
PROGRAMMING WITH TRANSACTIONAL MEMORY

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Brian David Carlstrom

June 2008

c© Copyright by Brian David Carlstrom 2008

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Oyekunle Olukotun) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Christos Kozyrakis)

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(John Mitchell)

Approved for the University Committee on Graduate Studies.

iii

iv

Abstract

For decades the combination of Moore’s law and innovations in uni-processor com-

puter architecture have allowed most single-threaded applications to perform better

on each subsequent processor generation. However, the power consumption and heat

generation of recent generations of complex single-core processors ended this decades

long progression and the trend has shifted to multi-core processors, often with simpler

cores than found in earlier generations. In order to take advantage of the increas-

ing number of cores found in new processors, single-threaded applications need to

be rewritten to be parallel. The most common approach in a multi-core system is

to use parallel threads sharing a common address space that use lock-based mu-

tual exclusion to coordinate access to shared data. Unfortunately, writing a correct

and scalable program using locks is considerably more difficult than the comparable

sequential program. Programming with a few coarse-grained locks often limits scal-

ability while using finer-grained locking often leads to significant overhead and risks

issues such as deadlock.

Transactional memory is an alternative to locks for coordinating concurrent access

to shared data in parallel programs. By allowing speculative concurrent access to

shared data, both software and hardware transactional memory systems have been

show to allow more scalability than locks on machines with one hundred or more cores.

However, these results have focused on converting the use of short critical sections to

transactions in existing parallel applications. Many hope that transactional memory

will make parallel programming easier by allowing developers to reason about the

interactions between fewer coarse-grained transactions that cover the majority of

program execution.

v

The thesis of this dissertation is that supporting scalable performance similar

to fine-grained locks with coarse-grained transactions requires going beyond simple

atomic transactions to support transactional conditional waiting, as well as ways of

reducing isolation between transactions. The analysis begins with JavaT, a transac-

tional execution model for Java programs. While this model allows for a transactional

evaluation of benchmarks such as SPECjbb2000 and JavaGrande, it also shows that

there is no single interpretation of monitor-based conditional waiting that preserves

the behavior of all existing Java programs. This leads to the definition of the Ato-

mos transactional programming language, a Java derivative that includes features

such as transactional conditional waiting, closed- and open-nested transactions, and

transaction handlers.

To evaluate Atomos for executing programs with long transactions, a special ver-

sion of SPECjbb2000 is created that spends most of its execution time executing

transactions on a single shared warehouse data structure. The technique of semantic

concurrency control is used to create transactional collection classes to enable the

scalability of this SPECjbb2000 variant using Atomos nesting and handler support.

Several techniques for dealing with non-transactional operations such as I/O are also

discussed.

vi

Acknowledgements

Oh, yes, the acknowledgements. I think not.

I did it. I did it all, by myself.

– Olin Shivers [117]

I would like to thank my advisors Kunle Olukotun and Christoforos Kozyrakis.

Without them I do not know how I would have translated my vague goal of im-

proving software engineering into something concrete to the challenges facing today’s

programmers. I’d also like to thank Darlene Hadding for helping me over come the

challenges facing today’s PhD students at Stanford.

I would like to thank John Mitchell for being on my reading committee and Daw-

son Engler for being on my orals committee, which brought some continuity to my

undergraduate research experience at MIT. I would also like to thank Jef Caers for

stepping in at the last minute to be the chair for my oral thesis defense.

I would like to thank Austen McDonald, JaeWoong Chung, Jared Casper, Ben

Hertzberg, Hassan Chafi, and Tayo Oguntebi for their work on the simulator that

made my experiments possible. Special thanks to JaeWoong Chung, Nathan Bronson,

and Mike Carbin for their work on JikesRVM and Atomos. Thanks to the TCC group

and Kunle students for all their helpful feedback, advice, and suggestions. Special

thanks to Lance Hammond, not only for his work on the old simulator and trace

analyzer that got TCC off the ground, but also for the unique advice and perspective

that only a senior officemate can provide.

Extra special thanks to Jacob Leverich and Andrew Selle for all those cluster

cycles. Thanks to Justy Burdick and Steven Tamm for PowerPC cycles back in the

day.

vii

Thanks to my MIT undergraduate research advisors Olin Shivers and Tom Knight

for the fun UROP experiences. Thanks to Norman Adams, Marc Brown, and John

Ellis for encouraging me to go back to school. Thanks to everyone at Ariba that made

going back to school possible.

I would like to thank the Intel Foundation for their support through their PhD

Fellowship program. I would also like to thank DARPA, not only for supporting me

and my group over the last five years, but my father for my first five years.

Thanks to my parents, David and Elizabeth, for all their support of my education

as well as for taking me all over the world to AAAI and IJCAI conferences.

Finally, I would like to thank my wife Jennifer and my children Michael, Daniel,

and Bethany for humoring me in my hobby of getting a PhD.

viii

Contents

Abstract v

Acknowledgements vii

1 Introduction 1

1.1 Locks . 2

1.2 Alternatives to Locks . 3

1.3 Transactional Memory . 3

1.4 Thesis . 4

1.5 Organization . 5

2 Choices in the Design of a Transactional Memory System 7

2.1 Semantics . 7

2.1.1 Weak Isolation versus Strong Isolation 8

2.2 Interface . 8

2.2.1 Explicit versus Implicit Transactions 9

2.2.2 Library Interface versus Language Integration 9

2.3 Implementation . 9

2.3.1 Eager versus Lazy Versioning 10

2.3.2 Optimistic versus Pessimistic Conflict Detection 11

2.3.3 Uniprocessor versus Multiprocessor 11

2.3.4 Hardware versus Software . 11

2.4 Evaluation Environment . 13

2.5 Related Work . 15

ix

2.5.1 Early Hardware Transactional Memory 15

2.5.2 Thread Level Speculation . 15

2.5.3 Speculating through Locks . 16

2.5.4 Recent Hardware Transactional Memory 17

2.5.5 Software Transactional Memory 18

2.5.6 Semantics . 18

3 JavaT: Executing Java with TM 19

3.1 JavaT: Mapping Java to Transactions 20

3.1.1 synchronized Statements . 20

3.1.2 Object wait, notify, notifyAll Methods 24

3.1.3 volatile Fields . 26

3.2 Impact of Transactions on Java . 26

3.2.1 Java Memory Model . 26

3.2.2 Java Native Interface . 27

3.2.3 Non-transactional Operations 28

3.2.4 Exceptions . 29

3.3 Evaluation of JavaT . 30

3.3.1 Benchmarks . 30

3.3.2 TestHistogram . 31

3.3.3 TestHashtable . 32

3.3.4 TestCompound . 34

3.3.5 SPECjbb2000 . 36

3.3.6 Java Grande . 37

3.4 Related Work . 42

3.4.1 Speculating through Locks . 42

3.4.2 Java with TM . 43

3.4.3 Other Languages with TM . 44

3.5 Conclusion . 45

4 The Atomos Transactional Programming Language 47

4.1 Atomos = Java - Locks + TM . 48

x

4.1.1 Transactional Memory with Closed Nesting 48

4.1.2 Fine-Grained Conditional Waiting 49

4.1.3 Open Nesting . 52

4.1.4 Transaction Handlers . 55

4.1.5 Transaction Class . 57

4.2 Implementing Transactional Features 57

4.2.1 Implementing retry . 57

4.2.2 Loop Speculation . 64

4.3 Evaluation of Atomos . 67

4.3.1 Handler Overhead in SPECjbb2000 67

4.3.2 Conditional Waiting in TestWait 69

4.4 Related Work . 71

4.4.1 Programming Languages with Durable Transactions 71

4.4.2 Open Nesting . 71

4.4.3 Atomos Compared to Other TM Systems 72

4.5 Conclusions . 73

5 Semantic Concurrency Control for Transactional Memory 75

5.1 Supporting Long-Running Transactions 77

5.1.1 Database Concurrency Control 77

5.1.2 Concurrent Collection Classes 78

5.1.3 Transactional Memory . 79

5.1.4 The Need for Semantic Concurrency Control 80

5.2 Transactional Collection Classes . 82

5.2.1 TransactionalMap . 83

5.2.2 TransactionalSortedMap . 86

5.2.3 TransactionalQueue . 91

5.3 Semantics for Transactional Collection Classes 96

5.3.1 Nested Transactions: Open and Closed 96

5.3.2 Commit and Abort Handlers 97

5.3.3 Program-directed Transaction Abort 99

xi

5.4 Serializability Guidelines . 99

5.4.1 Discussion . 100

5.5 Evaluation . 105

5.5.1 Map and SortedMap Benchmarks 106

5.5.2 High-contention SPECjbb2000 110

5.6 Conclusions . 114

6 Conclusion 115

6.1 Future Work . 116

6.1.1 Programming Model . 116

6.1.2 I/O . 116

6.1.3 Garbage Collection . 117

6.1.4 Database . 117

6.2 Final Thoughts . 118

A Simulation Environment 119

A.1 Simulated Architecture Details . 119

A.2 Signals . 120

A.3 Physical versus Virtual Addresses . 121

B JikesRVM Implementation 123

B.1 Running JikesRVM in a TM Environment 123

B.1.1 Scheduler . 123

B.1.2 Just-In-Time Compiler . 124

B.1.3 Memory Management . 125

B.1.4 Impact of Cache Line Granularity 126

B.1.5 Summary of JikesRVM Issues and Changes 127

B.2 Atomos . 128

B.2.1 Atomos Language Implementation 128

B.2.2 Violations from Long Transactions 128

B.2.3 Open Nesting and Stack Discipline 128

xii

C Non-transactional Operations 131

C.1 Forbid Non-transactional Operations in Transactions 132

C.2 Serialize Non-transactional Operations 132

C.3 Allow Selected Non-transactional Operations 133

C.4 Use Transaction Handlers to Delay or Undo Operations 133

C.5 Semantic Concurrency Control . 134

C.6 Distributed Transactions . 135

C.7 Summary of Approaches . 135

C.8 Related Work . 136

C.8.1 No I/O in Transactions . 136

C.8.2 Serialization . 136

C.8.3 Transaction Handlers . 137

C.8.4 Distributed Transactions . 137

C.8.5 Memory Mapped I/O . 138

C.8.6 OS Work . 138

Bibliography 139

xiii

xiv

List of Tables

3.1 Rules for the execution of Java programs with transactional memory. 30

3.2 Summary of benchmark applications including source, description, in-

put, and lines of code. 31

4.1 Summary of transactional memory systems. 72

5.1 Semantic operational analysis of the Map interface showing the condi-

tions under which conflicts arise between primitive operations. . . . 87

5.2 Semantic locks for Map describe read locks that are taken when execut-

ing operations, as well as lock based conflict detection that is done by

writes at commit time. 88

5.3 Summary of TransactionalMap state. 89

5.4 Semantic operational analysis of the SortedMap interface. 92

5.5 Semantic locks for SortedMap. 93

5.6 Summary of TransactionalSortedMap state. 94

5.7 Semantic operational analysis of the Channel interface. 95

5.8 Semantic locks for Channel. 95

5.9 Summary of TransactionalQueue state. 96

5.10 Comparison of coding effort and 32 CPU speedup of various versions

of a high-contention configuration of SPECjbb2000. 112

A.1 Parameters for the simulated CMP architecture. 120

B.1 Java virtual machine issues in a transactional memory system. 127

xv

xvi

List of Figures

3.1 Converting a synchronized statement into transactions. 20

3.2 Converting nested synchronized statements into transactions. . . . 21

3.3 A string interning example. 23

3.4 Synchronizing on a Session. 23

3.5 get code used by the consumer. 24

3.6 put code used by the producer. 24

3.7 Example of intermixing transactions and exceptions. 29

3.8 TestHistogram results. 32

3.9 TestHashtable results. 33

3.10 TestCompound results. 35

3.11 SPECjbb2000 results. 37

3.12 SOR Java Grande Forum section 2 kernel results. 38

3.13 SparseMatmult Java Grande Forum section 2 kernel results. 38

3.14 LUFact Java Grande Forum section 2 kernel results. 39

3.15 Crypt Java Grande Forum section 2 kernel results. 39

3.16 Series Java Grande Forum section 2 kernel results. 40

3.17 MolDyn Java Grande Forum section 3 application results. 41

3.18 MonteCarlo Java Grande Forum section 3 application results. 41

3.19 RayTracer Java Grande Forum section 3 application results. 42

4.1 Comparison of producer-consumer in Java and Atomos. 50

4.2 Comparison of a barrier in Java and Atomos. 51

4.3 Timeline of three nested transactions: two closed-nested and one open-

nested. 53

xvii

4.4 The Transaction class used for handler registration and program di-

rected transaction abort. 57

4.5 Conditional synchronization using open nesting and violation handlers. 59

4.6 Implementation details of Atomos watch and retry using violation

handlers for the waiting thread. 61

4.7 Implementation details of Atomos watch and retry using violation

handlers for the scheduler thread. 62

4.8 Ordered versus Unordered speculative loop execution timeline. 64

4.9 Loop.run implementation. 65

4.10 Comparison of the speedup of the Atomos version of SPECjbb2000

with the Java and JavaT versions. 68

4.11 TestWait results comparing Java and Atomos conditional waiting im-

plementation. 70

5.1 TestMap results comparing Atomos TransactionalMap with Java Hash-

Map. 107

5.2 TestSortedMap results comparing Atomos TransactionalSortedMap

with Java TreeMap. 108

5.3 TestCompound results. 109

5.4 SPECjbb2000 results in a high-contention configuration caused by shar-

ing a single warehouse. 111

xviii

Chapter 1

Introduction

There are many examples of systems that tried and failed to implement

fault-tolerant or distributed computations using ad hoc techniques rather

than a transaction concept. Subsequently, some of these systems were

successfully implemented using transaction techniques. After the fact,

the implementers confessed that they simply hit a complexity barrier and

could not debug the ad hoc system without a simple unifying concept

to deal with exceptions [Borr 1986; Hagmann 1987]. Perhaps even more

surprising, the subsequent transaction oriented systems had better per-

formance than the ad hoc incorrect systems, because transaction logging

tends to convert many small messages and random disk inputs and out-

puts (I/Os) into a few larger messages and sequential disk I/Os.

– Jim Gray [47]

Processor vendors have exhausted their ability to improve single-thread perfor-

mance using techniques such as simply increasing clock frequency [128, 4]. Hence,

they are turning en masse to single-chip multiprocessors (CMPs) as a realistic path

towards scalable performance for server, embedded, desktop, and even notebook plat-

forms [75, 71, 72, 17]. While the trend is to use Moore’s Law to continually add more

cores to processors, the practical benefits to various applications are unclear.

Several applications workloads clearly benefit from CMPs. Server applications

with task-based parallelism have been straightforward to move from older symmetric

1

2 CHAPTER 1. INTRODUCTION

multiprocessing (SMP) machines. Scientific and engineering workloads with signifi-

cant data parallelism, as well as multiprogramming workloads, also benefit from the

additional computation resources. The key similarity is that there is relatively little

coordination needed between parallel threads in these workloads.

On the other hand, adapting desktop application workloads to take advantage

of CMPs is more problematic. While some limited multiprogramming such as virus

checking exists on the desktop, most applications have historically been single-thread-

ed event based applications. In the past, desktop application performance benefited

from simply moving to a new faster processor. If existing desktop application want

to improve their performance, they need to find some way to exploit computational

parallelism.

While some server workloads can scale by running independent tasks in parallel,

increasingly the challenge is to parallelize within a single operation. Where previously

global data structures were accessed only by a single thread, now multiple threads

will need to coordinate access to this shared data.

1.1 Locks

Multithreaded programming has traditionally used locks to coordinate access to

shared data. Lock-based coordination works through the principal of mutual ex-

clusion. A thread that owns a lock can be sure that they are are they only one

accessing the associated shared data. The association between locks and the data

they protect is by convention, although some languages such as Java try to encourage

specific patterns for the common case of using a single lock to protect an object.

Typically, a programmer will use one lock per data structure to keep the locking

protocol simple. Unfortunately, such coarse-grained locking often leads to serialization

on high-contention data structures. An alternative approach is to use finer-grained

locking where more than one lock is associated with a data-structure. For example,

a tree may have locks on each node or a hash table may have locks for each bucket.

While fine-grained locks can improve the concurrency of parallel operations, they

can hurt the latency for a single operation due the additional overhead of selecting

1.2. ALTERNATIVES TO LOCKS 3

locks or acquiring and releasing multiple locks. Fine-grained locking also increases

code complexity for operations that inherently touch shared data. For example,

maintaining the size property of a tree or hash table in the presence of multiple

mutators can significantly complicate the implementation.

Finally, there are many known pitfalls to using locks for coordination such as

deadlock, priority inversion, and convoying, which are exacerbated through the use

of fine-grained locking. For example, atomically moving a value from one location in

a tree or hash table when the whole table is protected by a single lock is trivial in

comparison with the deadlock issues that can arise when multiple locks must be held

to provide the appearance of atomicity.

1.2 Alternatives to Locks

Because of these issues with locks, alternative forms of non-blocking synchronization

have been explored. Typically these involve using atomic hardware primitives such as

“compare-and-swap” (CAS) directly instead of using them to build locking primitives.

While non-blocking synchronization avoids many issues with locks such as dead-

lock and priority inversion, it can introduce issues of livelock, starvation, as well

as new sources of overhead. Although non-blocking synchronization techniques may

be more scalable than locks, in practice correctness is even harder to achieve than

with the mutual-exclusion approach of locks because of the many different possible

race conditions. Finally, non-blocking techniques often make composing two different

operations into one atomic action even harder than with locks.

1.3 Transactional Memory

Transactional memory has been proposed as an abstraction to simplify parallel pro-

gramming [61, 115, 60, 55]. Transactions eliminate locking completely by grouping

sequences of object references into atomic and isolated execution units. They provide

an easy-to-use technique for synchronization over multiple operations on multiple ob-

jects, allowing the programmer to focus on determining where atomicity is necessary,

4 CHAPTER 1. INTRODUCTION

and not its implementation details.

Much of the earlier work on transactional memory has focused on how replacing

lock-based critical sections with transactions can improve concurrency. However, this

does not do much to simplify parallel programming since the challenge of selecting the

right short atomic sections remains. In this dissertation I will show that transactional

memory can truly make parallel programming easier by allowing programmers to focus

on executing a few large atomic operations in parallel while maintaining scalability

competitive with fine-grained locks. In this style, most of the time is spent running

in transactions, which are not limited to short critical sections.

1.4 Thesis

In this dissertation I intend to prove the following thesis:

Supporting scalable performance similar to fine-grained locks with coarse-

grained transactions requires going beyond simple atomic transactions to

support transactional conditional waiting, as well as ways of reducing

isolation between transactions.

To prove this thesis, I will:

• show the need for transactional conditional waiting because of the correctness

problems that come from mixing monitors with transactions

• show the need for alternative transaction types that allow programs to reduce

the strict serializability of transactions

• show the need for semantic concurrency control to allow programs to focus

on logically meaningful data dependencies between transactions, rather than

strictly on memory dependencies

• show mechanisms for integrating non-transactional operations into transactions

• provide qualitative results demonstrating these needs.

1.5. ORGANIZATION 5

1.5 Organization

The remainder of this dissertation is organized as follows:

Chapter 2 discusses the advantages and disadvantages of various programmer in-

terfaces, semantic models, and implementation approaches for transactional memory.

This provides the background for the choices made in the transactional memory sys-

tems and language used in this dissertation.

