme READ procedure.(awk (read) (i) ((npos 0))((> i 0) (+ npos 1)));;; Filter -- pass only lines containing my name.(awk (read-line) (line) ()("Olin" (display line) (newline)));;; Count the number of non-comment lines of code in my Scheme source.(awk (read-line) (line) ((nlines 0))("^[\t]*;" nlines) ; A comment line.(else (+ nlines 1))) ; Not a comment line.
88 DRAFT December 21, 1994 – 02 : 25

;;; Read numbers, counting the evens and odds.(awk (read) (val) ((evens 0) (odds 0))((> val 0) (display "pos ") (values evens odds)) ; Tell me about((< val 0) (display "neg ") (values evens odds)) ; sign, too.(else (display "zero ") (values evens odds))((even? val) (values (+ evens 1) odds))(else (values evens (+ odds 1))));;; Determine the max length of all the lines in the file.(awk (read-line) (line) ((max-len 0))(#t (max max-len (string-length line))));;; (This could also be done with REDUCE-PORT:)(reduce-port (current-input-port) read-line(lambda (line maxlen) (max (string-length line) maxlen))0);;; Print every line longer than 80 chars.;;; Prefix each line with its line #.(awk (read-line) (line) lineno ()((> (string-length line) 80)(format #t "~d: ~s~%" lineno line)));;; Strip blank lines from input.(awk (read-line) (line) ()("." (display line) (newline)));;; Sort the entries in /etc/passwd by login name.(for-each (lambda (entry) (display (cdr entry)) (newline)) ; Out(sort (lambda (x y) (string<? (car x) (car y))) ; Sort(let ((read (field-reader (infix-splitter ":" 7)))) ; In(awk (read) (line fields) ((ans '()))(#t (cons (cons ($ fields 0) line) ans))))));;; Prefix line numbers to the input stream.(awk (read-line) (line) lineno ()(#t (format #t "~d:\t~a~%" lineno line)))
December 21, 1994 – 02 : 25 DRAFT 89

Chapter 7

Miscellaneous routines

7.1 Integer bitwise ops(arithmetic-shift i j) �! integer procedure(bitwise-and i j) �! integer procedure(bitwise-ior i j) �! integer procedure(bitwise-not i) �! integer procedure(bitwise-xor i j) �! integer procedure

These operations operate on integers representing semi-infinite bit
strings, using a 2’s-complement encoding.arithmetic-shift shifts i by j bits. A left shift is j > 0; a right shift isj < 0.

7.2 List procedures(nth list i) �! object procedure

Returns the ith element of list. The first element (the car) is (nth list 0),
the second element is (nth list 1), and so on.

This procedure is provided as it is useful for accessing elements from the
lists returned by the field-readers (chapter 6).

7.3 Top level(repl) �! undefined procedure

This runs a Scheme 48 read-eval-print loop, reading forms from the cur-
rent input port, and writing their values to the current output port.

90 DRAFT December 21, 1994 – 02 : 25

If you wish to try something dangerous, and want to be able to recover
your shell state, you can fork off a subshell with the following form:(run (begin (repl)))

December 21, 1994 – 02 : 25 DRAFT 91

Chapter 8

Running scsh

Scsh is currently implemented on top of Scheme 48, a freely-available Scheme
implementation written by Jonathan Rees and Richard Kelsey. Scheme 48 uses a
byte-code interpreter for good code density, portability and medium efficiency.
It is R4RS. The version on top of which scsh is currently built (0.36) lacks floating
point. It also has a module system designed by Jonathan Rees.

Scsh’s design is not Scheme 48 specific, although the current implementa-
tion is necessarily so. Scsh is intended to be implementable in other Scheme
implementations—although such a port may require some work. The Scheme
48 vm that scsh uses is a specially modified version; standard Scheme 48 virtual
machines cannot be used with the scsh heap image.

To run the Scheme 48 implementation of scsh, you run a specially modified
copy of the Scheme 48 virtual machine with a scsh heap image. This command
starts the vm up with a 1Mword heap (split into two semispaces):scshvm -o scshvm -h 1000000 -i scsh.image arg1 arg2 : : :
The vm peels off initial vm arguments up to the -iheap image argument, which
terminates vm argument parsing. The rest of the arguments are passed off to
the scsh top-level. Scsh’s top-level removes scsh arguments; the rest show up
as the value of command-line-arguments.