Chapter 3 looks at JavaT, a transactional model for the execution of existing

Java programs. JavaT reinterprets existing Java language features to have transac-

tional memory semantics. While displaying the performance potential of transactional

memory, it also demonstrates the correctness problems when transactional memory

is combined with monitor-style conditional waiting.

Chapter 4 describes the design of Atomos, a programming language system built

entirely on transactional memory. Here I will show the need for reducing the serial-

izability of transactions in both language implementation and applications.

Chapter 5 shows how semantic concurrency control can improve the concurrency

of parallel operations on abstract data types. I show how this is critical to scalability

when parallel programs consist of a few large transactions operating on shared data

structures.

Chapter 6 concludes the dissertation by revisiting my thesis in the context of the

results from the previous chapters. It discusses directions for future work and finishes

with some final thoughts on the potential of transactional memory.

Following the dissertation proper, there are three appendices with additional dis-

cussion on the implementation of transactional memory systems, focusing primarily

on the system used for evaluation in this dissertation. Appendix A covers the details

of the simulation environment, including some additional details on the hardware con-

figurations and transactional memory semantics. Appendix B discusses the details of

the virtual machine environment I use for running both Java, JavaT, and Atomos ex-

periments. Appendix C describes how non-transactional operations, particularly I/O,

can be integrated with transactional memory though a variety of mechanisms such

as simple handlers at the end of transactions, general semantic concurrency control,

6 CHAPTER 1. INTRODUCTION

and distributed transactions.

Chapter 2

Choices in the Design of a

Transactional Memory System

The secret to creativity is knowing how to hide your sources.

– Albert Einstein

All transactional memory systems need to detect violations of data dependencies

between transactions. Violations occur when a transaction’s read-set, the set of all

locations read during the transaction, intersects with another transaction’s write-

set, the set of all locations written during the transaction. While this basic idea of

violation detection is common to all systems, there are many different choices to be

made in the design and implementation of a transactional memory system. In this

section I discuss possible choices in the area of implementation, semantics, as well as

the choices made in the system used for evaluation in this dissertation.

2.1 Semantics

Transactional memory semantics describe the expected or allowed outcomes of various

memory operations which can include both memory transactions and non-transac-

tional loads and stores. Unlike SQL transactions, where there is a clear separation

between program data and relation data, transactional memory systems have to cope

7

8 CHAPTER 2. CHOICES IN THE DESIGN OF A TM SYSTEM

with potentially unexpected interactions between code that is run inside a transaction

and code that is run outside a transaction, as well as interactions between applications

and the underlying libraries and runtime system.

2.1.1 Weak Isolation versus Strong Isolation

The isolation criteria defines how transactional code interacts with non-transactional

code [80]. In systems with weak isolation, transactional isolation is only guaran-

teed between code running in transactions, which can lead to surprising and non-

deterministic results if non-transactional code reads or writes data that is part of

a transaction’s read- or write-set. For example, non-transactional code may read

uncommitted data from the transaction’s write-set and non-transactional writes to

the transaction’s read-set may not cause violations. In systems with strong isolation,

non-transactional code does not see the uncommitted state of transactions and up-

dates to shared locations by non-transactional code violate transactions, if needed,

to prevent data races.

From a programming model point of view, strong isolation makes it easier to rea-

son about the correctness of programs because transactions truly appear atomic with

respect to the rest of the program. However, most software implementations of trans-

actional memory have only guaranteed weak isolation as a concession to performance.

Recently, some hardware and hybrid systems that support unlimited transaction sizes

have also only offered weak isolation. The problem is that programs written for one

isolation model are not guaranteed to work on the other; for a transactional program

to be truly portable, it has to be written with a specific isolation model in mind,

potentially hindering its reuse on other systems [12].

2.2 Interface

Regardless of the semantics of a transactional memory system, there are different

types of programming interfaces that can be presented to application programmers

2.3. IMPLEMENTATION 9

ranging from hand annotating each memory access to programming language inte-

gration.

2.2.1 Explicit versus Implicit Transactions

Some systems require an explicit step to make locations or objects part of a trans-

action, while other systems make the memory operations’ behavior implicit on the

transactional state. Implicit transactions require either compiler or hardware sup-

port [2]. Older systems often required explicit instructions or calls to treat specific

locations or objects as transactional; however, most systems now allow existing code

to run both transactionally and non-transactionally based on the context. Requir-

ing explicit transactional operations prevents a programmer from composing existing

non-transactional code to create transactions. This can create a maintenance burden

as programmers need to create and maintain transaction-aware versions of existing

non-transactional code in order to reuse it.

2.2.2 Library Interface versus Language Integration

Some systems treat transactions simply as a library, while others integrate transac-

tions into the syntax of the programming language. There are many issues with not

properly integrating concurrency primitives with programming language semantics, as

shown in recent work on the Java Memory Model and threads in C and C++ [104, 15].

Clear semantics are necessary to allow modern optimizing compilers to generate safe

yet efficient code for multiprocessor systems as well as perform transactional memory

specific optimizations [57, 2].

2.3 Implementation

Perhaps the greatest diversity in transactional memory systems is in the variety of

implementation approaches found in competing systems. As with database systems,

there are a variety of ways to provide the transactional properties of atomicity and

isolation.

10 CHAPTER 2. CHOICES IN THE DESIGN OF A TM SYSTEM

2.3.1 Eager versus Lazy Versioning

All transactional systems must be able to deal with multiple versions of the same

logical data. At the very least, systems need to be able to deal with two versions: a

new updated version and an old version to use in case the transaction fails to commit.

In systems with eager versioning, the new version is stored “in place”, while the old

version is stored in an undo log. Since the new version is stored in place of the old

version, there can only be one new version at a time. In systems with lazy versioning,

the old version remains in place and new versions are placed in a per transaction

store buffer or redo log. A new version replaces the old version when a transaction

commits.

Systems with eager versions require contention management to prevent deadlock.

If two transactions are contending to write to the same location, only one can succeed.

If the first transaction to reach the location always is granted exclusive access, it

is possible that transaction X may write location A and transaction Y may write

location B. Then if transaction X needs to write location B and transaction Y needs

to write location A, a classic deadlock situation is created. To avoid this, a contention

manager can decide to detect a potential deadlock cycle and break the deadlock by

choosing a victim to rollback.

Systems with lazy versioning also require contention management, in this case to

avoid livelock. If the system detects conflicts between transactions at commit time

and always lets transactions commit in “first come, first served” order, then short

transactions may repeatedly violate a longer running transaction, preventing it from

ever completing. A contention manager could detect the repeated violation and allow

the older transaction to complete to avoid starvation.

Much of the work on contention management studies the usefulness of various

contention management policies to avoid certain performance pathologies on various

styles of workloads. Like database systems, there are often common case performance

trade-offs to be made. For example, the graph algorithms necessary for deadlock

prevention are often too expensive to run for each written location when transactions

have few conflicts. In the case of databases, a simple timeout mechanism is used to

detect transactions that have been waiting for more than some threshold, at which

2.3. IMPLEMENTATION 11

point deadlock detection can be run and deadlock recovery can be initiated by rolling

back a transaction involved in the deadlock cycle.

2.3.2 Optimistic versus Pessimistic Conflict Detection

As alluded to in the discussion of versioning, when data dependencies are detected can

vary based on versioning implementation. Systems with pessimistic conflict detection

notice possible data dependency violations as soon as possible. In the example of eager

versioning, this is necessary to make sure that only one transaction has exclusive

access to write a new version. Systems with optimistic conflict detection do not

worry about detecting conflicts as early as possible, but wait until a transaction

commits to detect conflicts. As suggested, this is a common approach in systems

with lazy versioning since they do not need to detect conflicts until transactions

start committing. However, these are not the only two alternatives. Some systems

provide lazy versioning with pessimistic conflict detection. On the other hand, eager

versioning with optimistic conflict detection is illogical because without independent

storage for multiple versions, conflicts need to be detected as soon as possible so that

only one transaction will proceed.

2.3.3 Uniprocessor versus Multiprocessor

Some systems require a uniprocessor implementation for correctness, while others

take advantage of multiprocessor scaling. Since trends indicate a move to multipro-

cessors, new programming languages should make it easy to exploit these resources.

To properly evaluate transactional memory as an abstraction to simplify parallel pro-

gramming, it is important for systems to provide a multiprocessor implementation.

2.3.4 Hardware versus Software

Finally, one of the biggest choices in implementing a transactional memory system

is the use of hardware support. The earliest transactional memory proposals came

out of the computer architecture community and would now be classified as hardware

12 CHAPTER 2. CHOICES IN THE DESIGN OF A TM SYSTEM

transactional memory (HTM) systems [74, 61]. However, it was not long before the

first software transactional memory (STM) system was proposed [115]. Recently there

has been a resurgence in both HTM and STM systems. For hardware, this has largely

been fueled by the growing importance of making chip multiprocessors programmable

and for software, this has been inspired by a number of new STM algorithms coming

from the non-blocking synchronization community [55, 40].

The primary advantage of hardware transactional memory is speed. A software

transactional memory adds significant overhead to memory operations. Although

compiler optimization can eliminate some of this overhead, especially in the case

of weak isolation. However, if strong isolation is desired even memory references

outside of transactions can have overhead. Since the hardware transactional memory

systems are typically based on cache coherence protocols, they do not suffer additional

overhead in supporting strong isolation.

Another important advantage of HTM systems is that legacy code, such as C

libraries, can be called from transactional code without loss of atomicity since the

hardware detects data dependency violations regardless of source language. Since

STM systems require programmer or compiler annotations, transactional memory is

only provided to code managed by or annotated for the STM system but not legacy

code.

The primary advantage of software transactional memory is semantic flexibility.

It is easy to change implementations to pick the semantics right for a particular ap-

plication. For example, one particular workload might perform better with a lazy

optimistic system while another might prefer an eager pessimistic system. Another

example is that some applications may want strong isolation and others are fine with

weak isolation. Additionally, a specific application might want a TM implementa-

tion with extended semantic features. For example, one application might need to

use composable conditional waiting while another might simply need simple nested

transactions. With an HTM, typically certain choices such as conflict detection,

versioning, and isolation guarantees, are baked into the hardware implementation.

Other things such as support for transactional conditional waiting might be able to

be implemented on top of a lower level interface if it provides the right primitives.

2.4. EVALUATION ENVIRONMENT 13

Another advantage of software transactional memory is resource flexibility. Typi-

cally HTM systems have fixed resources that limit the size and number of concurrent

transactions, whereas STM systems are limited only by what memory is available

in the system. While a number of proposals exist to virtualize HTM resources, the

performance benefits of HTM are dependent on a given application’s ability to fit

within the resource limits of the hardware in the common case. It is worth noting

that additional cores and larger caches fueled by the new transistors provided by

Moore’s Law are likely to lessen this advantage of STM systems over time.

Another benefit of STM systems is granularity detection. Many STM systems

can detect data dependencies at the granularity of individual words. HTM systems

that depend on cache coherence protocols typically only detect data dependencies at

cache line granularity, which typically is eight words on today’s systems. Detecting

dependencies at this coarser cache line granularity means that two transactions up-

dating adjacent but unrelated fields in the same object will be detected as a violation.

Similar to the problem of false sharing, these false violations hurt performance but

not correctness.

Because of the advantage and disadvantages of each type of system, there are

hybrid approaches that try to combine the benefits of both worlds [19, 78, 35, 111].

While most hybrid systems try to focus on accelerating the common case, some try to

provide additional benefits such as strong isolation. Although not typically considered

hybrid systems, most HTM systems have now moved to implement functionality such

as contention management in software to allow more flexible policy decisions.

2.4 Evaluation Environment

Out of the many possible choices in creating a transactional memory system, the one

used as the baseline configuration for this dissertation has the following properties:

• strong isolation

• implicit transactions

• programming language integration

14 CHAPTER 2. CHOICES IN THE DESIGN OF A TM SYSTEM

• lazy versioning

• optimistic conflict detection

• multiprocessor implementation

• hardware transactional memory

The choices of strong isolation, implicit transactions, and programming language

integration were made based on what is important for the novice programmer con-

verting sequential code to parallel code for the first time. Strong isolation was chosen

to help prevent surprises when there are non-transactional accesses to shared data.

Implicit transactions make it easy to reuse existing code and libraries, allowing the

programmer to focus on their parallel application and not creating new transactional

libraries and runtime. Programming language integration eliminates unexpected in-

teractions with compiler optimizations.

The choices of lazy versioning, optimistic conflict detection, multiprocessor im-

plementation, and hardware transactional memory were made based on what would

provide the best performance for a HTM system [14]. If a programmer does not

see benefits from transactional memory in this environment, they are unlikely to see

benefits in a software-based system.

Although STM systems may provide more flexibility, the overhead during transac-

tions makes them more appropriate for replacing short critical sections for improved

scalability. Since my goal is to encourage programmers to use transactions for most

of the parallel program execution, hardware transactional memory makes sense from

a software engineering point of view as well.

The software environment used to provide programming language integration is

the Jikes Research Virtual Machine (JikesRVM) version 2.3.4. JikesRVM, formerly

known as the Jalapeño Virtual Machine, has performance competitive with commer-

cial virtual machines and is open source [7]. It provides an opportunity to explore

not just how transactions can benefit applications, but how they can impact the run-

time environment as well. For more details on the virtual machine environment see

Appendix B.

2.5. RELATED WORK 15

The HTM chosen to execute JikesRVM is a lazy, optimistic system described

in [90]. This system is an x86 simulator that provides a chip-multiprocessor con-

figuration with up to 32 processors with speculative private L1 and L2 caches as

well as a shared non-speculative L3 cache. For comparison with lock-based applica-

tions, the simulator also provides a MESI cache coherence environment with the same

cache hierarchy and parameters. For more details on the simulation environment see

Appendix A.

2.5 Related Work

Recent transactional hardware systems build on earlier hardware transactional mem-

ory work as well as thread-level speculation (TLS). Java programming with transac-

tions builds on earlier work on speculating through locks and transactional memory

in general.

2.5.1 Early Hardware Transactional Memory

Hardware transactional memory variants have now been around for almost twenty

years and have focused on multiprocessor implementations. Knight first proposed us-

ing hardware to detect data races in parallel execution of implicit transactions found

in mostly functional programming languages such as Lisp [74]. This proposal had two

of the important features of transactional memory: implicit transactions and strong

isolation. However, the transaction granularity was not made visible to the program-

mer, with each store acting as a commit point and executing in sequential program

order. Herlihy and Moss proposed transactional memory as a generalized version of

load-linked and store-conditional, meant for replacing short critical sections [61].

2.5.2 Thread Level Speculation

Thread level speculation (TLS) uses hardware support to allow speculative paralleliza-

tion of sequential code [52, 76, 120, 123]. TLS systems are similar to HTM systems

16 CHAPTER 2. CHOICES IN THE DESIGN OF A TM SYSTEM

in that they provide versioning and prevent data dependency violations. TLS sys-

tems allow only ordered execution, as opposed to HTM systems that typically allow

threads to commit in any order. Because TLS systems maintain a sequential exe-

cution order, there is always one thread that is non-speculative. TLS systems allow

speculative threads to communicate results to other speculative threads continuously.

This communication, known as forwarding, allows more speculative threads to see

results from less speculative threads. By comparison, HTM systems threads only see

committed data.

2.5.3 Speculating through Locks

Rajwar and Goodman proposed Speculative Lock Elision (SLE) [105]. SLE speculates

through lock acquisition, allowing concurrent execution using hardware support. If

a data dependency is detected, all involved processors roll back. Later, Rajwar and

Goodman extended SLE to create Transactional Lock Removal (TLR) which used

timestamps to avoid rolling back all processors, giving priority to the oldest out-

standing work [106].

Mart́ınez and Torrellas proposed Speculative Synchronization [87] based on TLS

hardware. It supports speculating not just through locks, but also barriers and flags.

These systems have the concept of a safe thread that is non-speculative, and that

thread has priority when data dependencies are detected, similar to TLR’s use of the

oldest timestamp.

SLE, TLR, and Speculative Synchronization build upon conventional cache co-

herence and consistency, similar to early hardware transactional memory and TLS.

TLR and Speculative Synchronization do not provide a way for the programmer to

override the forward progress guarantee to improve performance by using completely

unordered transactions in cases of load imbalance between threads.

The idea of speculating through locks has found its way into commercial hardware

such as systems with Vega processors from Azul Systems [31], as well as the upcoming

Rock processor from Sun Microsystems [125, 126].

2.5. RELATED WORK 17

2.5.4 Recent Hardware Transactional Memory

Recent systems such as TCC, UTM/LTM, VTM, XTM, and LogTM have relieved

earlier data size restrictions on transactions, allowing the development of continuous

transactional models [53, 8, 107, 29, 92]. TCC provides implicit transactions, strong

isolation, and some features for speculation and transactional ordering [51]. UTM

and LTM are related systems that both provide implicit transactions while focusing

on transactions larger than the available cache size. However, UTM and LTM differ in

isolation guarantees, with UTM providing weak isolation and LTM providing strong

isolation [11]. VTM provides implicit transactions and strong isolation, again with a

focus on supporting larger transactions. LogTM provides an eager versioning system

with pessimistic conflict detection, in contrast to the other systems mentioned which

have lazy versioning and optimistic conflict detection.

Most HTM systems generally layer speculative execution on top of a conventional

cache coherence and consistency protocol. In contrast, TCC completely replaces

the underlying coherence and consistency protocol, and transactions only make their

write state visible only at commit time, attempting to replace many small latency

sensitive coherence operations with fewer bandwidth sensitive operations, hopefully

taking advantage of the scaling of chip multiprocessor systems.

From a programming model perspective, most transactional memory systems do

not allow program control over transaction order. TCC allows unordered and ordered

transactions, including the use of both models simultaneously.

The preemption of processors with transactional state is a general problem faced

by hardware transactional memory systems. VTM addresses this issue by allowing all

of the hardware state associated with a transaction to be stored in virtual memory,

treating a context switch similar to an overflow of the hardware state. Software

transactional memory systems do not face any problems with preemption because

their transactional state is already stored in virtual memory.

18 CHAPTER 2. CHOICES IN THE DESIGN OF A TM SYSTEM

2.5.5 Software Transactional Memory

Shavit and Touitou first proposed a software-only approach to transactional memory,

but it was limited to static transactions where the data set is known in advance,

such as k-word compare-and-swap [115]. Herlihy et al. overcame this static limita-

tion with their dynamic software transactional memory work, which offered a Java

interface through library calls [60]. Harris and Fraser provide language support for

software transactional memory, allowing existing Java code to run as part of a transac-

tion and providing an efficient implementation of Hoare’s conditional critical regions

(CCRs) [55].

Unlike Shavit and Touitou, later systems support dynamic transactional memory.

Unlike Herlihy et al., Harris and Fraser can run unmodified code within transactions.

Unlike Harris and Fraser, hardware transactions can run both Java and native code

within a transaction, as well as support non-transactional operations within atomic

regions.

2.5.6 Semantics

Transactional Featherweight Java explores the soundness and serializability properties

of transactional memory models with both optimistic and pessimistic conflict detec-

tion [127, 66]. Harris et al. provide an operational semantics for the Haskell STM

system as part of introducing support for their orElse and retry constructs. Woj-

ciechowski provides an operational semantics for an isolation-only transaction system

that avoids the need for runtime rollback through compile-time checking [132]. Liblit

provides a much lower level assembly language operation semantics for the LogTM

system [83]. Moore and Grossman provide operations semantics for a variety of pos-

sible transactional memory systems exploring strong isolation and several versions of

weak isolation as well as three different thread creation semantics including nested

parallelism [93]. Abadi et al. provide the semantics of a new transactional memory

programming model called Automatic Mutual Exclusion, which creates parallelism

through asynchronous methods calls, rather than traditional threads [1].

Chapter 3

JavaT: Executing Java with TM

He who every morning plans the transaction of the day and follows out

that plan, carries a thread that will guide him through the maze of the

most busy life. But where no plan is laid, where the disposal of time is

surrendered merely to the chance of incidence, chaos will soon reign.

– Victor Hugo

Java is a modern, object-oriented programming language used for a range of appli-

cation workloads ranging from embedded devices to desktops to servers. One notable

feature of Java is that, unlike earlier languages such as C or C++, it was built from

the start with support for parallel programming. Combined with the fact that Java

is widely taught to undergraduate students, Java seems ideal as a starting place for

a transactional program language for novice parallel programmers.

This chapter discusses JavaT, a mapping of Java concurrency features to a trans-

actional execution model in order to run existing Java programs with transactions.

The discussion includes how transactions interact with the Java memory model, the

Java Native Interface, non-transactional operations, and exceptions. The impact of

transactions on Java programs is evaluated as well as the impact on virtual machines

used to run these programs.

19

20 CHAPTER 3. JAVAT: EXECUTING JAVA WITH TM

public static void main(String[] args){

a(); // a(); non-transactional

synchronized(x){ // BeginNestedTX();

b(); // b(); transactional

} // EndNestedTX();

c(); // c(); non-transactional

} //

Figure 3.1: Converting a synchronized statement into transactions.

3.1 JavaT: Mapping Java to Transactions

This section discusses JavaT’s mapping of various existing Java constructs into trans-

actions.

3.1.1 synchronized Statements

Java provides lock-based mutual exclusion though the synchronized statement which

consists of a lock expression and a block of statements to execute under the protection

of a lock. To execute a synchronized statement, the lock expression is evaluated to

yield an java.lang.Object, the lock associated with that object is acquired while the

block of statements is executed, after which the lock is released. When synchronized

statements are nested, each block protects its associated statements with the inner

lock protecting the inner statements and the outer lock held over all of its statements,

including the inner synchronized statement. Some notable differences from other

lock implementations are that every object has an associated lock so there is no need

for separate lock type as well as the block structure ensures that lock releases are

always pared with lock acquires.

Creating transactions from synchronized statements

When running with the JavaT model, synchronized statements are used to mark

transactions within a thread. A synchronized statement defines three transaction

regions: the non-transactional region before the statement, the transaction within

3.1. JAVAT: MAPPING JAVA TO TRANSACTIONS 21

public static void main(String[] args){

a(); // a(); non-transactional

synchronized(x){ // BeginNestedTX();

b1(); // b1(); transaction at level 1

synchronized(y){ // BeginNestedTX();

b2(); // b2(); transaction at level 2

} // EndNestedTX();

b3(); // b3(); transaction at level 1

} // EndNestedTX();

c(); // c(); non-transactional

} //

Figure 3.2: Converting nested synchronized statements into transactions.

the block, and the non-transactional region after the statement. As an example of

how transactions are created in a Java program, consider the simple program shown

in Figure 3.1. This program creates a single transaction surrounded by regions of

non-transactional code execution.

When synchronized statements are nested in JavaT, either within a method or

across method calls, the results of execution are only visible to other threads when

the outermost synchronized statement completes. This is referred to as a closed

nesting model [96]. As an example, consider the simple program shown in Figure 3.2.

The results of the child transaction nested at level 2 are only visible to other threads

when the parent transaction at level 1 completes.

Handling these nested transactions is important for composability. It allows the

atomicity needs of a caller and callee to be handled correctly without either method

being aware of the other’s implementation. The block structured style of synchro-

nized is fundamental to this, as it ensures that transaction begins and ends are

properly balanced and nested. Simply exposing a commit method to programmers

would allow a library routine to commit arbitrarily, potentially breaking the atomicity

requirements of a caller.

While nested transactions are necessary for composability, the runtime flattening

into a single transaction is not the only possibility. The database community has

explored alternatives, including nested transactions allowing partial rollback. Both

22 CHAPTER 3. JAVAT: EXECUTING JAVA WITH TM

HTM and STM systems can provide partial rollback [88, 101]. In fact, the need for

partial rollback support in building semantic concurrency control will be shown in

Chapter 5.

Lock expression unused in JavaT

Although synchronized statements are used to mark transactions, the actual lock

object specified is not used. That is because the transactional memory system will

detect any true data dependencies at runtime. In a purely transactional variant of

Java, one can imagine replacing synchronized statements with a simpler atomic

syntax omitting the lock variable as is done in other systems [55, 6, 27, 24]. In such a

system, programmers would not need to create a mapping between shared data and

the lock objects that protect them. Chapter 4 will look at the Atomos programming

language and compare its atomic syntax with Java synchronized statements.

The fact that the lock variables are not used points to a key advantage of trans-

actions over locks. In Java without transactions, there is not a direct link between a

lock object and the data it protects. Even well intentioned programs can mistakenly

synchronize on the wrong object when accessing data. With transactions, all data

accesses are protected, guaranteeing atomic semantics in all cases. There is no reason

for basic data structures to provide any synchronization, because the caller defines its

own atomicity requirements. Hence, programmers can write data structures without

resorting to complex fine-grained locking schemes to minimize the length of critical

sections.

Benefits of JavaT execution

The evolution of Java collection classes show how locking can complicate one of the

most commonly used data structure classes: the hash table. Java’s original Hashtable

used synchronized to guarantee internal consistency, which is important in a sandbox

environment. However, in JDK 1.2, a simpler non-locking HashMap was introduced,

since most applications needed to avoid the overhead of the implicit locking of the

original Hashtable. Recently, JDK 1.5 has complicated matters further by adding a

3.1. JAVAT: MAPPING JAVA TO TRANSACTIONS 23

String intern () {

synchronized (map){

Object o=map.get(this);

if (o!=null){

return (String)o;

}

map.put(this,this);

return this;

}

}

Figure 3.3: A string interning ex-
ample.

void handleRequest(

String id,

String command){

synchronized (sessions){

Session s =

sessions.get(id);

s.handle(command);

sessions.put(id,s);

}

}

Figure 3.4: Synchronizing on a Ses-

sion.

ConcurrentHashMap that allows multiple concurrent readers and writers.

A transactional memory model eliminates the need for this kind of complexity in

the common case. Consider the simple string interning example in Figure 3.3. With

JavaT transactional execution, there is no need to use anything other than the non-

locking HashMap since the caller specifies its atomicity requirements, creating a single

logical operation out of the Map get and put operations. Concurrent reads to the map

can happen in parallel. In addition, non-conflicting concurrent writes can happen in

parallel. Only conflicting and concurrent reads and writes cause serialization and this

is handled automatically by the transactional memory system, not the programmer.

Traditionally, users of synchronized statements are encouraged to make them as

short as possible to minimize blocking other threads’ access to critical sections. The

consequences of making the critical section too large is that processors often spend

more time waiting and less time on useful work. At worst, it can lead to complete

serialization of work. Consider the example code in Figure 3.4. Because of the

way this code is written with a synchronized statement around the entire routine,

a multithreaded web server becomes effectively single threaded, with all requests

pessimistically blocked on the sessions lock even though the reads and writes are

non-conflicting. Because a transactional system such as JavaT can optimistically

speculate through the lock, it does not have this serialization problem. Non-minimally

sized transactions do not cause performance problems unless their is actual contention

24 CHAPTER 3. JAVAT: EXECUTING JAVA WITH TM

synchronized int get(){

while (available == false)

wait();

available = false;

notifyAll();

return contents;

}

Figure 3.5: get code used by the
consumer.

synchronized void put(int i){

while (available == true)

wait();

contents = i;

available = true;

notifyAll();

}

Figure 3.6: put code used by the
producer.

within the transactions, unlike the serialization problems caused by a mutual exclusion

approach based on locks.

3.1.2 Object wait, notify, notifyAll Methods

When Java threads need exclusive access to a resource, they use synchronized state-

ments. When Java threads need to coordinate their work, they use wait, notify, and

notifyAll. Typically, these condition variable methods are used for implementing

producer-consumer patterns or barriers.

Consider the example of a simple producer-consumer usage of wait and notifyAll

derived from [18] shown in Figure 3.5 and in Figure 3.6. This code works in Java

as follows. When a consumer tries to get the contents, it takes the lock on the

container, checks for contents to be available, and calls wait if there is none,

releasing the lock. After returning from wait, the caller has reacquired the lock but

has to again check for contents to be available since another consumer may have

taken it. Once the data is marked as taken, the consumer uses notifyAll to alert

any blocking producers that there is now space to put a value. An analogous process

happens for producers with put.

Transactional semantics of Object.wait

In JavaT, the get method is synchronized so the method is run as a transaction. If

there is no data available and the reader needs to wait, it commits the transaction

3.1. JAVAT: MAPPING JAVA TO TRANSACTIONS 25

as if the synchronized statement was closed. This is analogous to the semantics of

wait releasing the lock and making updates visible. When the thread returns from

waiting, it starts a new transaction.

Because JavaT commits on wait, it also commits state from any outer synchro-

nized statements, potentially breaking atomicity of nested locks. One alternative

considered was using rollback, since that would preserve the atomicity of outer syn-

chronized statements and works for most producer-consumer examples. However,

many commonly used patterns for barriers would not work with rollback. Rollback

prevents all communication, but the existing Java semantics of wait are to release

a lock and make any changes visible. This loss of atomicity in outer synchronized

statements because of nesting is a common source of problems in existing Java pro-

grams as well [113].

Fortunately, the nesting of wait in synchronized statements is rare, since it

causes problems in existing Java programs as well. Java programmers are advised

not to place calls to wait within nested synchronized statements because when a

thread waits, it retains all but one lock while it is asleep [113]. By their very nature,

condition variables are used to coordinate the high-level interactions of threads, so it

is rare for them to be used deeply in library routines. For example, a survey of the

Apache Jakarta Tomcat web server version 5.5.8 does not reveal any wait calls nested

within an outer synchronized statement. Tomcat does have libraries for purposes

such as producer-consumer queuing that include uses of wait on an object with a

corresponding synchronized statement on the same object, but they are used only

for high-level dispatching and not called from synchronized statements on other

objects. A further example is in SPECjbb2000, which has one example of a barrier

where committing works and rollback would fail by causing all threads to wait.

The handling of wait is the thorniest problem in the transactional execution of

Java programs. If the system treats wait as a rollback, it then provides composable

transactional semantics but existing programs will not run. If the system treats wait

as a commit, it is easy to come up with contrived programs that will not match

the previous semantics. However, surveys of benchmarks and open-source systems

have not found an example that exhibits a problem treating wait as commit. In a

26 CHAPTER 3. JAVAT: EXECUTING JAVA WITH TM

programming language built with transactions in mind, the rollback semantics would

make more sense [27, 24]; all of the problematic examples requiring commit could be

rewritten to use rollback semantics and the atomicity of parent transactions would

be preserved.

3.1.3 volatile Fields

Java allows a field to be marked volatile which ensures that writes to the field are

visible to other threads and that reads see the latest value as well as providing some

ordering guarantees relative to other reads and writes. In JavaT, accesses to volatile

fields are treated as small transactions to ensure that top level updates are visible to

other threads. Unfortunately, when a volatile field is updated within a transaction

created by a synchronized statement, the update is deferred until the end of the

parent transaction. Fortunately, usually volatile fields are used as an alternative to

synchronized statements. Section 4.1.3 will describe how open-nested transactions

provide an alternative when immediate communication of volatile field updates is

required regardless of context.

3.2 Impact of Transactions on Java

This section discusses how transactions relate to several aspects of the Java program-

ming language.

3.2.1 Java Memory Model

A new Java memory model was recently adopted to better support various shared

memory consistency models [3, 104, 68]. The new model has been summarized in [55]

as follows:

if a location is shared between threads, either:

(i). all accesses to it must be controlled by a given mutex, or

(ii). it must be marked as volatile.

3.2. IMPACT OF TRANSACTIONS ON JAVA 27

These rules, while overly simplified, are an excellent match for transactional exe-

cution as well as an easy model for programmers to understand. The Java memory

model ties communication to synchronized and volatile code. In JavaT, these

same constructs are used to create transactions working with shared data.

Run-time violation detection can be used to detect programs that violate these

rules, an advantage of systems with strong isolation. For example, non-transactional

code might be violated, indicating that a location is shared between threads without

being protected by a synchronized statement or volatile keyword. Alternatively,

a transaction can be violated by non-transactional code. While the strong isolation

property guarantees that such violations are detected, other systems that only offer

weak isolation do not define the interaction between code inside transactions and code

outside transactions. Therefore, in the interest of portability, a system with strong

isolation may want to report violations between transactional and non-transactional

code.

3.2.2 Java Native Interface

The Java Native Interface (JNI) allows Java programs to call methods written in

other programming languages, such as C [82]. Software transactional memory systems

typically forbid most native methods within transactions [55]. This is because those

systems only can control the code compiled by their own compiler and not any code

within pre-compiled native libraries. While some specific runtime functions can be

marked as safe or rewritten to be safe, this places a lot of runtime functionality in

the non-transactional category.

This limitation of software transactional memory systems destroys the compos-

ability and portability of Java software components. Code within synchronized

statements cannot call methods without understanding their implementation. For

example, an application using JDBC to access a database needs to know if the driver

uses JNI. Even “100% Pure Java” drivers may use java.* class libraries that are

supported by native code. Therefore, code carefully written to work on one Java

virtual machine may not work on another system, since the language and library

28 CHAPTER 3. JAVAT: EXECUTING JAVA WITH TM

specifications only consider nativeness to be an implementation detail and not part

of the signature of a method.

On the other hand, hardware transactional memory systems do not suffer from

this limitation, since they are source-language neutral. Transactions cover memory ac-

cesses both by Java and native code. This allows programmers to treat code that tra-

verses both Java and native code together as a logical unit, without implementation-

specific restrictions.

3.2.3 Non-transactional Operations

Certain operations are inherently non-transactional, such as I/O operations. Many

transactional memory systems simply consider it an error to perform a non-transac-

tional operation within a transaction. This certainly would prevent correct execution

of existing Java programs.

A simple approach is to allow only one indivisible transactions to run non-trans-

actional operations at a time. Other transactions that do not need to run non-

transactional operations may continue to execute in parallel, but cannot commit.

Once the indivisible transactions that performed the non-transactional operation

commit, other transactions may then commit or begin their own non-transactional

operations. This approach generally works with current Java programs. In contrast,

the other, more advanced approaches presented below require changes in applications,

libraries, or the underlying runtime. JavaT takes the simple approach of serializing

non-transactional operations with more sophisticated approaches to be discussed in

Appendix C.

There are several classes of non-transactional operations. Most non-transactional

operations are concerned with I/O. However, some operations, such as asking for the

current time, may be deemed safe for use within transactions without being consid-

ered “non-transactional” operations. Another common non-transactional operation is

thread creation. Although alternative and more complex models could support rolling

back of thread creation, this is of little practical value. As in the above example of

nesting conditional waiting within existing transactions, it seems better to consider

3.2. IMPACT OF TRANSACTIONS ON JAVA 29

try {

a();

synchronized(x){

b1();

b2();

b3();

}

c();

}

catch (IOException e){

d();

synchronized(y){

e1();

e2();

e3();

}

f();

}

finally {

g();

}

a.) Example Code

a();

BeginNestedTX();

b1();

b2();

b3();

EndNestedTX();

c();

g();

b.) No Exceptions

a();

BeginNestedTX();

b1();

b2();

EndNestedTX();

d();

BeginNestedTX();

e1();

e2();

EndNestedTX();

g();

c.) Exceptions

Figure 3.7: Example of intermixing transactions and exceptions. a.) A try-catch
construct containing synchronized statements. b.) Runtime transactions created by
the non-exceptional case from code. c.) Runtime transactions created when excep-
tions are thrown from b2() and e2().

thread creation a high-level operation that rarely occurs within nested synchronized

statements and forbid its use to simplify the JavaT model.

3.2.4 Exceptions

Transactions and exceptions as treated as orthogonal mechanisms. Most exceptions

in practice are IOExceptions or RuntimeExceptions. Since the rollback of non-

transactional operations cannot be guaranteed, the exception handling follows the

flow of control as expected by today’s Java programmers. Figure 3.7a illustrates an

30 CHAPTER 3. JAVAT: EXECUTING JAVA WITH TM

Feature Transactional interpretation

synchronized & volatile nested transactions
Object.wait transaction commit in addition to wait

Object.notify[all] no change
Java Memory Model simplified interpretation from [55]
Java Native Interface (JNI) no change
I/O operations serialize I/O transactions
Thread.start only allowed outside of synchronized
Exceptions no change

Table 3.1: Rules for the execution of Java programs with transactional memory.

example. If no exceptions are thrown, the code produces the transactions shown in

Figure 3.7b. On the other hand, if b2() throws an IOException and e2() throws a

RuntimeException, the code is equivalent to Figure 3.7c. This is exactly the same

control flow as current Java exception handling.

3.3 Evaluation of JavaT

In this section the performance of existing Java programs running on a traditional

multiprocessor using snoopy cache coherence is compared with the same applications

converted to run on a chip multiprocessor supporting a lazy versioning, optimistic

conflict detecting hardware transactional memory. Table 3.1 provides a summary of

the JavaT rules described in Section 3.1 and Section 3.2. Details about the CMP sim-

ulator and the JikesRVM environment can be found in Appendix A and Appendix B

respectively.

3.3.1 Benchmarks

The collection of benchmarks summarized in Table 3.2 was used to evaluate running

applications with both Java and JavaT semantics. The single-processor version with

locks is used as the baseline for calculating the percentage of normalized execution

time, with a lower percentage indicating better performance.

The micro-benchmarks are based on transactional memory work from Hammond [51]

3.3. EVALUATION OF JAVAT 31

Benchmark Description Input Lines
TestHistogram [51] histogram of test scores 8,000 scores 331
TestHashtable [55] threaded Map read/write 4,000 get, 4,000 put 398
TestCompound [55] threaded Map swaps 8,000 swaps 445
SPECjbb2000 [121] Java Business Benchmark 736 transactions 30,754
Series [67] Fourier series 100 coefficients 413
LUFact [67] LU factorization 320×320 matrix 1,074
Crypt [67] IDEA encryption 32,000 bytes 690
SOR [67] successive over relaxation 100×100 grid 327
SparseMatmult [67] sparse matrix multiplication 5000×5000 matrix, 100 iter 321
MolDyn [67] N-body molecular dynamics 256 particles, 10 iter 930
MonteCarlo [67] financial simulation 160 runs 3,207
RayTracer [67] 3D ray tracer 32x32 image 1,489

Table 3.2: Summary of benchmark applications including source, description, input,
and lines of code.

and Harris [55]. SPECjbb2000 [121] was included as a server benchmark while Java

Grande kernels and applications provide numerical benchmarks [67].

3.3.2 TestHistogram

TestHistogram is a micro-benchmark to demonstrate transactional programming from

Hammond [51]. Random numbers between 0 and 100 are counted in bins. When

running with locks, each bin has a separate lock to prevent concurrent updates. When

running with JavaT, each update to a bin is one transaction.