Alternatively, you can run the scsh top-level binary. This is nothing but a
small cover program that invokes the scsh vm on the scsh heap image for you.
This allows you to simply start up an interactive scsh from a command line, as
well as write shell scripts that begin with the simple trigger#!/usr/local/bin/scsh -s
92 DRAFT December 21, 1994 – 02 : 25

8.1 VM arguments

Scsh uses a special version of the Scheme 48 virtual machine. It takes arguments
in the following form:scshvm [meta-arg] [vm-options+] [end-option scheme-args]
where

meta-arg: \ script

vm-option: -h heap-size-in-words-s stack-size-in-words-o object-file-name

end-option: -i image-file-name--
8.1.1 The meta argument

The Scheme 48 vm takes a special command-line switch, a single backslash
called the “meta-switch,” which is useful for shell scripts. While parsing the
command-line arguments, if the vm sees a “\” argument, followed by a file-
name argument fname, it will open the file fname, and read more arguments
from the second line of this file. This list of arguments will then replace the
“\” argument—i.e., the new arguments are inserted in front of fname, and the
argument parser resumes argument scanning. This is used to overcome a limi-
tation of the #! feature: the #! line can only specify a single argument after the
interpreter. For example, we might hope the following scsh script, ekko, would
implement a simple-minded version of echo(1):#!/bin/scshvm -o /bin/scshvm -i /lib/scsh.image -s!#(map (� (arg) (display arg) (display " "))command-line-arguments)(newline)
The idea would be that the commandekko Hi there.
would by expanded by exec(2) into/bin/scshvm -o /bin/scshvm -i /lib/scsh.image -s ekko Hi there.
December 21, 1994 – 02 : 25 DRAFT 93

In theory, this would cause scsh to start up, set command-line-arguments to("Hi" "there."), load the source file ekko, and exit.

However, the Unix exec(2) call will not handle multiple arguments on the#! line, so this script won’t work. We must instead invoke the Scheme 48 vm
with the single \ argument, and put the rest of the arguments on line two of the
script. Here’s the correct script:1#!/bin/scshvm \-o /bin/scshvm -i /lib/scsh.image -s!#(map (� (arg) (display arg) (display " "))command-line-arguments)(newline)
Now, the invocation starts asekko Hi there.
and is expanded by exec(2) into/bin/scshvm \ ekko Hi there.
When scshvm starts up, it expands the “\” argument into the arguments read
from line two of ekko, producing this argument list:-o /bin/scshvm -i /lib/scsh.image -s ekko Hi there."

Expanded from \ ekko
With this argument list, processing proceeds as we intended.

8.1.2 VM options

The -o object-file-name switch tells the vm where to find relocation information
for its foreign-function calls. Scsh will use a pre-compiled default if it is not
specified. Scsh must have this information to run, since scsh’s syscall interfaces
are done with foreign-function calls.

The -h and -s options tell the vm how much space to allocate for the heap
and stack.1In fact, I’m playing fast and loose with the actual pathnames used in this example: scshvm is
probably not going to be found in /bin. I’ve abbreviated things so the long argument lists will fit
into one line of text. See the following sections for the full details.

94 DRAFT December 21, 1994 – 02 : 25

8.1.3 End options

End options terminate argument parsing. The -i switch is followed by the
name of a heap image for the vm to execute, and terminates vm argument pars-
ing; following arguments are passed off to the heap image’s top-level program.
The -- switch terminates argument parsing without giving a specific heap im-
age; the vm will start up with using a default heap (whose location is compiled
into the vm).

Notice that you are not allowed to pass arguments to the heap image’s top-
level program (e.g., scsh) without delimiting them with -i or -- flags.

8.2 Scsh arguments

Scsh’s top-level argument parser takes arguments in a simple format:scsh [end-option arg1 : : : argn]
where

end-option: -s script--
The -s argument causes scsh to load a script file and exit. It also terminates
argument parsing; following arguments are passed to the scsh program as the
value of command-line-arguments.

If the -s argument is not given, scsh runs in interactive mode, with a stan-
dard Scheme 48 prompt-read-eval-print loop.

The -- switch terminates argument parsing without specifying a script to
load; it allows the user to pass arguments to an interactive scsh.

Shell scripts can be written and invoked with a #! initial line. Scsh defines
the sequence #! to be a read-macro similar to the comment character ;. The
read-macro causes scsh to skip characters until it reads a newline, !, #, newline
sequence. So an initial #! line is ignored by scsh.

8.3 Compiling shell scripts

The Scheme implementation of scsh allows you to create a heap image with
your own top-level procedure. Adding the pair of lines#!/usr/local/bin/scshvm \\-o /usr/local/bin/scshvm -i
December 21, 1994 – 02 : 25 DRAFT 95

to the top of the heap image will turn it into an executable Unix file.(dump-scsh-program main fname) �! undefined procedure

This procedure writes out a scsh heap image. When the heap image is
executed by the Scheme vm, it will call the main procedure on no ar-
guments and then exit. The Scheme vm will parse command-line argu-
ments as described in section 8.1, and bind remaining arguments to thecommand-line-argumentsvariable before calling main. Further argument
parsing (as described for scsh in section 8.2 is not performed.

The heap image created by dump-scsh-programhas unused code and data
pruned out, so small programs compile to much smaller heap images.

8.4 Standard file locations

Because the scshvm binary is intended to be used for writing shell scripts, it is
important that the binary be installed in a standard place, so that shell scripts
can dependably refer to it. The standard directory for the scsh tree should be/usr/local/lib/scsh/. Whenever possible, the vm should be located in/usr/local/lib/scsh/scshvm
and a scsh heap image should be located in/usr/local/lib/scsh/scsh.image
The top-level scsh program should be located in/usr/local/lib/scsh/scsh
with a symbolic link to it from/usr/local/bin/scsh

The Scheme 48 image format allows heap images to have #! triggers, soscsh.image should have a #! trigger of the following form:#!/usr/local/bin/scshvm \-o /usr/local/bin/scshvm -i: : : heap image goes here : : :
96 DRAFT December 21, 1994 – 02 : 25

Chapter 9

Todo

The LATEX hackery needs yet another serious pass. Most importantly, long pro-
cedure “declarations” need to be broken across two lines.

Fix up 0-or-more and 1-or-more parameter typesetting, with subscripts.

Parameter subscripts need to be made real subscripts.

Job control, after jcontrol.scm
Static heaps; fast startup.

Gnu readline lib.

Interrupt system.

Make it all coexist with S48 threads as well as can be done for Unix. The DEC
SRC tech report gives a good discussion of the issues.

Support for file locking: (lock-file fd op), with-file-locked, : : :
Testing broken symlinks – new value for chase? flag?

Interactive flag machinery

Rename and release ensure-file-name-is-fnon,gdirectory.

More informative errno exception packets & documentation for them.

Other things should be available: hash tables, sort, list utils, pattern matchers.
But things start to overload. The module system is the appropriate way to use
these.

Support for writing scripts that use the module language.

Need calls to control port i/o buffering.

Need to do file-control (i.e., fcntl()). fcntl is ugly. Better to have a procedure
for each different operation.

Tty stuff and control tty.

More documentation for the wait() machinery.

December 21, 1994 – 02 : 25 DRAFT 97

We need a general time/date parser, that can convert strings like “Thursday af-
ter Christmas” into date records.

98 DRAFT December 21, 1994 – 02 : 25

Index

temp-file-template, 37
-¿uid, 45
-¿username, 45
%exec, 40
%exit, 41
%fork, 41
%fork/pipe, 41
%fork/pipe+, 42
&, 8
&&, 14file-group, 31file-inode, 31file-last-access, 31file-last-mod, 31file-last-status-change, 31file-mode, 31file-nlinks, 31file-owner, 31file-size, 31file-type, 31accept-connection, 61add-after, 56add-before, 56alist->env, 54alist-compress, 54alist-delete, 54alist-update, 54arg, 46arg*, 46argv, 46arithmetic-shift, 90ascii->char, 74ascii-range->char-set, 75awk, 85

bind-listen-accept-loop, 58bind-socket, 61bitwise-and, 90bitwise-ior, 90bitwise-not, 90bitwise-xor, 90call-terminally, 42call-with-string-output-port,20call/fdes, 23char->ascii, 74char-alphabetic?, 76char-alphanumeric?, 76char-filter, 14char-graphic?, 76char-lower-case?, 76char-numeric? , 76char-set, 75char-set-difference, 75char-set-intersection, 75char-set-invert, 75char-set-member?, 75char-set-members, 75char-set-union, 75char-set:alphabetic, 76char-set:alphanumeric, 76char-set:graphic, 76char-set:lower-case, 76char-set:not-whitespace, 76char-set:numeric, 76char-set:upper-case, 76char-set:whitespace, 76char-set?, 74char-upper-case?, 76
December 21, 1994 – 02 : 25 DRAFT 99

char-whitespace?, 76chars->char-set, 75chdir, 43close, 19close-after, 18close-socket, 58command-line, 45command-line-arguments, 45connect-socket, 61create-directory, 28create-fifo, 29create-hard-link, 29create-socket, 58create-socket-pair, 58create-symlink, 29create-temp-file, 37cwd, 43date, 48, 49, 51date->string, 52delete-directory, 29delete-file, 29delete-filesys-object, 29directory-as-file-name, 70directory-files, 33dump-scsh-program, 96dup, 24dup->fdes, 24dup->inport, 24dup->outport, 24env->alist, 54errno-error, 15error-output-port, 18exec, 39exec-epf, 8exec-path, 39exec-path-list, 56exec-path-search, 40exec-path/env, 39exec/env, 39exit, 41expand-file-name, 74fdes->inport, 23