Figure 3.8 shows the results from TestHistogram. While the locking version does

exhibit scalability over the single-processor baseline, the minimal amount of computa-

tion results in significant overhead for acquiring and releasing locks, which dominates

time spent in the application. The transactional version eliminates the overhead of

locks and demonstrates scaling to 8 CPUs; transactions allow optimistic specula-

tion while locks caused pessimistic waiting. However, at 16 CPUs lock scalability

starts to be limited by the communication limits of a shared bus due to the high

communication-to-computation ratio. Transaction performance also degrades at 8

CPUs, again due to the high communication-to-computation ratio, which is com-

pounded by the fact that the evaluation HTM does not have a parallel commit proto-

col, causing the increasing number of threads to simply serialize during their commit

32 CHAPTER 3. JAVAT: EXECUTING JAVA WITH TM

CPUs
1 2 4 8 16 32

S
pe

ed
up

0

1

2

3

4

5

6

Java

JavaT

Figure 3.8: TestHistogram creates a histogram of student test scores. Results compare
speedup of locks and transactions between 1–32 CPUs.

phase. Parallel commit protocols to scale HTM implementations have been explored

in other work [26].

3.3.3 TestHashtable

TestHashtable is a micro-benchmark that compares different java.util.Map imple-

mentations. Multiple threads contend for access to a single Map instance. The threads

run a mix of 50% get and 50% put operations. The number of processors is varied

from 1 to 32 and speedup is measured over the single-processor case with locks.

When running with Java locks, three different Map implementations are compared:

the original synchronized Hashtable, a HashMap synchronized using the Collections

class’s synchronizedMap method, and a ConcurrentHashMap from util.concurrent

Release 1.3.4 [81]. Hashtable and HashMap use a single mutex, while Concurren-

tHashMap uses finer grained locking to support concurrent access. When running with

JavaT transactions, each HashMap operation is within one transaction.

Figure 3.9 shows the results from TestHashtable. The Java results using locks for

3.3. EVALUATION OF JAVAT 33

CPUs
1 2 4 8 16 32

S
pe

ed
up

0

2

4

6

8

10

12

14

16

Java HM

Java HT

Java CHM

JavaT HM

Figure 3.9: TestHashtable performs a 50%-50% mix of Map get and put opera-
tions. Results compare various Map implementations between 1–32 CPUs. Key:
Java HM=HashMap with a single caller lock, Java HT=Hashtable with a single in-
ternal lock, Java CHM=ConcurrentHashMap with fine-grained internal locks, JavaT
HM=HashMap with a single transaction.

34 CHAPTER 3. JAVAT: EXECUTING JAVA WITH TM

HashMap (HM) and Hashtable (HT) show the problems of scaling when using a sim-

ple critical section on traditional multiprocessors. Both Hashtable and the synchro-

nizedMap version of HashMap actually slow down as more threads are added. While

ConcurrentHashMap (CHM Fine) shows that fine-grained locking implementation is

scalable up to 16 CPUs in this hardware design, this implementation requires signif-

icant complexity. With JavaT and transactions, TestHashtable can use the simple

HashMap with the same critical region as ConcurrentHashMap and achieve similar scal-

ability. Again scalability for 32 CPUs is limited by communication-to-computation

ratio.

3.3.4 TestCompound

TestCompound is a micro-benchmark that compares the same Map implementations

as TestHashtable. Again the threads contend for access to a single object instance,

but this time instead of performing a single atomic operation on the shared instance,

they need to perform four operations to swap the values of two keys. Two experiments

are used to demonstrate both low-contention and high-contention scenarios: the low-

contention case uses a 32k element table and the high-contention case uses a 8k

element table.

The same basic Map implementations are used as before with TestHashtable. For

Hashtable and HashMap, the critical section uses the Map instance as the lock. For

ConcurrentHashMap, two variations of the benchmark are used representing coarse-

grained locking and fine-grained locking. The coarse-grained locking variation uses

the Map instance as a lock, as with Hashtable and HashMap. The fine-grained locking

variation uses the keys of the values being swapped as locks, being careful to order

the acquisition of the locks to avoid deadlock.

Figure 3.10a shows the results of TestCompound with low contention for locks.

Again, running HashMap and Hashtable with a single lock show the problems of sim-

ple locking in traditional systems. Furthermore, the coarse-grained version of Con-

currentHashMap (CHM Coarse) demonstrates that simply getting programmers to

3.3. EVALUATION OF JAVAT 35

CPUs
1 2 4 8 16 32

S
pe

ed
up

0

5

10

15

20

25

30

Java HM

Java HT

Java CHM Coarse

Java CHM Fine

JavaT HM

a.) TestCompound with low key contention

CPUs
1 2 4 8 16 32

S
pe

ed
up

0

5

10

15

20

25

30

Java HM

Java HT

Java CHM Coarse

Java CHM Fine

JavaT HM

b.) TestCompound with high key contention

Figure 3.10: TestCompound performs four Map operations as a single compound op-
eration to atomically swap the values of random keys. The low-contention version on
the top uses 32k keys so there is low contention for any given key. The high-contention
version on the bottom uses 8k keys. Results compare various Map implementations be-
tween 1–32 CPUs. Key: Java HM=HashMap with a single lock, Java HT=Hashtable

with a single lock, Java CHM Coarse=ConcurrentHashMap with a single lock, Java
CHM Fine=ConcurrentHashMap with fine-grained key locking, JavaT HM=HashMap

with a single transaction.

36 CHAPTER 3. JAVAT: EXECUTING JAVA WITH TM

use data structures designed for concurrent access is not sufficient to maximize appli-

cation performance. With Java locking, the application programmer must understand

how to use fine-grained locking in their own application to properly take advantage

of such data structures. As the number of threads is increased, these applications

with coarse-grained locks do not continue to scale, and as shown, often perform worse

than the baseline case. Only fine-grained version of ConcurrentHashMap compares

favorably with JavaT transactions. JavaT transactions have a performance advan-

tage due to speculation. More importantly, JavaT transactions are able to beat the

performance of fine-grained locks using only the most straightforward code consisting

of a single synchronized statement and the unsynchronized HashMap. Hence, JavaT

allows programmers to write simple code focused on correctness that performs better

than complex code focused on performance.

Figure 3.10b shows the results of TestCompound with high contention for locks.

The locking version of Hashtable, HashMap, and coarse-grained ConcurrentHashMap

all perform similarly to the low-contention case. Fine-grained Java Concurren-

tHashMap and JavaT transactional performance are both degraded from the low-

contention case because of lock contention and data dependency violations.

3.3.5 SPECjbb2000

SPECjbb2000 is a server-side Java benchmark, focusing on business object manipu-

lation. I/O is limited, with clients replaced by driver threads and database storage

replaced with in-memory B-trees. The main loop iterates over five application trans-

action types: new orders, payments, order status, deliveries, and stock levels. New

orders and payments are weighted to occur ten times more often than other transac-

tions and the actual order of transactions is randomized. The default configuration

that varies the number of threads and warehouses from 1 to 32 was used, although

the measurement was for a fixed number of 736 application-level transactions instead

of a fixed amount of wall clock time.

Figure 3.11 shows the results from SPECjbb2000. Both Java locking and JavaT

transactional versions show linear speedup in all configurations because there is very

3.3. EVALUATION OF JAVAT 37

CPUs
1 2 4 8 16 32

S
pe

ed
up

0

5

10

15

20

25

30

35

Java

JavaT

Figure 3.11: SPECjbb2000 results between 1–32 CPUs.

little contention between warehouse threads. However, the Java locking version is

slightly slower in all cases because it must still pay the locking overhead to protect

itself from the 1% chance of an inter-warehouse order. Most importantly, the JavaT

transactional version of SPECjbb2000 did not need any manual changes to achieve

these results; automatically changing synchronized statements to transactions and

committing on Object.wait() was sufficient.

3.3.6 Java Grande

Java Grande provides a representative set of multithreaded kernels and applications.

These benchmarks are often Java versions of benchmarks available in C or Fortran

from suites such as SPEC CPU, SPLASH-2, and Linpack. The input sizes were shown

previously in Table 3.2.

Figure 3.16–Figure 3.12 show the results from the Java Grande section 2 kernel

programs. These highly-tuned kernels show comparable scaling when run with trans-

actions. The transactional version of SOR is slightly slower than the lock version at

38 CHAPTER 3. JAVAT: EXECUTING JAVA WITH TM

CPUs
1 2 4 8 16 32

S
pe

ed
up

0

2

4

6

8

10

12

14

Java

JavaT

Figure 3.12: SOR Java Grande Forum section 2 kernel results between 1–32 CPUs.

CPUs
1 2 4 8 16 32

S
pe

ed
up

0

5

10

15

20

25

30

35

Java

JavaT

Figure 3.13: SparseMatmult Java Grande Forum section 2 kernel results between
1–32 CPUs.

3.3. EVALUATION OF JAVAT 39

CPUs
1 2 4 8 16 32

S
pe

ed
up

0

2

4

6

8

10

Java

JavaT

Figure 3.14: LUFact Java Grande Forum section 2 kernel results between 1–32 CPUs.

CPUs
1 2 4 8 16 32

S
pe

ed
up

0

5

10

15

20

25

30

35

40

Java

JavaT

Figure 3.15: Crypt Java Grande Forum section 2 kernel results between 1–32 CPUs.

40 CHAPTER 3. JAVAT: EXECUTING JAVA WITH TM

CPUs
1 2 4 8 16 32

S
pe

ed
up

0

2

4

6

8

10

12

14

16

18

Java

JavaT

Figure 3.16: Series Java Grande Forum section 2 kernel results between 1–32 CPUs.

16 CPUs because of commit overhead, but as the number of threads increases, lock

overhead becomes a factor for the version with locks. Transactions and locks perform

equally well on SparseMatmult, LUFact, and Crypt, with Java lock overhead and

violations having comparable cost as threads are added. The JavaT transactional

version of Series has similar scaling to the lock-based version, but consistently higher

performance due to the lower overhead of transactions compared to locks.

Figure 3.17–Figure 3.19 show the results from the Java Grande section 3 ap-

plication programs. MolDyn has limited scalability for both Java locks and JavaT

transactions, with a slightly higher peak speedup for transactions at 8 CPUs. Monte-

Carlo exhibits scaling with both Java locks and JavaT transactions, but with a slight

performance edge for transactions at 32 CPUs. RayTracer is similar to the kernels

SparseMatmult, LUFact, and Crypt, with nearly indentical performance for JavaT

transactions and Java locks.

Three Java Grande benchmarks, LUFact, MolDyn, and RayTracer, use a com-

mon TournamentBarrier class that did not use synchronized statements but in-

stead volatile variables. Each thread that enters the barrier performs a volatile

3.3. EVALUATION OF JAVAT 41

CPUs
1 2 4 8 16 32

S
pe

ed
up

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Java

JavaT

Figure 3.17: MolDyn Java Grande Forum section 3 application results between 1–32
CPUs.

CPUs
1 2 4 8 16 32

S
pe

ed
up

0

5

10

15

20

25

30

Java

JavaT

Figure 3.18: MonteCarlo Java Grande Forum section 3 application results between
1–32 CPUs.

42 CHAPTER 3. JAVAT: EXECUTING JAVA WITH TM

CPUs
1 2 4 8 16 32

S
pe

ed
up

0

2

4

6

8

10

12

14

16

Java

JavaT

Figure 3.19: RayTracer Java Grande Forum section 3 application results between
1–32 CPUs.

write to indicate its progress and then busy waits to continue. Without the JavaT

transactional interpretation of volatile, this write is not necessarily visible to other

threads, and the usual result is that all threads loop forever, believing they are the

only one to have reached the barrier. SOR had a similar usage of volatile variables

that also worked correctly with the JavaT transactional rules.

3.4 Related Work

3.4.1 Speculating through Locks

JavaT’s approach of converting lock regions into transactions is based on earlier work

on lock speculation, which was covered earlier and in more detail in Section 2.5.3.

Earlier TLS hardware based speculation, such as SLE, TLR, and Speculative Synchro-

nization, had to detect updates to lock variables to avoid data dependency values on

the lock implementation itself [105, 106, 87]. JavaT does not need to do this because

3.4. RELATED WORK 43

the JIT compiler can emit HTM primitives for the monitorenter and monitorenter

bytecodes. Azul’s Java virtual machine follows a similar approach of using a combina-

tion of JIT and HTM support, although because they have to ensure Java semantics,

they have to fall back to running with locks when condition variables are used [31].

Past studies trying to predict the behavior of transactional programs have focused

converting lock-based critical sections to transactions. Ananian et al. studied sequen-

tial SPECjvm98 Java applications to try and understand the use of locks in existing

programs [8]. Their results show that sequential Java programs hold locks for long

periods of time, showing the need for HTM virtualization to support working sets

larger than possible with on-chip caches. Chung et al. looked at a wider selection of

Java, Pthread, and OpenMP applications from such benchmark suites as JavaGrande,

SPECjbb2000, DaCapo, SPEComp, NAS, SPLASH, and SPLASH-2 [30]. These re-

sults found that in the common case the need for virtualization was rare, suggesting

that software-based virtualization may be sufficient. However, in most cases these

applications were already parallel, suggesting that they had already been optimized

to minimize the use and length of critical sections.

3.4.2 Java with TM

Java has been a popular language for exploring transactional memory.

Herlihy et al. provided DSTM, a Java library based STM which requires Java

objects to be explicitly made part of transactions [60]. DSTM2 updates this system

with a more flexible factory based interface [59].

Welc et al. provide transactional monitors in Java through JikesRVM compiler ex-

tensions, treating Object.wait() as a thread yield without committing [131]. Unlike

Welc et al., JavaT can run code containing conditional variables such as barriers that

require communication on Object.wait().

Saha et al. provide McRT, an STM runtime that can supports Java through the

Intel’s ORP virtual machine, as well as C and C++ programs through a library

interface [112]. Adl-Tabatabai et al. later showed how an optimizing compiler can

eliminate many unnecessary STM operations for greater performance [2].

44 CHAPTER 3. JAVAT: EXECUTING JAVA WITH TM

Hindman and Grossman provided AtomJava as the first STM to provide strong

isolation [62]. Later work by Shpeisman et al. showed how program analysis could

significantly reduce the costs of providing strong isolation in an STM [118].

Grossman et al. explored potential issues in interactions between memory models

such as Java’s and transactional memory, covering issues beyond the simplified model

from Section 3.2.1 [48].

3.4.3 Other Languages with TM

Harris et al. explored integrating software transactional memory with Concurrent

Haskell [56]. Haskell is a mostly functional programming language where most mem-

ory operations do not need to be part of the rollback state.

Herlihy, who original worked on HTM and the DSTM library for Java mentioned

above, also provided SXM, a Software Transactional Memory for the C# program-

ming language [58].

Marathe et al. provided RSTM which is a library based STM for C++ [86]. Al-

though later versions have improved the library interface in order to improve pro-

gramability, a later paper notes the limitations of the library based approach [34].

Dice et al. provide the TL2 library for C++ [38]. It has been used in the evaluation

of the STAMP transactional benchmark suite [122].

Ringenburg and Dan Grossman’s AtomCaml is notable for its uniprocessor imple-

mentation that provides atomicity through rollback [109]. Kimball and Dan Gross-

man’s AtomScheme explores the multiple possible semantics of integrating transac-

tions with first-class continuations [73].

All three of DARPA’s High-Productivity Computing System (HPCS) language

proposals included support for an atomic construct for transactional memory. This

includes Cray’s Chapel [33], IBM’s X10 [27], and Sun’s Fortress [6].

3.5. CONCLUSION 45

3.5 Conclusion

JavaT provides some simple rules to evaluate transactional memory using existing

Java programs. The microbenchmarks show that naive code can perform as well with

transactions as specially designed code does with fine-grained locking. The Java-

Grande and SPECjbb2000 results show that transactional memory can compete with

locks on performance when translating fine-grained synchronization to transactions

in well optimized Java programs. However, it was also shown that the pure transac-

tional execution of Java programs can not be backward compatible due to lock-based

condition variables. Chapter 4 will explore the Atomos transactional programming

language that addresses this issue, as well as exploring the potential performance

problems of larger transactions on both programming language design and imple-

mentation.

46 CHAPTER 3. JAVAT: EXECUTING JAVA WITH TM

Chapter 4

The Atomos Transactional

Programming Language

The devil is in the details.

– Anonymous

This chapter presents the Atomos transactional programming language, which was

the first to include implicit transactions, strong isolation, and a scalable multiproces-

sor implementation. Atomos is derived from Java, but replaces its synchronization

and conditional waiting constructs with transactional alternatives.

The Atomos conditional waiting proposal is tailored to allow efficient implemen-

tation with the limited transactional contexts provided by hardware transactional

memory. There have been several proposals from the software transactional memory

community for conditional waiting primitives that take advantage of transactional

conflict detection for efficient wakeup [55, 56]. By allowing programmers more con-

trol to specify their conditional dependencies, Atomos allows the general ideas of these

earlier proposals to be applied in both hardware and software transactional memory

environments.

Atomos supports open-nested transactions, which were found necessary for build-

ing both scalable application programs and virtual machine implementations. Open

nesting allows a nested transaction to commit before its parent transaction [88, 99].

This allows for parent transactions to be isolated from possible contention points in a

47

48 CHAPTER 4. ATOMOS TRANSACTIONAL PROGRAMMING LANGUAGE

more general way than other proposals like early release, which only allows a program

to remove a location from its read-set to avoid violations [33].

4.1 Atomos = Java - Locks + TM

The Atomos programming language is derived from Java by replacing locking and

conditional waiting with transactional alternatives. The basic transactional seman-

tics are then extended through open nesting to allow programs to communicate be-

tween uncommitted transactions. Finally, commit and abort callbacks are provided

so programs can either defer non-transactional operations until commit or provide

compensating operations on abort.

4.1.1 Transactional Memory with Closed Nesting

Transactions are defined by an atomic statement similar to other transactional mem-

ory proposals [55, 27, 6, 33]. Because Atomos specifies strong isolation, statements

within an atomic statement appear to have a serialization order with respect to other

transactions as well as to reads and writes outside of transactions; reads outside of a

transaction will not see any uncommitted data and writes outside a transaction can

cause a transaction to roll back. Here is a simple example of an atomic update to a

global counter:

atomic { counter++; }

Nested atomic statements follow closed-nesting semantics, meaning that the outer-

most atomic statement defines a transaction that subsumes the inner atomic state-

ment. When a nested transaction commits, it merges its read- and write-sets with its

parent transaction. When a transaction is violated, only it and its children need to

be rolled back; the parent transaction can then restart the nested child.

The use of atomic statements conceptually replaces the use of synchronized

statements. Studies show that this is what programmers usually mean by synchro-

nized in Java applications [42]. However, this is not to say that programmers can

4.1. ATOMOS = JAVA - LOCKS + TM 49

blindly substitute one statement for the other, as it can affect the semantics of existing

code [11]. Fortunately, this does not seem to be a common problem in practice [21, 20].

The concept of the volatile field modifier is replaced with an atomic field modi-

fier as proposed in Chapel [33]. Fields marked with the atomic modifier are accessed

as small closed-nested transactions that may be top-level or nested as specified above.

This serves one purpose of volatile, since it restricts the reordering of access be-

tween top-level transactions. However, another purpose of transactions is to force

visibility of updates between threads. This usage of volatile is discussed below in

Section 4.1.3 on reducing isolation between transactions.

Atomos prohibits starting threads inside of transactions. This eliminates the

semantic questions of nested parallelism where multiple threads could run within a

single transactional context. Other proposals are also exploring such semantics, but

there does not seem to be a consensus about the practical usefulness or the exact

semantics of this feature [85, 36, 93].

4.1.2 Fine-Grained Conditional Waiting

Atomos conditional waiting follows the general approach of an efficient Conditional

Critical Region (CCR) implementation: a program tests some condition, and finding

it false, waits to restart until it has reason to believe the condition might now be

true [55]. One nice semantic property of CCRs is that the waiting thread does not

need to coordinate a priori with other threads that might be affecting the condition.

Unfortunately, this lack of connection between waiting threads and modifying threads

historically led to problematic performance for CCRs because either the condition was

reevaluated too often, resulting in polling-like behavior, or not often enough, resulting

in delayed wakeup. Transactional memory has made CCRs efficient by using the read-

set of the transaction as a tripwire to detect when to reevaluate the condition; when

a violation of the read-set is detected, another transaction has written a value that

was read as part of evaluating the condition, so there is some reason to believe that

the value of the condition has changed.

One problem with this approach is that it requires a transactional context with

50 CHAPTER 4. ATOMOS TRANSACTIONAL PROGRAMMING LANGUAGE

public int get (){
synchronized (this) {

while (!available)
wait();

available = false;
notifyAll();
return contents;}}

public void put(int value){
synchronized (this) {

while (available)
wait();

contents = value;
available = true;
notifyAll();}}

public int get() {
atomic {

if (!available) {
watch available;
retry;}

available = false;
return contents;}}

public void put (int value) {
atomic {

if (available) {
watch available;
retry;}

contents = value;
available = true;}

Figure 4.1: Comparison of producer-consumer in Java (left) and Atomos (right). The
Java version has an explicit loop to retest the condition where the Atomos rollback
on retry implicitly forces the retesting of the condition. Java requires an explicit no-
tification for wakeup where Atomos relies on the violation detection of the underlying
transactional memory system.

a potentially large read-set to remain active to listen for violations even while the

thread has logically yielded. While this can scale well for software transactional

memory systems that maintain such structures in memory, it is problematic for hard-

ware transactional memory systems with a limited number of hardware transactional

contexts, typically one per processor.

Atomos refines this general approach by allowing a program to specify a watch-set

of locations of interest using the watch statement. After defining the watch-set, the

program calls retry to roll back and yield the processor. The implementation of the

retry statement communicates the watch-set to the scheduler, which then listens for

violations on behalf of the now yielded thread. By rolling back, retry allows the

waiting thread to truly yield both its processor resource and transactional context

for use by other threads. Violation of the watch-set and restart of waiting threads

are transparent to the writing thread, which does not need to be concerned about

a separate explicit notification step as is necessary in most lock-based conditional

waiting schemes.

Figure 4.1 shows a simple producer-consumer example derived from Sun’s Java

4.1. ATOMOS = JAVA - LOCKS + TM 51

synchronized (lock) {
count++;
if (count != thread_count)

lock.wait();
else

lock.notifyAll();}

atomic {
count++;}

atomic {
if (count != thread_count) {

watch count;
retry;}}

Figure 4.2: Comparison of a barrier in Java (left) and Atomos (right). count is
initialized to zero for new barriers. The Java version implicitly has two critical regions
since the wait call releases the monitor. In Atomos, the two critical regions are
explicit.

Tutorial to compare and contrast Java’s conditional variables with Atomos’s watch

and retry [18]. Although these two versions seem very similar, there are notable

differences. First, note that Java requires an explicit association between a lock,

in this case this, and the data it protects, in this case available and contents.

Atomos transactions allow the program to simply declare what they want to appear

atomic. Second, Java’s wait releases the lock making side effects protected by the lock

visible. Instead, Atomos’s retry reverts the transaction back to a clean state. Third,

because Atomos reverts back to the beginning of the transaction, the common Java

mistake of using an if instead of a while in testing the condition is eliminated, since

calling retry ensures that the program will always reevaluate the condition. Finally,

Java requires an explicit notify to wake up waiting threads, where Atomos relies on

implicit violation handling. This reduces the need for coordination and allows threads

to wait for conditions without defining a priori conventions for notification.

To understand why this third difference is important, consider Figure 4.2 which

shows an example derived from Java Grande’s SimpleBarrier [67]. As noted above,

Java wait will release the lock and make the updated count visible to other threads.

However, replacing Java wait with Atomos retry would cause the code to roll back,

losing the count update. All threads would then think they were first to the bar-

rier and the program will hang. To create a transactional version, the code needs

to be rewritten to use two transactions: one that updates the count and another

that watches for other threads to reach the barrier. Code with side effects before

conditional waiting is not uncommon in existing parallel code, as a similar example is

52 CHAPTER 4. ATOMOS TRANSACTIONAL PROGRAMMING LANGUAGE

given in Sun’s Java Tutorial [18]. SPECjbb2000 also contains such an example with

nested synchronized statements [121]. Fortunately, although they share a common

pattern, such examples make up a very small fraction of the overall program and are

generally easy to rewrite.

4.1.3 Open Nesting

Basic transactional behavior depends on the detection of conflicting read- and write-

sets. However, in the world of databases, transactions often reduce their isolation from

each other to gain better performance. Chapel [33] provides an early release construct,

which is intended to prevent unwanted dependencies between transactions. Atomos

takes a different approach by providing open nesting, which allows communication

from within uncommitted transactions while still providing atomicity guarantees for

updates made within the transaction.

The open statement allows a program to start an open-nested transaction. Where

a closed-nested transaction merges its read- and write-set into its parent at commit

time, an open-nested transaction commit always makes its changes globally visible

immediately. For example, in Figure 4.3 when TE commits, its updates are made

visible to both other transactions in the system as well as its parent, TD. In contrast,

when closed-nested transactions such as TB and TC commit, their changes are only

made available to their parent, TA. Only when the parent TA commits are changes

from TB and TC made visible to the rest of the system. Like closed-nested transac-

tions, the violation of an open-nested child does not roll back the parent, allowing

the child to be resumed from its starting point, minimizing lost work.

Open-nesting semantics can seem surprising at first, since changes from the par-

ent transaction can be committed if they are also written by the open-nested child

transaction, seemingly breaking the atomicity guarantees of the parent transaction.

However, in the common usage of open-nested transactions, the write-sets are typi-

cally disjoint. This can be enforced through standard object-oriented encapsulation

techniques as discussed in Chapter 5.

To see how open-nested transactions are useful to application programs, consider

4.1. ATOMOS = JAVA - LOCKS + TM 53

atomic
begin

atomic
begin

Ti
m

e

TB

TC

TA

TD

TE

1 2

1 2

3

3

1 3 4

4

4

Closed
Nesting

Open
Nesting

atomic
end

atomic
begin

atomic
end

atomic
end

atomic
begin

open
begin

open
end

atomic
end

Commit transaction’s write data to memory.3

Discard transaction’s read-/write-set.4

1 Merge child’s write data with parent.

Merge child’s read-/write-set with parent’s.2

Figure 4.3: Timeline of three nested transactions: two closed-nested and one open-
nested. Merging of data (Ê and Ì) and read-/write-sets (Ë and Í) is noted at the
end of each transaction.

54 CHAPTER 4. ATOMOS TRANSACTIONAL PROGRAMMING LANGUAGE

an example of generating unique identifiers for objects using a simple counter derived

from SPECjbb2000 [121]. A program may want to create objects, obtain a unique

identifier, and register the object atomically as sketched in the following code:

public static int generateID {

atomic {

return id++;}}

public static void createOrder (...) {

atomic {

Order order = new Order();

order.setID(generateID());

// finish initialization of order.

// this could include creating more

// objects which could mean more

// calls to generateID.

...;

orders.put(new Integer(order.getID()),

order);}}

However, doing so will mean that many otherwise unrelated transactions will have

conflicting accesses to the id variable, even though the rest of their operations may

be non-conflicting. By changing generateID to use open nesting, the counter can

be read, updated, and committed quickly, with any violation rollback limited to the

open-nested transaction, and not the parent application transactions:

public static open int generateID {

open {

return id++;}}

Open-nested transactions can also be used for more general inter-transaction commu-

nication like that found with transaction synchronizers [85].

Open-nested transactions allow threads to communicate between transactions

while minimizing the risk of violations. Their use has some similarity to volatile

4.1. ATOMOS = JAVA - LOCKS + TM 55

variables in that commit forces writes to be immediately visible even before the par-

ent transaction commits. For this reason, the open field modifier is allowed in cases

where a volatile field was used within a synchronized statement.

Once an open-nested transaction has committed, a rollback of one of its parent

transactions is independent from the completed open-nested transaction. If the parent

is restarted, the same open-nested transaction may be rerun. In the unique identifier

example, this is harmless as it just means there might be some gaps in the identifier

sequence. In other cases, another operation might be necessary to compensate for

the effects of the open-nested transaction, as discussed below in Section 4.1.4.

Open-nested transactions are also very useful in virtual machine implementation

where runtime code runs implicitly within the context of a program transaction. For

example, the JikesRVM JIT compiler adds its own runtime code to methods as it

compiles them for several purposes: a.) code that checks for requests from the sched-

uler to yield the processor for other threads to run, b.) code that checks for requests

from the garbage collector to yield the processor for the garbage collector to run,

and c.) code that increments statistic counters, such as method invocation counters,

that are used to guide adaptive recompilation. By using open-nested transactions,

the runtime can check for these requests or increment these counters without caus-

ing the parent application transactions to roll back. Note that these three examples

were benign data races in the original system, meaning that locks were not used to

coordinate access to shared data. Such use of non-blocking synchronization can often

result in unexpected violations. The use of open-nested transactions for virtual ma-

chine implementation will be discussed further in Section 4.2.1, which will cover how

watch-sets are communicated to the scheduler.

4.1.4 Transaction Handlers

In database programming, it is common to run code based on the outcome of a

transaction. Transactional-C provided onCommit and onAbort handlers as part of

the language syntax. Harris extended this notion to transactional memory with the

ContextListener interface [54]. Harris introduces the notion of an ExternalAction,

56 CHAPTER 4. ATOMOS TRANSACTIONAL PROGRAMMING LANGUAGE

which can write state out of a transactional context using Java Serialization so

that abort handlers can access state from the aborted transaction.

In Atomos, open-nested transactions fill the role of ExternalAction by providing

a way to communicate state out of a transaction that might later be needed after

rollback. Separate CommitHandler and AbortHandler interfaces are provided so that

one or the other may be registered independently:

public interface CommitHandler {

public void onCommit();}

public interface AbortHandler {

public void onAbort();}

Each level of nested transactions can register handlers. When registered, a handler is

associated with the outermost nested transaction and is run at its conclusion in a new

transactional context. Commit handlers run in a closed-nested transaction and abort

handlers run in an open-nested transaction. This supports semantic concurrency

control as described in Chapter 5. See Section 5.3 for more details. Atomos runs

commit handlers in the second half a two phase commit sequence to support non-

transactional operations as described in Section C.4.

In database programming, transaction handlers are often used to integrate non-

transactional operations. For example, if a file is uploaded to a temporary location, on

commit it would be moved to a permanent location and on abort it would be deleted.

In transactional memory programming, transaction handlers serve similar purposes.

Transaction handlers can be used to buffer output or rewind input performed within

transactions. Transaction handlers can be used to provide compensation for open-

nested transactions. In the JIT example, 100% accurate counters were not required.

If a method is marked as invoked and then rolls back, it is not necessary to decrement

the counter. Indeed, as mentioned before, there was no synchronization in the non-

transactional JikesRVM execution to provide 100% accuracy. However, programs such

as the SPECjbb2000 benchmark that keep global counters of allocated and deallocated

objects want accurate results. An abort handler can be used to compensate the open

transaction, should a parent transaction abort. Further details on handlers, including

4.2. IMPLEMENTING TRANSACTIONAL FEATURES 57

public final class Transaction {

public static Transaction getCurrentTransaction();

public static void registerCommitHandler(CommitHandler c);

public static void registerAbortHandler(AbortHandler a);

public void abort();

}

Figure 4.4: The Transaction class used for handler registration and program directed
transaction abort.

an I/O example, can be found in [88].

4.1.5 Transaction Class

The Atomos Transaction is shown in Figure 4.4. The class supports the registra-

tion of commit and abort handlers via the registerCommitHandler and register-

AbortHandler methods as described above. The Transaction class also provides a

getCurrentTransaction method that returns a Transaction instance that can be

used with the abort method to roll back a transaction. As discussed in Chapter 5,

transactions may need to be aborted by other threads, so references to Transaction

instances may be passed between threads.

4.2 Implementing Transactional Features

This section will detail two transactional programming constructs implemented in

Atomos. The first is a discussion of the implementation of Atomos watch and retry,

which demonstrates a use of open-nested transactions and violation handlers. The

second is a demonstration of how simple TLS-like loop speculation can be built with

closed-nested transactions.

4.2.1 Implementing retry

Implementing violation-driven conditional waiting with hardware transactional mem-

ory is challenging because of the limited number of hardware transactional contexts

58 CHAPTER 4. ATOMOS TRANSACTIONAL PROGRAMMING LANGUAGE

for violation detection, as mentioned previously in Section 4.1.2. The problem is

making sure someone is listening for the violation even after the waiting thread has

yielded. The Atomos solution uses the existing scheduler thread of the underlying

JikesRVM implementation to listen for violations on behalf of waiting threads.

The Atomos implementation uses a violation handler to communicate the watch-

set between the thread and the scheduler. A violation handler is a callback that allows

a program to recover from violations instead of necessarily rolling back. Violation

handlers are a more general form of abort handlers that allow complete control over

what happens at a violation including whether or not to roll back a specific nesting

level, where to resume after the handler, and what program state will be available

after the handler. Violation handlers run with violations blocked by default, allowing

a handler to focus on handling the violations for a specific nesting level without

having to worry about handler re-entrance. If a violation handler chooses to roll

back a violated transaction at a specific nesting level, any pending violations for that

nesting level are discarded. Otherwise, the violation handler will be invoked again

with the pending violation after it completes.

Violation handlers are not a part of the Atomos programming language. They are

the mechanism used to implement the higher-level Atomos AbortHandler, which is

not allowed to prevent roll back. At the operating system level, violation handlers are

implemented as synchronous signal handlers that run in the context of the violated

transaction. The handler can choose where to resume the transaction or to roll back

the transaction. The signal handler is integrated into the Atomos runtime via the

higher level ViolationHandler interface that is more restrictive than the general

purpose signal handler:

public interface ViolationHandler {

public boolean onViolation(

Address violatedAddress);}

This restricted form of handler can either return true if it handled the violation and

wants to simply resume the interrupted transaction or return false if it wants the

transaction to roll back. The underlying lower-level violation signal handler takes

4.2. IMPLEMENTING TRANSACTIONAL FEATURES 59

1. Add address to local watch set

Watch Address

Scheduler Command
Queues

Scheduler Queues:
waiting and ready

...

...
Scheduler ViolationHandler

Check address of received violation
A. If violated on command queue calling watch:
 1. Add requested address to read set
B. If violated on command queue calling cancel:
 1. Release address from read set
C. If violated on a watch address:
 1. Move watching threads from waiting to
 ready queue
 2. Release address from read set

Cancel Retry ViolationHandler

1. Send cancel message to scheduler
2. Rollback transaction

Retry

1. Register Cancel Retry ViolationHandler
2. Send local watch set to scheduler
 using open nesting
3. Discard read and write set
4. Unregister Cancel Retry ViolationHandler
5. Suspend current thread, setting resume
 point to beginning of transaction

1. Add command queues to read set
2. Register Scheduler ViolationHandler
3. Enter Scheduling loop

Scheduler Loop

............

Atomos Application Thread Atomos Scheduler Thread

Figure 4.5: Conditional synchronization using open nesting and violation handlers.
Waiting threads communicate their watch-sets to the scheduler thread via scheduler
command queues in shared memory that interrupt the scheduler loop using viola-
tions. The Cancel Retry ViolationHandler allows the waiting thread to perform a
compensating transaction to undo the effects of its open-nested transactions in the
event of rollback of the parent transactions.

care of calculating the address of where to resume.

Figure 4.5 sketches out the basic implementation of Atomos conditional waiting.

The watch statement simply adds an address to a thread-local watch-set. The retry

implementation uses open to send this watch-set to the scheduler thread, which is

effectively listening for requests from the other threads using a violation handler. Once

the thread is sure that the scheduler is listening on its watch-set, it can roll back and

yield the processor. The scheduler’s violation handler serves three purposes. First,

it watches for requests to read watch-set addresses. Second, it handles requests to

cancel watch requests when the thread is violated in the process of waiting. Finally,

it handles violations to watch-set addresses by ensuring that watching threads are

rescheduled.

To illustrate how this works, consider the example of the producer-consumer code

in Figure 4.1. Suppose a consumer thread finds that there is no data available. It

requests to watch available, which simply adds the address of available to a local

list. When the thread calls retry, the thread uses an open-nested transaction to send

60 CHAPTER 4. ATOMOS TRANSACTIONAL PROGRAMMING LANGUAGE

the available address to the scheduler, which then reads it. The scheduler then uses

its own open-nested transaction to acknowledge that it has read the address, so that

the original thread can now roll back and yield. Later on, a producer makes some data

available. Its write to available causes the scheduler to be violated. The scheduler

finds that it had read the address of available on behalf of the original consumer

thread, which it then reschedules for execution.

Figure 4.6 and Figure 4.7 sketch the code run by the waiting thread and the

scheduler thread, corresponding to the left and right of Figure 4.5. The watch im-

plementation simply adds the address to the thread local watchSet list. Note that

the address never needs to be explicitly removed from the watch-set because this

transaction will be rolled back either by a violation from another thread or when the

thread is suspending.

The retry implementation needs to communicate the addresses from the watch-

Set to the scheduler thread so it can receive violations on behalf of the waiting thread

after it suspends. To do this, the waiting thread uses open-nested transactions. How-

ever, the transaction could be violated while communicating its watch-set. The sched-

uler would then be watching addresses for a thread that has already been rolled back.

In order to keep consistent state between the two threads, the waiting thread uses a

violation handler to perform a compensating transaction to let the scheduler know to

undo the previous effects of the waiting thread’s open-nested transactions. In order

to achieve this, it is important to register the retryVH violation handler before any

communication with the scheduler. This violation handler is only unregistered after

the thread’s watchSet has been communicated and the read-set of the waiting thread

has been discarded to prevent violations.

In this example implementation of retry, schedulerAddress is used to com-

municate watchSet addresses to the scheduler and schedulerWatch is set to true to

violate the scheduler thread, invoking its violation handler. After the first open trans-

action, a second open is used to listen for an acknowledgment from the scheduler so

that the waiting thread has confirmation of the watchSet transfer before discarding

state, ensuring that at least one of the two threads will receive the desired violations

at any time.

4.2. IMPLEMENTING TRANSACTIONAL FEATURES 61

// watch keyword adds an address to local wait set
void watch(Address a){
VM_Thread.getCurrentThread().watchSet.add(a); }

// retry keyword implementation
void retry(){
VM_Thread thread = VM_Thread.getCurrentThread();
List watchSet = thread.watchSet;
// register "cancel retry violation handler" to
// cleanup scheduler if thread violates before yield
VM_Magic.registerViolationHandler(retryVH);
for (int i=0,s=watchSet.size();i<s;i++){

Address a=(Address)watchSet.get(i);
open {

// write address where scheduler is reading
thread.schedulerAddress = a;
// wakeup the scheduler violation handler
thread.schedulerWatch = true; }

// busy wait until thread hears from scheduler
open { if (thread.scheduleWatch) for(;;) ; }}

// clear the thread’s read-set to avoid violations
// now that scheduler is listening for us
VM_Magic.discardState();
// safe to unregister now that read-set cleared
VM_Magic.unregisterViolationHandler(retryVH);
// store resume context from checkpoint and yield
thread.suspend(); }

// cancel retry violation handler (retryVH)
boolean onViolation(Address a){
VM_Thread thread = VM_Thread.getCurrentThread();
open {
thread.schedulerCancel = true; }

open { if (thread.schedulerCancel) for(;;) ; }
return false; } // rollback transaction

Figure 4.6: Implementation details of Atomos watch and retry using violation han-
dlers. This code is run by the waiting thread, shown on the left side of Figure 4.5.