fdes->outport, 23field-reader, 82field-splitter, 79file-attributes, 30file-directory?, 31file-executable?, 32file-exists?, 33file-fifo?, 31file-info, 31file-info:atime, 31file-info:ctime, 31file-info:device, 31file-info:gid, 31file-info:inode, 31file-info:mode, 31file-info:mtime, 31file-info:nlinks, 31file-info:size, 31file-info:type, 31file-info:uid, 31file-match, 35file-name-absolute?, 70file-name-as-directory, 70file-name-directory, 71file-name-extension, 72file-name-nondirectory, 71file-name-sans-extension, 72file-not-executable?, 32file-not-exists?, 32file-not-readable?, 32file-not-writeable?, 32file-readable?, 32file-regular?, 31file-seek, 25file-socket?, 32file-special?, 32file-symlink?, 32file-writable?, 32fill-in-date, 52force-output, 28fork, 41fork/pipe, 41fork/pipe+, 42format-date, 52
100 DRAFT December 21, 1994 – 02 : 25

getenv, 54glob, 33glob-quote, 35group-info, 45group-info:gid, 45group-info:members, 45group-info:name, 45home-dir, 74home-directory, 56home-file, 74host-info, 64index, 68infix-splitter, 79internet-address->socket-address,60itimer, 48join-strings, 82listen-socket, 61make-date, 49make-regexp, 67make-string-input-port, 19make-string-output-port, 19match:end, 67match:start, 67match:substring, 67maximum-fds, 47move->fdes, 24network-info, 64nice, 44nth, 90open-fdes, 26open-file, 25open-input-file, 25open-output-file, 25page-size, 47parent-pid, 44parse-file-name, 73

path-list->file-name, 72pause-until-interrupt, 48pid, 44pipe, 26port->fdes, 23port->list, 10port->sexp-list, 10port->string, 10port->string-list, 10port-revealed, 23predicate->char-set, 75priority, 44process-group, 44process-times, 44protocol-info, 64read-delimited, 77, 78read-line, 26read-paragraph, 79read-string, 26/partial, 26read-string/partial, 26read-symlink, 29receive-message, 62/partial, 62receive-message/partial, 62record-reader, 78reduce-port, 10regexp-exec, 67regexp-match?, 66regexp-quote, 68regexp?, 67release-port-handle, 23rename-file, 29repl, 90replace-extension, 73resolve-file-name, 74rindex, 68run, 8run/collecting, 12run/collecting*, 12run/file, 9run/file*, 10run/port, 9
December 21, 1994 – 02 : 25 DRAFT 101

run/port*, 10run/port+pid, 11run/port+pid*, 11run/sexp, 9run/sexp*, 10run/sexps, 9run/sexps*, 10run/string, 9run/string*, 10run/strings, 9run/strings*, 10select, 27send-message, 62send-message/partial, 62service-info, 64set-file-group, 30set-file-mode, 30set-file-owner, 30set-gid, 44set-priority, 44set-process-group, 44set-socket-option, 63set-uid, 44set-umask, 43setenv, 54shutdown-socket, 62signal-process, 47signal-procgroup, 47simplify-file-name, 73sleep, 48sloppy-suffix-splitter, 79socket-address->internet-address,60socket-address->unix-address,60socket-connect, 57socket-local-address, 61socket-option, 63socket-remote-address, 61split-file-name, 71status:exit-val, 42status:stop-sig, 42status:term-sig, 42

stdio->stdports, 19stdports->stdio, 19string->char-set, 75string-filter, 14string-match, 66string-output-port-output, 19substitute-env-vars, 68suffix-splitter, 79suspend, 41sync-file, 30sync-file-system, 30system-name, 47temp-file-channel, 39temp-file-iterate, 37ticks/sec, 50time, 48, 51time+ticks, 50truncate-file, 30umask, 43unix-address->socket-address,60user-effective-gid, 44user-effective-uid, 44user-gid, 44user-info, 44, 45user-info:gid, 45user-info:home-dir, 45user-info:name, 45user-info:shell, 45user-info:uid, 45user-login-name, 44user-supplementary-gids, 44user-uid, 44wait, 42with-current-input-port, 18with-current-input-port*, 18with-current-output-port, 18with-current-output-port*, 18with-cwd, 43with-cwd*, 43with-env, 55
102 DRAFT December 21, 1994 – 02 : 25

with-env*, 55with-errno-handler, 16with-errno-handler*, 16with-error-output-port, 18with-error-output-port*, 18with-total-env, 55with-total-env*, 55with-umask, 43with-umask*, 43write-string, 27write-string/partial, 28

December 21, 1994 – 02 : 25 DRAFT 103