62 CHAPTER 4. ATOMOS TRANSACTIONAL PROGRAMMING LANGUAGE

// Scheduler violation handler
boolean onViolation(Address a){
VM_Thread t = schedulerWatches.get(a);
if (t != null) { // case A: watch request
Address address;
// read the next watch address
open { address = t.schedulerAddress; }
address.loadWord(); // load adds to read-set
open {
// update address and thread mappings for below
addressToThreads.get(address).add(t);
threadToAddresses.get(t).add(address);
// let the sender continue
thread.schedulerWatch = false;
return true; }} // never rollback transaction

t = schedulerCancels.get(a);
if (t != null) { // case B: retry cancel request
open {
List addresses = threadToAddresses.remove(t);
for (int j=0, sj=addresses.size();j<sj;j++){
Address a = (VM_Thread)addresses.get(j);
Map threads = addressToThreads.get(address);
threads.remove(t);
if (threads.isEmpty()) {

VM_Magic.releaseAddress(a); }}
thread.schedulerCancel = false;
return true; }} // never rollback transaction

open { // notification for some thread?
List threads = addressToThreads.remove(a);
if (threads != null) { // case C: resume threads
for (int i=0, si=threads.size();i<si;i++){
VM_Thread t = (VM_Thread)threads.get(i);
t.resume();
List addresses = threadToAddresses.remove(t);
for (int j=0, sj=addresses.size();j<sj;j++){
Address a = (Address)threads.get(j);
Map moreThreads = addressToThreads.get(a);
moreThreads.remove(t);
if (moreThreads.isEmpty()) {

VM_Magic.releaseAddress(a); }}}}}
return true; } // never rollback transaction

Figure 4.7: Implementation details of Atomos watch and retry using violation han-
dlers. This code is run by the scheduler thread, shown on the right side of Figure 4.5.
The Scheduler ViolationHandler cases A, B, and C from Figure 4.5 are marked with
comments in the Scheduler onViolation code.

4.2. IMPLEMENTING TRANSACTIONAL FEATURES 63

Below the retry code is retryVH, the violation handler for the waiting thread. It

uses the same technique to communicate with the scheduler. The violation handler

returns false to indicate that the waiting thread should be rolled back, allowing the

waiting thread to reevaluate its wait condition.

Figure 4.7 shows the onViolation code for the scheduler thread. It uses the

schedulerWatches map to determine if this is a watch request from a waiting thread.

The schedulerWatches and related schedulerCancels maps are established when

the VM Thread objects are created during virtual machine initialization; program-

ming language threads are multiplexed over the VM Thread instances. If the violation

is from a known schedulerWatch address, the value in schedulerAddress field is

added to the read-set of the scheduler simply by loading from the address. The

schedulerAddress value is read in an open-nested transaction to avoid adding the

location of this field to the scheduler read-set. The thread and address information

is then used to update addressToThreads and threadToAddresses maps. The ad-

dressToThreads is used when a violation is received to determine the threads that

have requested wakeup. The threadToAddresses map is used to track addresses to

remove from the scheduler read-set when there is a cancel request.

If the violation is instead from a schedulerCancel address, the scheduler needs to

remove from its read-set any addresses that it was watching solely for the requesting

thread, being careful to remove the location only if it is not in the watch-set of any

other thread.

The final case in the scheduler code is to resume threads on a watch-set violation.

After resuming, the threads will then reevaluate their conditional waiting code. In

addition, the watch-sets of the resumed threads are removed from the scheduler read-

set as necessary, similar to the code in the cancel case.

The scheduler thread must be very careful in managing its read-set or it will

miss violations on behalf of other threads. The violation handler uses exclusively

open-nested transactions to update addressToThreads and threadToAddresses and

schedulerCommand. The scheduler main loop must also use only open-nested transac-

tions as committing a closed-nested transaction will empty the carefully constructed

read-set. Fortunately, such complex uses of open nesting are generally confined to

64 CHAPTER 4. ATOMOS TRANSACTIONAL PROGRAMMING LANGUAGE

3

7

2

1

0

6

4

5

1
3

2
0

6

4

7
5

a) Ordered Loop b) Unordered Loop

. . .

.

. . .

. . .

. . .

. . .

Busy

Wait

Commit

Ti
m

e

Ti
m

e

Figure 4.8: Ordered versus Unordered speculative loop execution timeline. The num-
bers indicate the loop iteration from sequential execution. In the ordered case on the
left, iterations wait to commit to preserve sequential semantics, setting up a cascad-
ing commit pattern that often reduces the need for waiting in later iterations. In the
unordered case on the right, iterations are free to commit in first come, first served
order.

runtime system implementation and application uses are more straightforward as

shown in the previous counter example.

4.2.2 Loop Speculation

The t for loop speculation statement allows sequential loop-based code to be quickly

converted to use transactional parallelism [51]. When used in ordered mode, it allows

sequential program semantics to be preserved while running loop iterations in parallel.

It also allows multiple loop iterations to be run in larger transactions to help reduce

potential overheads caused by many small transactions, similar to loop unrolling.

Figure 4.8 gives a schematic view of running loop iterations in parallel using t for.

In Figure 4.8a, the sequential order is preserved by requiring that loop iterations

4.2. IMPLEMENTING TRANSACTIONAL FEATURES 65

void run (boolean ordered, int chunk, List list, LoopBody loopBody){
Thread[] threads = new Thread[cpus];
// keep track as iterations finish
boolean[] finished = new boolean[list.size()];
for(int t=0; t<cpus; t++){

threads[t] = new Thread(new Runnable(){
public void run(){

for(int i = t*chunk; i < list.size(); i+= cpus*chunk){
// run each chunk atomically
atomic {

for(int c=0; c<chunk; c++){
int iteration = i+c;
loopBody.run(list.get(iteration));
// mark when iterations complete
finished[iteration]=true; }

if (ordered){
if (i>0)

atomic {
if (!finished[i-1])

// preserve ordering by stalling
// commit. when the previous
// iteration updates finish,
// restart the inner atomic
for (;;) {

; }}}}}}});
threads[t].start();}

for(int t=0; t<cpus; t++){
threads[t].join();}}

Figure 4.9: Loop.run implementation. For the unordered case, iterations simply run
and commit as fast as possible. In the ordered case, iterations have to stall commit
until the previous transaction finishes without losing the work of the loop body. This
is performed by stalling in a nested atomic block at the end of loop iterations.

66 CHAPTER 4. ATOMOS TRANSACTIONAL PROGRAMMING LANGUAGE

commit in order, even when iteration length varies. Note that although the commit of

iterations has to be delayed to preserve sequential order at the start of the t for loop,

the resulting pattern of staggered transactions typically leads to a pipelining effect

where future iterations do not have to be delayed before committing. In Figure 4.8b,

iterations are free to commit in any order, removing the wait time shown in the

ordering case.

In Atomos, statements like t for can be implemented as library routines. For

example, t for can be recast as a Loop.run method that takes a LoopBody interface

similar to the use of Thread and Runnable:

public class Loop {

public static void run (

boolean ordered,

int chunk,

List list,

LoopBody loopBody);}

public interface LoopBody {

public void run (Object o);}

The ordered argument allows the caller to specify sequential program order if needed,

otherwise transactions commit in “first come, first served” order. The chunk specifies

how many loop iterations to run per transaction. The list argument specifies the

data to iterate over. The loopBody specifies the method to apply to each loop element.

Before the discussion of the Loop.run implementation, consider an example of using

loop speculation. Consider the following histogram example program:

void histogram(int[] A,int[] bin){

for(int i=0; i<A.length; i++){

bin[A[i]]++;}}

The Loop.run routine can be used to convert histogram into the following parallel

program:

void histogram(int[] A,int[] bin){

4.3. EVALUATION OF ATOMOS 67

Loop.run(false,20,Arrays.asList(A),new LoopBody(){

public void run(Object o){

bin[A[((Integer)o).intValue()]]++;}}}

This version of histogram runs loop chunks of 20 loop iterations in parallel as un-

ordered transactions.

Figure 4.9 shows a simple implementation of Loop.run. The unordered case is

relatively straightforward with various chunks running atomically in parallel with

each other. The ordered case is more interesting in its use of a loop within a closed-

nested transaction to stall the commit until previous iterations have completed with-

out rolling back the work of the current iterations. This general pattern can be used

to build arbitrary, application-specific ordering patterns.

4.3 Evaluation of Atomos

This section evaluates the performance of Atomos transactional programming. Com-

pared to the evaluation of JavaT in Section 3.3, this section will focus on evaluating

the performance of Atomos transaction handlers and conditional waiting.

4.3.1 Handler Overhead in SPECjbb2000

An Atomos version of SPECjbb2000 was created by replacing synchronized blocks

without conditional waiting with atomic blocks. The use of Java conditional waiting

for creating barriers was replaced with Atomos code as shown in Figure 4.2. Although

a barrier is used to synchronize the start and stop of measurement across all threads,

the primary source of differences in execution time between JavaT and Atomos is the

overhead of transactional handlers. Although no program defined handlers are used

in this version of SPECjbb2000, there still is extra code to run CommitHandlers at

the end of top-level atomic blocks as well as to run AbortHandlers on violations.

Figure 4.10 shows the results of running SPECjbb2000 in three ways. The Java and

JavaT results from Section 3.3.5 are shown in comparison to the Atomos result. As

68 CHAPTER 4. ATOMOS TRANSACTIONAL PROGRAMMING LANGUAGE

CPUs
1 2 4 8 16 32

S
pe

ed
up

0

5

10

15

20

25

30

35

Java

JavaT

Atomos

Figure 4.10: Comparison of the speedup of the Atomos version of SPECjbb2000 with
the Java and JavaT versions. The Atomos version shows linear scaling up to 32 CPUs,
matching the Java and JavaT versions.

4.3. EVALUATION OF ATOMOS 69

you can seen, the overhead for transactional handlers is minor compared to the overall

execution time of SPECjbb2000.

4.3.2 Conditional Waiting in TestWait

One of the contributions of Atomos is fine-grained conditional waiting. The Atomos

implementation tries to minimize the number of transactional contexts required to

support this and still achieve good performance. We present the results of a micro-

benchmark that shows that the Atomos implementation does not adversely impact

the performance of applications that make use of conditional waiting.

TestWait is a micro-benchmark that focuses on producer-consumer performance [55].

32 threads simultaneously operate on 32 shared queues. The queues are logically ar-

ranged in a ring. Each thread references two adjacent queues in this ring, treating

one as an input queue and one as an output queue. Each thread repeatedly attempts

to read a token from its input queue and place it in its output queue. The queue

implementation was based on BoundedBuffer from util.concurrent for Java and

a TransactionalBoundedBuffer modified to use watch and retry. The experiment

varies the number of tokens, not processors, from 1 to 32.

Figure 4.11 shows the results from TestWait. As the number of tokens increases,

both Atomos and Java show similar speedups from 1 to 4 tokens, since both are

paying similar costs for suspending and resuming threads. However, as the number

of tokens approaches the number of processors something interesting happens. Recall

that threads that are in the process of waiting but have not yet discarded their read-

set can be violated and rescheduled without paying the cost of the thread switch. Up

until the point that the read-set is discarded, a violation handler on the thread that

has entered retry can cancel the process and simply restart the transaction without

involving the scheduler. At 8 tokens, one quarter of the 32 processors have tokens at

a time, so its very likely that even if a processor does not have a token it might arrive

while it is executing watch or the watch request part of retry, allowing it to roll back

and restart very quickly. At 16 tokens, this scenario becomes even more likely. At 32

tokens, this scenario becomes the norm. In the Java version, the mutual exclusion of

70 CHAPTER 4. ATOMOS TRANSACTIONAL PROGRAMMING LANGUAGE

CPUs
1 2 4 8 16 32

S
pe

ed
up

0

20

40

60

80

100

120

140

160

Java

Atomos

Figure 4.11: TestWait results comparing Java and Atomos conditional waiting imple-
mentation through a token passing experiment run in all cases on 32 CPUs. As the
number of simultaneously passed tokens increases, both Java and Atomos take less
time to complete a fixed number of token passes. The Atomos performance starts
to accelerate with 8 tokens being passed on 32 CPUs when Cancel Retry Violation-
Handler from Figure 4.5 frequently prevents the thread waiting code from completing
a context switch. When 32 tokens are passed between 32 CPUs, there is almost no
chance that the Atomos version will have to perform a context switch.

4.4. RELATED WORK 71

the monitor keeps the condition from changing while being tested, meaning that if

the condition fails, the thread will now wait, paying the full cost of switching to the

wait queue and back to running, even if the thread that could satisfy the condition

is blocked waiting at the monitor at the time of wait.

4.4 Related Work

4.4.1 Programming Languages with Durable Transactions

Prior work on integrating database transactions with programming languages has

provided inspiration for features such as transaction handlers. ARGUS was a pro-

gramming language and system that used the concepts of guardians and actions to

build distributed applications [84]. The Encina Transactional-C language provided

syntax for building distributed systems including nested transactions, commit and

abort handlers, as well as a “prepare” callback for participating in two-phase com-

mit protocols [116]. Encina credits many of its ideas to work on Camelot and its

Avalon programming language [41]. The SQL standards define how SQL can be em-

bedded into a variety of programming languages [64]. There are also systems such as

PJama that provide orthogonal persistence allowing objects to be saved transparently

without explicit database code [70].

4.4.2 Open Nesting

The idea of open-nested transactions can be traced back to work by Gray [46]. Trager

later coined the name open nested and closed nested to contrast Gray’s work with

Moss’s work on nested transactions [124, 95]. Section 5.1.1 will provide a more de-

tailed history of open-nested transactions in the context of semantic concurrency in

databases.

Open nested transactions are part of several TM proposals for both hardware [99,

97, 94] and software [101]. Agarwal et al. provides several varieties of open nested

semantics for transactional memory that include comparing various concrete proposals

to the more formal semantics [5].

72 CHAPTER 4. ATOMOS TRANSACTIONAL PROGRAMMING LANGUAGE

Name Implicit Strong Program- Multi-
Trans- Atom- ming Proc-
actions icity Language essor

Knight [74] Yes Yes No Yes
Herlihy & Moss [61] No No No Yes
TCC [53, 51] Yes Yes No Yes
UTM [8] Yes No No Yes
LTM [8] Yes Yes No Yes
VTM [107] Yes Yes No Yes

Shavit & Touitou [115] No No No Yes
Herlihy et al. [60] No No No Yes
Harris & Fraser [55] Yes No Yes Yes
Welc et al. [131] Yes No Yes Yes
Harris et al. [56] Yes Yes Yes No
AtomCaml [109] Yes Yes Yes No
X10 [27] Yes No Yes Yes
Fortress [6] Yes No Yes Yes
Chapel [33] Yes No Yes Yes
McRT-STM [112, 2] Yes No Yes Yes

Atomos Yes Yes Yes Yes

Table 4.1: Summary of transactional memory systems. The first section lists hard-
ware transactional memory systems. The second section lists software transactional
memory systems.

As an alternative to open nesting, Zilles and Baugh propose pausing and re-

suming transactions to allow execution outside the scope of the current transaction,

requiring a system that mixes transactions with traditional mechanisms such as locks

to coordinate within the non-transactional region, rather than a pure transactional

model [133]. Section 5.1.3 will provide more details of how this alternative to open

nesting can be used to support semantic concurrency control.

4.4.3 Atomos Compared to Other TM Systems

Table 4.1 summarizes how various STM and HTM proposals from Section 2.5 com-

pare to Atomos using transactional memory properties from Chapter 2, showing that

Atomos was the first transactional programming language with implicit transactions,

4.5. CONCLUSIONS 73

strong isolation, and a multiprocessor implementation.

4.5 Conclusions

The Atomos programming language allows for parallel programming utilizing solely

transactional memory without locks. Atomos provides strong atomicity by default,

while providing mechanisms to reduce isolation when necessary for features such as

loop speculation. Atomos allows programs to specify watch-sets for scalable condi-

tional waiting. The Atomos virtual machine implementation uses violation handlers

to recover from expected violations without necessarily rolling back. These rich trans-

actional programming features come with little performance impact compared to the

transactional interpretation of Java while giving much more flexibility in creating

scalable transactional programs. Chapter 5 will explore how these features can be

used to implement the concept of semantic concurrency control on top of the Atomos

programming language.

74 CHAPTER 4. ATOMOS TRANSACTIONAL PROGRAMMING LANGUAGE

Chapter 5

Semantic Concurrency Control for

Transactional Memory

None of my inventions came by accident. I see a worthwhile need to be

met and I make trial after trial until it comes. What it boils down to is

one per cent inspiration and ninety-nine per cent perspiration.

– Thomas A. Edison [100]

Although the promise of transactional memory is an easier-to-use programming

model, the earlier JavaT and Atomos evaluations have focused on applications where

short critical sections have been converted to transactions [30]. For transactional

memory to have a real impact, it should not focus on competing with existing hand-

tuned applications but emphasize how transactions can make parallel programming

easier while maintaining comparable performance [39]. Building efficient parallel pro-

grams is difficult because fine-grained locking is required for scaling, which burdens

programmers with reasoning about operation interleaving and deadlocks. Large criti-

cal regions make it easier on programmers, but degrade performance. However, long-

running transactions promise the best of both worlds: a few coarse-grained atomic

regions speculatively executing in parallel.

While programming with fewer, longer transactions can make it easier to create

correct parallel programs, the downside is that updates to shared state within these

transactions can lead to frequent data dependencies between transactions and more

75

76 CHAPTER 5. SEMANTIC CONCURRENCY CONTROL FOR TM

lost work when there are conflicts. The dependencies can arise from both the pro-

gram’s own shared data structures as well as underlying library and runtime code.

Often the implementation of these underlying structures is opaque to a programmer,

so eliminating dependencies is difficult.

As discussed in Chapter 4, open nesting [24, 97] can be used to expose updates to

shared data structures early, before commit, and reduce the length of dependencies.

This violates the isolation property of transactions and can lead to incorrect and

unpredictable programs. However, structured use of open-nested transactions can give

the performance benefits of reduced isolation while preserving the semantic benefits

of atomicity and serializability for the programmer.

This chapter will discuss how semantic concurrency control and multi-level trans-

actions can be combined with object-oriented encapsulation to create data structures

that maintain the transactional properties of atomicity, isolation, and serializability

by changing unneeded memory dependencies into logical dependencies on abstract

data types. In addition, at times when full serializability is not required for program

correctness, isolation between transactions can be relaxed to improve concurrency.

Simple examples like global counters and unique identifier (UID) generators illustrate

the usefulness of reduced isolation. The UID example is quite similar to the monoton-

ically increasing identifier problem that the database community uses to demonstrate

the trade-offs between isolation and serializability [47].

To illustrate the need for semantic concurrency control when programming with

long transactions, a parallelization of a high contention variant of the SPECjbb2000

benchmark is presented [121]. This parallelization includes both the use of Map and

SortedMap as well as the simpler examples of global counters and unique identifier

(UID) generation. While the abstract data type examples show how transactional

properties can be preserved, the counter and UID examples illustrate how selectively

reducing isolation and forgoing serializability can be beneficial as well.

5.1. SUPPORTING LONG-RUNNING TRANSACTIONS 77

5.1 Supporting Long-Running Transactions

The database community has studied the problem of frequent dependency conflicts

within long-running transactions. The database literature presents semantic concur-

rency control as one solution to the long-running transaction problem. This section

describes the evolution of semantic concurrency control, drawing similarities between

the problems of databases and the problems of transactional memory. An example

will be presented to show how these ideas can be applied directly to transactional

memory.

5.1.1 Database Concurrency Control

Isolation, one of the four ACID properties of database transactions, means that

changes made by a transaction are not visible to other transactions until that trans-

action commits. An important derivative property of isolation is serializability, which

means that there is a serial ordering of commits that would result in the same final

outcome. Serializability is lost if isolation is not preserved, because if a later trans-

action sees uncommitted results that are then rolled back, the later transaction’s

outcome depends on data from a transaction that never committed, which means

there is no way a serial execution of the two transactions would lead to the same

result.

One method for databases to maintain isolation and therefore serializability, is

strict two-phase locking. In this form of two-phase locking, the growing phase consists

of acquiring locks before data access and the shrinking phase consists of releasing locks

at commit time [47].

While simple, this isolation method limits concurrency. Often transactions contain

sub-operations, known as nested transactions, which can access the state of their

parent transaction without conflict, but which themselves can cause dependencies

with other transactions. Moss showed how two-phase locking could be used to build

a type of nested transaction where sub-operations could become child transactions,

running within the scope of a parent, but able to rollback independently, therefore

increasing concurrency (called closed nesting) [95]. Gray concurrently introduced a

78 CHAPTER 5. SEMANTIC CONCURRENCY CONTROL FOR TM

type of nested transaction where the child transaction could commit before the parent,

actually reducing isolation and therefore further increasing concurrency because the

child could logically commit results based on a parent transaction that could later

abort (called open nesting) [46].

Open-nested transactions may seem dangerous — exposing writes from a child

transaction before the parent commits and discarding any read dependencies cre-

ated by the child — but they can be very powerful if used correctly. Trager notes

how System R used open nesting “informally” by releasing low-level page locks be-

fore transactions commit, in violation of strict two-phase locking [124]. System R

protected serializability through higher-level locks that are held until commit of the

parent transaction, with compensating transactions used to undo the lower-level page

operations in case the parent transaction needed to be rolled back.

System R’s approach was later formalized as multi-level transactions ; protect-

ing serializability through locks at different layers [130, 98]. Going a step further

and incorporating knowledge about the way specific data structures operate allowed

semantically non-conflicting operations to execute concurrently; this was called se-

mantic currency control [129, 114]. Finally, sagas focused on using compensating

transactions to decompose a long-running transaction into a series of smaller, serial

transactions [45].

5.1.2 Concurrent Collection Classes

Beyond parallel databases, another area of research in concurrency is data structures.

Easier access to multiprocessor systems and programming languages, like Java, that

include threads have brought attention to the subject of concurrent collection classes.

One major area of effort was util.concurrent [81], which became the Java Concur-

rency Utilities [69]. The original work within util.concurrent focused on Concur-

rentHashMap and ConcurrentLinkedQueue, the later based on work by [91]. How-

ever, the upcoming JDK 6 release extends this to include a ConcurrentSkipListMap

that implements the new NavigableMap interface that is an extension SortedMap.

The idea behind ConcurrentHashMap is to reduce contention on a single size

5.1. SUPPORTING LONG-RUNNING TRANSACTIONS 79

field and frequent collisions in buckets. The approach is to partition the table into

many independent segments, each with their own size and buckets. This approach

of reducing contention through alternative data structure implementations has been

explored in the transactional memory community as well as shown below.

A similar partitioning approach is used to implement the size method in Click’s

NonBlockingHashMap [32].

5.1.3 Transactional Memory

There has been some work at the intersection of transactional memory and concurrent

data structures. Adl-Tabatabai et al. used a ConcurrentHashMap-like data structure

to evaluate their STM system [2]. Kulkarni et al. suggested the use of open-nested

transactions for queue maintenance for Delaunay mesh generation [77]. While this

work addressed issues with specific structures, it did not provide a general framework

for building transactional data structures.

Pausing transactions was suggested as an alternative to open nesting for reduc-

ing isolation between transactions by Zilles and Baugh in [133]. Pausing could be

used in the place of open nesting to implement semantic concurrency control, but

because pausing does not provide any transactional semantics, traditional methods

of moderating concurrent access to shared state, such as lock tables, would need to

be used.

Recently, Moss has advocated a different approach less focused on specific data

structures. Based on his experience with closed-nested transactions [95], multi-level

transactions [98], and transactional memory [61], he has been advocating the use

of abstract locks built with open-nested transactions for greater concurrency. This

chapter builds on this concept and develops a set of general guidelines and mechanisms

for practical semantic concurrency in object-oriented languages. Also included is an

evaluation of a full implementation of collection classes for use in SPECjbb2000.

80 CHAPTER 5. SEMANTIC CONCURRENCY CONTROL FOR TM

5.1.4 The Need for Semantic Concurrency Control

To understand how ideas from the database community can be applied to transac-

tional memory, consider a hypothetical HashTable class:

class HashTable {

Object get (Object key) {...};

void put (Object key, Object value) {...}; }

Semantically speaking, get and put operations on different keys should not cause

data dependencies between two different transactions. Taking advantage of this would

be utilizing semantic concurrency control and is based on the fact that such operations

are commutative.

The problem is that semantically independent operations may actually be depen-

dent at the memory level due to implementation decisions. For example, hash tables

typically maintain a load factor which relies on a count of the current number of

entries. If a traditional java.util.HashMap-style implementation is used within a

transaction, semantically non-conflicting inserts of new keys will cause a memory-

level data dependency as both inserts will try and increment the internal size field.

Similarly, a put operation can conflict with other get and put operations accessing

the same bucket.

Alternative Map implementations built especially for concurrent access such as

ConcurrentHashMap, use multiple hash table segments internally to reduce con-

tention. As mentioned above, others have used similar techniques in transactional

contexts to reduce conflicts on a single size field [2]. Unfortunately, while the seg-

mented hash table approach statistically reduces the chances of conflicts in many

cases, its does not eliminate them. In fact, the more updates to the hash table, the

more segments likely to be touched. If two long-running transactions perform a num-

ber of insert or remove operations on different keys, there is a large probability that

at least one key from each transaction will end up in the same segment, leading to

memory conflicts on the segment’s size field.

The solution is to use multi-level transactions. The low-level transactions are

open-nested and used to record local changes and acquire higher-level abstract data

5.1. SUPPORTING LONG-RUNNING TRANSACTIONS 81

type locks. The high-level transaction then uses these locks to implement semantic

concurrency control.

In the HashTable example, the get operation takes a read lock on the key and

retrieves the appropriate value, if any, all within an open-nested transaction. The

put operation can use a thread-local variable to store the intent to add a new key-

value pair to the table, deferring the actual operation. If the parent transaction

eventually commits, a commit handler is run that updates the HashTable to make

its changes visible to other transactions, as well as aborting other transactions that

hold conflicting read locks. If the parent transaction is aborted, an abort handler

rolls back any state changed by open-nested transactions. Note that this approach

of optimistic conflict detection with redo logging is not the only option, as will be

discussed in Section 5.4.1. Please refer back to Section 4.1.4 for details on the commit

and abort handler support in the Atomos programming language.

Before applying multi-level transactions, an unnecessary memory-level conflict

would abort the parent transaction. Now, memory-level rollbacks are confined to the

short-running, open-nested transaction on get and the closed-nested transaction that

handles committing put operations. In the get case, the parent does not rollback,

and the get operation is simply replayed. In the put case, only the commit handler

can have memory-level conflicts, and it too can be replayed without rolling back the

parent transaction. Note that semantic conflicts are now handled through code in the

commit handler that explicitly violates other transactions holding locks on modified

keys. The responsibility for isolation, and therefore serializability, has moved from

the low-level transactional memory system to a higher-level abstract data type.

To summarize, a general approach to building transactional versions of abstract

data types is as follows:

1. take semantic locks on read operations

2. check for semantic conflicts while writing during commit

3. clear semantic locks on abort and commit

Having a general approach is more desirable than relying on data structure spe-

cific solutions, like segmented hash tables. For example, the SortedMap interface

82 CHAPTER 5. SEMANTIC CONCURRENCY CONTROL FOR TM

is typically implemented by some variant of a balanced binary tree. Parallelizing a

self-balancing tree would involve detailed analysis of the implementation and solving

issues like conflicts arising from rotations. Semantic concurrency control avoids these

issues by allowing the designer to reuse existing, well-designed and tested implemen-

tations.

The following section will discuss more about how to approach semantic concur-

rency control, covering the semantic operations involved with Java collection classes

as well as an implementation of semantic locks.

5.2 Transactional Collection Classes

Simply accessing data structures within a transaction will achieve atomicity, isolation,

and serializability, but long-running transactions will be more likely to violate due to

the many dependencies created within the data structure. Simply using open nesting

to perform data structure updates would increase concurrency, but prevents users

from atomically composing multiple updates, as modifications will be visible to other

transactions. Users could apply the concepts of semantic concurrency control to their

data structures but the improper use of semantic concurrency control can potentially

lead to deadlock or livelock issues similar to traditional concurrency control methods.

Fortunately, shared data in parallel programs is usually accessed through abstract

data types. By encapsulating the implementation of semantic concurrency control

within libraries, the programmer can benefit from well engineered implementations

without the need to become an expert in semantic concurrency control implementa-

tion. This section presents the design and implementation of such a library based

on the abstract data types for object collections provided by Java. These transac-

tional collection classes leverage semantic knowledge about abstract data types to

allow concurrent and atomic access, without the fear of long-running transactions

frequently violating.

Creating a transactional collection class involves first identifying semantic de-

pendencies, namely which operations must be protected from seeing each other’s

5.2. TRANSACTIONAL COLLECTION CLASSES 83

effects. The second step is to enforce these dependencies with semantically mean-

ingful locks. In this section, we discuss these steps in the creation of the Transac-

tionalMap, TransactionalSortedMap, and TransactionalQueue transactional col-

lection classes.

5.2.1 TransactionalMap

The TransactionalMap class allows concurrent access to a Map from multiple threads

while allowing multiple operations from within a single thread to be treated as a

single atomic transaction. TransactionalMap acts as a wrapper around existing Map

implementations, allowing the use of special purpose implementations.

Determining Semantic Conflicts

Classes such as TransactionalMap can be built by determining which operations

cannot be reordered without violating serializability. The first step is to analyze the

Map abstract data type to understand which operations commute under which con-

ditions. Semantic locks are then used to preserve serializability of non-commutative

operations based on these conditions. To understand which Map operations can be

reordered to build TransactionalMap, a multi-step categorization of the operations

is performed as described below.

The first categorization of operations is between primitive or derivative methods.

Primitive methods provide the fundamental operations of the data structure while the

derivative methods are conveniences built on top of primitive methods. For example,

operations such as isEmpty and putAll can be implemented using size and put, re-

spectively, and need not be considered further. In the case of Map, this categorization

helps us reduce the dozens of available methods to those shown in the left column of

Table 5.1.

The second categorization is between read-only methods and those that write

logical state of the Map. Since read-only operations always commute, the writing

methods affect the serializability of each read method, so conflict detection efforts are

focused there. In Table 5.1, read and write operations are listed in the left column,

84 CHAPTER 5. SEMANTIC CONCURRENCY CONTROL FOR TM

showing when they conflict with the write operations in the put and remove columns.

The put and remove operations can conflict with methods that read keys, such as

containsKey, get, and entrySet.iterator.next. Note that even the non-existence

of a key, as determined by containsKey, conflicts with the addition of that key via

put. Similarly, in cases where put and remove update the semantic size of the Map,

these methods conflict with operations that reveal the semantic size, namely the

size and entrySet.iterator.hasNext. entrySet.iterator.hasNext reveals the

size indirectly since it allows someone to count the number of semantic entries in

the Map. Typically this is used by transactions that enumerate the entire Map, which

conflict with a transaction that adds or removes keys.

Implementing Semantic Locks

Up to this point, the focus has been on analyzing the behavior of the Map abstract data

type. Such analysis is largely general and can be used with a variety of implementation

strategies. Now the discussion will shift to how this analysis can be used in a specific

TransactionalMap class implementation. Alternative implementation strategies are

discussed in Section 5.4.1.

The discussion in Section 5.1 concluded that dependencies must be released on

data structure internals (using open nesting) to avoid unnecessary memory conflicts.

To maintain correctness, semantic locks are used to implement multi-level transac-

tions, preserving the logical dependencies of the abstract data type.

In the analysis of Map, the ability to reorder method calls depended on two se-

mantic properties: size and the key being operated on. While these choices are Map

specific, other classes should have similar concepts of abstract state.

Table 5.2 shows the conditions under which locks are taken during different op-

erations. Read operations lock abstract state throughout the transaction. Write

operations detect conflicts at commit time by examining the locks held by other

transactions. If other transactions have read abstract state being written by the

committing transaction, there is a conflict, and the readers are aborted to maintain

isolation. For example, a transaction that calls the size method acquires the size

lock and would conflict with any committing transaction that changes the size (e.g.,

5.2. TRANSACTIONAL COLLECTION CLASSES 85

put or remove).

Table 5.3 summarizes the internal state used to implement TransactionalMap.

The map field is simply a reference to the wrapped Map instance containing the com-

mitted state of the map. Any read operations on the map field are protected by the

appropriate key and size locks. These locks are implemented by the key2lockers and

sizeLockers fields. These fields are shared, so that transactions can detect conflicts

with each other, but encapsulated to prevent unstructured access to this potentially

isolation-reducing data.

To maintain isolation, the effects of write operations are buffered locally in the

current transaction. The storeBuffer field records the results of these write oper-

ations. Almost all read operations need to consult the storeBuffer to ensure they

return the correct results with respect to the transaction’s previous writes. The one

exception is size, which instead consults the delta field, providing the difference in

size represented by the storeBuffer operations.

Commit and abort handlers are critical to the correct maintenance of transactional

classes. When a transaction is aborted, a compensating transaction must be run to

undo changes made by earlier open-nested transactions, in this case releasing semantic

locks and clearing any locally buffered state. The keyLocks field locally stores locks

to avoid explicitly enumerating key2lockers when performing this compensation.

Commit handlers are used to perform semantic conflict detection, as described above,

to release the committing transaction’s locks after it has completed and to merge the

locally buffered changes into the underlying data structure.

The owner of lock is the top-level transaction at the time of the read operation,

not the open-nested transaction that actually performs the read. This is because

the open-nested transaction will end soon, but we need to record that the outermost

parent transaction needs to be aborted if a conflict is detected. Indeed, it is the

handlers of the top-level transaction, whether successful or unsuccessful, that are

responsible for releasing any locks taken on its behalf by its children.

One of the most complicated parts of TransactionalMap was the implementation

of Iterator instances for the entrySet, keySet, and values. The iterators need

to both enumerate the underlying map with modifications for new or deleted values

86 CHAPTER 5. SEMANTIC CONCURRENCY CONTROL FOR TM

from the storeBuffer and enumerate the storeBuffer for newly added keys. The

iterator takes key locks as necessary as values are returned by the next methods.

The iterator also takes the size lock if hasNext indicates that the entire Set was

enumerated.

5.2.2 TransactionalSortedMap

The TransactionalSortedMap class extends TransactionalMap to provide concur-

rent atomic access by multiple non-conflicting readers and writers to implementations

of the Java SortedMap interface. The SortedMap abstract data type extends Map by

adding support for ordered iteration, minimum and maximum keys, and range-based

sub-map views.

Determining Semantic Conflicts

The SortedMap interface extends the Map interface by adding new methods for deal-

ing with sorted keys, and also by defining the semantics of existing methods such

as entrySet to provide ordering. Mutable SortedMap views returned by subMap,

headMap, and tailMap also have to be considered in the analysis. In Table 5.4, a

similar categorization is performed of abstract data type operations as in the last

section, focusing on the new primitive operations and on the operations with changed

behavior such as entrySet. New operations that are derivative, such as firstKey,

are omitted.

The categorization shows that all of the new operations are read-only. In addition

to the key and size properties of Map, methods now also read ranges of keys as well as

noting the first and last key of the SortedMap. The existing write operations put and

remove are now updated to show their effects on ranges of keys as well as the endpoint

keys. Specifically, a put or remove operation conflicts with any operation that reads

a range of keys that includes the key argument of the put or remove. It is important

to note that ranges are more that just a series of keys. For example, inserting a new

key in one transaction that is within a range of keys iterated by another transaction

would violate serializability if the conflict was not detected. In addition to the range

5.2.
T

R
A

N
S
A

C
T

IO
N

A
L

C
O

L
L
E

C
T

IO
N

C
L
A

S
S
E

S
87

PPPPPPPPPRead
Write

put remove

containsKey if put adds a new entry with same key if remove takes away entry with same key
get if put adds a new entry with same key if remove takes away entry with same key
size if put adds a new entry if remove takes away an entry
entrySet.iterator.hasNext if hasNext is false and put adds a new entry remove takes away key in iterated range
entrySet.iterator.next put adds key in iterated range remove takes away key in iterated range
Write
put if both write to the same key if both operate on the same key
remove if both operate on the same key if both remove the same key

Table 5.1: Semantic operational analysis of the Map interface showing the conditions under which conflicts arise
between primitive operations. Both read and write operations are listed along the left side but only write operations
are listed across the top. The read operations are omitted along the top since read operations do not conflict
with other read operations. If the condition is met, there needs to be an ordering dependency between the two
operations. For example, the upper left condition says that if a put operation adds an entry with a new key in
one transaction and another transaction calls containsKey on that same key returning false, there is a conflict
between the transactions because they are not serializable if the put operations commits before the containsKey

operation, which would be required to return true in a serializable schedule.

88
C

H
A

P
T

E
R

5.
S
E

M
A

N
T

IC
C

O
N

C
U

R
R

E
N

C
Y

C
O

N
T

R
O

L
F
O

R
T

M

Methods Read Lock Write Conflict
Read
containsKey key lock on argument
get key lock on argument
size size lock
entrySet.iterator.hasNext size lock on false return value
entrySet.iterator.next key lock on return value
Write
put key lock on argument key conflict based on argument

size conflict if size decreases
remove key lock on argument key conflict based on argument

size conflict if size decreases

Table 5.2: Semantic locks for Map describe read locks that are taken when executing operations as well as lock
based conflict detection that is done by writes at commit time. For example, the containsKey, get, put, and
remove operations take a lock for the key that was passed as an argument to these methods. When a transaction
containing put or remove operations commits, it aborts other transactions that hold locks on the keys it is adding
or removing from the Map, as well as on other transactions that have read the size of the Map if it is growing or
shrinking.

5.2.
T

R
A

N
S
A

C
T

IO
N

A
L

C
O

L
L
E

C
T

IO
N

C
L
A

S
S
E

S
89

Category Field Description
Committed State committed state visible to all transactions

Map map the underlying Map instance
Shared Transaction State state managed by open nesting, encapsulated in TransactionalMap

Map key2lockers map from keys to set of lockers
Set sizeLockers set of size lockers

Local Transaction State state visible by the local thread
Set keyLocks set of key locks held by the thread
Map storeBuffer map of keys to new values, special value for removed keys
int delta change in size due to changes in storeBuffer

Table 5.3: Summary of TransactionalMap state.

90 CHAPTER 5. SEMANTIC CONCURRENCY CONTROL FOR TM

keys, put and remove can affect the first and last key by respectively adding or

removing new minimum or maximum elements, thus conflicting with operations that

either explicitly request these values with firstKey or lastKey or implicitly read

these values through an iterator, including iterators of views.

Implementing Semantic Locks

Table 5.5 shows the conditions under which locks are taken during different SortedMap

operations. In addition to the key and size locks of Map, semantic locks have been

added for the first and last key as well as for key ranges.

Table 5.6 summarizes the extensions to the internal state of TransactionalMap

used to implement TransactionalSortedMap. The sortedMap field is a SortedMap-

typed version of the map field from TransactionalMap. The comparator field is used

to compare keys either using the Comparator of the underlying SortedMap if one is

provided, or using Comparable if the SortedMap did not specify a Comparator. Note

that the comparator is established during construction and thereafter is read-only so

no locks are required to protect its access.

The key-based locking of TransactionalMap is extended in TransactionalSort-

edMap by key range locking, provided by the rangeLockers field. As with key locks,

writers must determine which subset of outstanding transactions conflict with their

updates. In the implementation evaluated in this chapter, a simple Set was cho-

sen to store the range locks, meaning updates to a key must enumerate the set to

find matching ranges for conflicts. An alternative would have been to use an inter-

val tree to store the range locks, but the extra complexity and potential overhead

seemed unnecessary for the common case. The endpoint-based locking of Transac-

tionalSortedMap is provided by the firstLockers and lastLockers fields. Like

size locking, and unlike key range locking, endpoint locking does not not require any

search for conflicting transactions, since endpoint lockers are conflicting whenever the

corresponding endpoint changes.

The local transaction state for TransactionalSortedMap consists primarily of

the rangeLocks field which allows efficient enumeration of range locks for cleanup on

commit or abort, without enumerating the potentially larger global rangeLockers

5.2. TRANSACTIONAL COLLECTION CLASSES 91

field. In addition, the sortedStoreBuffer provides a SortedMap reference to the

storeBuffer field from TransactionalMap in order to provide ordered enumeration

of local changes.

As with TransactionalMap, one of the more difficult parts of implementing

TransactionalSortedMap was providing iteration. In order to provide proper or-

dering, iterators must simultaneously iterate through both the sortedStoreBuffer

and the underlying sortedMap, while respecting ranges specified by views such as

subMap, and take endpoint locks as necessary.

5.2.3 TransactionalQueue

In the database world, SQL programs can request reduced isolation levels in order

to gain more performance. Similarly, sometimes in transactional memory it is useful

to selectively reduce isolation. One example is in creating a TransactionalQueue.

The idea is inspired by a Delaunay mesh refinement application that takes work

from a queue and may add new items during processing. Open-nested transactions

could be used to avoid conflicts by immediately removing and adding work to the

queue [77]. However, if transactions abort, the new work added to the queue is invalid

but may be impossible to recover since another transaction may have dequeued it.

The TransactionalQueue provides the necessary functionality by wrapping a Queue

implementation with a Channel interface from the util.concurrent package [81].

Providing the simpler Channel interface lowers the design complexity by eliminat-

ing unnecessary Queue operations that do not make sense for a concurrent work queue,

such as random access operations, instead only providing operations to enqueue and

dequeue elements. To improve concurrency, strict ordering is not maintained on

the queue, resulting in fewer semantic conflicts between transactions. As Table 5.7

shows, if transactions confine themselves to the common put and take operations,

no semantic conflicts can ever occur. The only semantic conflict detected is when one

transaction detects an empty Queue via a null result from peek or poll, and another

transaction adds a new element with put or offer.

Table 5.9 summarizes the internal state used to implement TransactionalQueue.

92
C

H
A

P
T

E
R

5.
S
E

M
A

N
T

IC
C

O
N

C
U

R
R

E
N

C
Y

C
O

N
T

R
O

L
F
O

R
T

M

PPPPPPPPPRead
Write

put remove

entrySet.iterator.hasNext hasNext is false and put adds new lastKey hasNext returns true about lastKey and
remove takes away lastKey

entrySet.iterator.next put adds key in iterated range remove takes away key in iterated range
comparator
subMap.iterator.next put adds key in iterated range remove takes away key in iterated range
headMap.iterator.next put adds key in iterated range remove takes away key in iterated range
tailMap.iterator.next put adds key in iterated range remove takes away key in iterated range
tailMap.iterator.hasNext hasNext is false and put adds new lastKey hasNext returns true about lastKey and

remove takes away lastKey
lastKey put adds a new lastKey remove takes away the lastKey

Table 5.4: Semantic operational analysis of the SortedMap interface. This focuses on new and changed primitive
operations relative to the Map interface in Table 5.1.

5.2.
T

R
A

N
S
A

C
T

IO
N

A
L

C
O

L
L
E

C
T

IO
N

C
L
A

S
S
E

S
93

Methods Read Lock Write Conflict
Read Only
entrySet.iterator.hasNext last lock on false return value
entrySet.iterator.next range lock over iterated values, first lock
comparator
subMap.iterator.next range lock over iterated values
headMap.iterator.next range lock over iterated values, first lock
tailMap.iterator.next range lock over iterated values
tailMap.iterator.hasNext last lock on false return value
firstKey first lock
lastKey last lock
Write
put key lock on argument key and range conflicts on argument

first and last lock on endpoint change
size conflict on increases

remove key lock on argument key and range conflicts on argument
first and last lock on endpoint change
size conflict on decreases

Table 5.5: Semantic locks for SortedMap. This focuses on new and changed primitive operations relative to the
Map interface in Table 5.2.

94
C

H
A

P
T

E
R

5.
S
E

M
A

N
T

IC
C

O
N

C
U

R
R

E
N

C
Y

C
O

N
T

R
O

L
F
O

R
T

M

Category Field Description
Committed Transactional State committed state visible to all transactions

SortedMap sortedMap the underlying SortedMap instance
Comparator comparator read-only Comparator instance

Shared Transactional State state managed by open nesting
encapsulated in TransactionalMap

Set firstLockers set of first key lockers
Set lastLockers set of last key lockers
Set rangeLockers set of last key lockers

Local Transactional State state visible by the local thread
Set rangeLocks set of range locks held by the thread
SortedMap sortedStoreBuffer sorted map of keys to new values,

special value for removed keys

Table 5.6: Summary of TransactionalSortedMap state. This focuses on the additions of state of the Transac-

tionalMap superclass in Table 5.3.

5.2. TRANSACTIONAL COLLECTION CLASSES 95

PPPPPPPPPRead
Write

put take poll

peek if peek returned null
Write
put
take
poll if poll returned null

Table 5.7: Semantic operational analysis of the Channel interface showing the condi-
tions under which conflicts arise with write operations listed across the top.

Methods Read Lock Write Conflict
Read
peek if empty
Write
put if now non-empty
take
poll if empty

Table 5.8: Semantic locks for Channel describe empty locks that are taken when
executing operation, as well as lock based conflict detection that is done by writes at
commit time.

The queue field holds the current committed state of an underlying Queue instance.

The emptyLockers field tracks which transactions have noticed when the queue is

empty. The addBuffer field tracks new items that need to be added to the queue

when the parent transaction commits, while the removeBuffer tracks removed items

that should be returned to the queue of the parent transaction aborts. While simple

in construction compared to the fully serializable TransactionalMap and Trans-

actionalSortedMap classes, the Delaunay example shows the benefits of having a

transactional aware queue that allows multiple operations within a single transac-

tion.

96 CHAPTER 5. SEMANTIC CONCURRENCY CONTROL FOR TM

Category Field Description
Committed State committed state visible

to all transactions
Queue queue the underlying Queue instance

Shared Transaction State state managed by open
nesting encapsulated
in TransactionalQueue

Set emptyLockers set of empty lockers
Local Transaction State state visible by the local thread

List addBuffer list of locally added elements
List removeBuffer list of locally removed elements

Table 5.9: Summary of TransactionalQueue state.

5.3 Semantics for Transactional Collection Classes

This section discusses the functionality necessary to implement transactional collec-

tion classes. These mechanisms and their use are referred to as transactional seman-

tics. While all transactional memory systems offer an interface for denoting transac-

tional regions, some of them already provide elements of the identifying transactional

semantics.

5.3.1 Nested Transactions: Open and Closed

Some systems implement flat closed-nested transactions: the child simply runs as part

of the parent without support for partial rollback. However, to reduce lost work due to

unnecessary conflicts, the implementation from this chapter needs partial rollback of

the commit handlers run as closed-nested transactions. That way, any conflicts during

update of the underlying data structure will only roll back the commit handler and

not the entire parent.

Open nesting is probably the most significant building block for semantic concur-

rency control. It is the enabling feature that allows transactions to create semantic

locks without retaining memory dependencies that will lead to unnecessary conflicts.

However, while open-nested transactions are a necessary feature for supporting se-

mantic concurrency control, they are not sufficient without some way of cleaning up

5.3. SEMANTICS FOR TRANSACTIONAL COLLECTION CLASSES 97

semantic locks when the overall transaction finishes — this is the purpose of commit

and abort handlers.

For more information on closed nesting and open nesting in Atomos, please see

Section 4.1.1 and Section 4.1.3, respectively.

5.3.2 Commit and Abort Handlers

Commit and abort handlers allow code to run on the event of successful or unsuccessful

transaction outcome, respectively. Transactional collection classes use these handlers

to perform the required semantic operations for commit and abort, typically writing

the new state on commit, performing compensation on abort, and releasing semantic

locks in both cases.

Commit handlers typically run in a closed-nested transaction, so that any memory

conflicts detected during their updates to global state do not cause the re-execution of

the parent. Handlers execute at the end of the parent transaction so it has visibility

into the parent’s state. This is useful for cleaning up any thread-local values.

Abort handlers typically run in an open-nested transaction. As with commit

handlers, they are nested within the parent so they can access the parent’s state

before it is rolled back. Open nesting allows the abort handler to undo any changes

performed by the parent’s open-nested transactions; otherwise, any work done by the

abort handler would simply be rolled back along with the parent.

When a commit or abort handler is registered, it is associated with the current level

of nesting. If the nested transaction is aborted, the handlers are simply discarded

without executing — rollback should clear the state associated with the handlers.

If the nested transaction commits, the handlers are associated with the parent so

necessary updates/compensation will happen when the parent completes/aborts.

Discarding newly registered handlers prevents a handler from running in unex-

pected situations. Since a conflict could be detected at any time, an abort handler

could be invoked at any point in the execution of a transaction. Conceptually, this

is very similar to the problem of reentrancy of Unix signal handlers; it is difficult

to insure that data structure invariants hold. With signal handlers, the approach

98 CHAPTER 5. SEMANTIC CONCURRENCY CONTROL FOR TM

is usually to do very little within handlers except to note that the signal happened,

letting the main flow of control in the program address the issue. Fortunately, nested

transactions and encapsulation can provide more guarantees about the state of ob-

jects. If the only updates to the encapsulated state, such as the local tables and store

buffers, are made with open-nested transactions, then when an abort handler runs it

can be sure that these encapsulated data structures are in a known state.

Discarding newly registered handlers on abort interacts with using abort handlers

for compensation of non-transactional operations. However, these operations should

not have been performed during the body of the transaction but rather during commit

handlers. While logically this makes sense for output operations deferred to the end

of the transaction, it also works for input operations as they can be performed in

the commit handler of an open-nested transaction that registers an abort handler to

push back input as needed. While handlers are not a general solution for handling

all cases of non-transactional operations, these semantics cover two frequently cited

examples of using handlers to mix I/O and transactions.

Some systems use two-phase commit as part of executing commit handlers. Two-

phase commit breaks a transaction commit into two parts: validation and commit.

After validation is completed, the transaction is assured that it will be able to com-

mit. Typically, commit handlers are run in the commit phase after validation. This

guarantees that any non-transactional action, such as I/O, do not need to worry that

the parent will get violated after an irreversible action is performed. Note that for

building transactional collection classes with semantic concurrency control, there is

no need to perform any non-transactional operations, only updates to data structures

in memory, so that two phase commit is not strictly required, although its presence

is not a problem.

For more information on Atomos commit and abort handlers, please see Sec-

tion 4.1.4

5.4. SERIALIZABILITY GUIDELINES 99

5.3.3 Program-directed Transaction Abort

Transactional memory systems can automatically abort transactions with serializabil-

ity conflicts. Some systems provide an interface for transactions to abort themselves,

perhaps if they detect a problem with the consistency property of ACID transactions.

Semantic concurrency control requires the additional ability for one transaction to

abort another when semantic-level transactional conflicts are detected. Specifically

for the implementation discussed above, an open-nested transaction needs a way to

request a reference to its top-level transaction that can be stored as the owner of a

lock. Later, if another transaction detects a conflict with that lock, the transaction

reference can be used to abort the conflicting transaction.

For more information on how Atomos supports program-directed transaction abort,

see the Transaction class and its getCurrentTransaction and abort methods in

Section 4.1.5.

5.4 Serializability Guidelines

The most difficult part of semantic concurrency control is analyzing the abstract

data type to determine the rules for commutative operations and determining a set of

semantic locks to properly preserve commutativity. However, once this is done, the

actual implementation of semantic concurrency control via multi-level transactions is

fairly straightforward using a simple set of rules:

• The underlying state of the data structure should only be read within an open-

nested transaction that also takes the appropriate semantic locks. This ensures

that the parent transaction contains no read state on the underlying state that

could cause memory-level conflicts.

• The underlying state of the data structure should only be written by a closed-

nested transaction in a commit handler. This preserves isolation since semantic

changes are only made globally visible when the parent transaction commits.

• Because write operations should not modify the underlying data structure, write

100 CHAPTER 5. SEMANTIC CONCURRENCY CONTROL FOR TM

operations need to store their state in a transaction-local buffer. If semantic

locks are necessary because the write operation logically includes a read op-

eration as well, the locks should be taken in an open-nested transaction, as

above.

• The abort handler should clear any changes made with open-nested transactions

including releasing semantic locks and clearing any thread-local buffers. Only

one abort handler is necessary and it should be registered by the first open-

nested transaction to commit.

• The commit handler should apply the buffered changes to the underlying data

structure. As it applies the changes, it should check for conflicting semantic

locks for the operations it is performing. After it has applied the changes, it

follows the behavior of the abort handler, ensuring that the buffer is cleared

and that semantic locks are released. As with the abort handler, only a single

commit handler is needed, registered on the first write operation.

Note that if reduced isolation is desired, the second rule is typically broken by

allowing writes to the underlying state from within open-nested transactions. For

example, in the TransactionalQueue implementation, the take method removed

objects from the underlying queue without acquiring a lock.

5.4.1 Discussion

Alternatives to Optimistic Concurrency Control

Detecting conflicting changes at commit time is known as optimistic concurrency

control. Another approach is to detect conflicts as soon as possible (pessimistic con-

currency control). In the implementation described above, write operations could

detect conflicting semantic locks when the operation is first performed, instead of

waiting until commit. A contention management policy can then be used to decide

how to proceed. One approach is to have the conflicting write operation wait for

the other transaction to complete. However, this leads to the usual problems with

locks, such as deadlock. The downside to optimistic concurrency control is that it

5.4. SERIALIZABILITY GUIDELINES 101

can suffer from livelock since long-running transactions may be continuously rolled

back by shorter ones. Here again, contention management policies can be applied

to give repeatedly violated transactions priority. A discussion of contention manage-

ment in transactional memory systems can be found in [49]. The choice of optimistic

concurrency control for semantic-level transactions is independent of the underlying

concurrency control in the transactional memory system.

Redo versus undo logging

The approach of buffering changes and replaying them at commit time is a form of

redo logging, so called because the system repeats the work of the operations in the

local buffer on the global state. The alternative is undo logging, where the system

updates global state in place. If there are no conflicts, the undo log is simply dropped

at commit time. If there is a conflict and the transaction needs to abort, the undo log

can be used to perform the compensating actions to roll back changes made to the

global state by the aborting transaction. In the implementation described above, redo

logging was chosen because it is a better fit to optimistic concurrency control, since

undo logging requires early conflict detection since only one writer can be allowed

to update a piece of semantic state in place at a time. Note that the choice of redo

versus undo logging for semantic-level transactions is independent of the underlying

logging used by the transactional memory system.

Single versus multiple handlers

The implementation discussed above uses one commit and one abort handler per

parent transaction. These handlers know how to walk the underlying lock and buffer

structures to perform the necessary work on behalf of all previous operations to the

data structure. An alternative is for each operation to provide its own independent

handlers.

Moss extends this alternative by proposing that each abort handler should run in

the memory context that was present at the end of the child transaction in which it was

registered, interleaved with the undoing of the intervening memory transactions [97].

102 CHAPTER 5. SEMANTIC CONCURRENCY CONTROL FOR TM

For example, suppose there is a series of operations that make up a parent transaction

AXBY C, with A, B, and C being memory operations and X and Y being open-nested

transactions. Moss suggests that to abort at the end of C, the logically inverse actions

C−1Y −1B−1X−1A−1 should be performed. Logically, this consists of rolling back the

memory operations of C, followed by running the abort handler for Y , followed by

rolling back B, then running the abort handler for X, and finally rolling back the

memory operations of A.

This extra complexity is unnecessary for the above implementation of semantic

concurrency control. Moss’s semantics aim to guarantee that the handler will always

run in a well-defined context known to the handler at its point of registration. How-

ever, the guidelines given provide similar guarantees to handlers since object-oriented

encapsulation ensures that only the transaction that registered the handler can make

updates to the state that the handler will later access on abort.

Alternative semantic locks

In the initial categorization of Map methods into primitive and derivative operations,

several methods were considered primitive that semantically speaking are strictly

derivative if one focuses on correctness and not performance. After all, it is possi-

ble to build a writable Map by subclassing AbstractMap and implementing only the

entrySet and put methods, although such an association list style implementation

would need to iterate the entrySet on get operations, taking locks on many keys

unnecessarily, compromising concurrency while maintaining correctness.

While it might seem to be contradicting the stated methodology, in fact in one

considers the expected running time of operations to be part of the semantics of an

abstract data type, treating certain methods as primitive is consistent. Certainly if

one is happy to have a linear cost for Map retrievals, then it is fine to treat get as a

derived operations. However, if one expects to have close to constant cost for a Map

and logarithmic for a SortedMap, one needs to follow the more typical approach of

HashMap and TreeMap and consider other methods such as containsKey, get, size,

and remove as primitive operations, which avoids the need to iterate the entrySet

for these operations.

5.4. SERIALIZABILITY GUIDELINES 103

While the semantic locks derived from the primitive methods in Table 5.1 and

Table 5.4 preserve isolation and serializability, they still do not allow the optimal

concurrency possible. One limitation is making isEmpty a derivative method based

on size, resulting in isEmpty taking a size lock. To see why this is a problem,

consider two transactions running this code:

if (!map.isEmpty()) map.put(key, value);

These transactions should commute as long as they add different keys, but the current

implementation will cause one to abort because of the size lock. However, taking the

size lock is necessary for the similar case of two transactions running:

if (map.isEmpty()) map.put(key, value);

These put operations should not commute because a serial ordering would require

that only one would find an empty map. The solution is to make isEmpty a primitive

operation with its own separate semantic lock that is violated only when the size

changes to or from zero.

Note that while the above discussion focuses on the third categorization for the

primitive methods, logically this categorization is important for the derivative meth-

ods as well. This can expose unexpected concurrency limitations. For example, a

straightforward implementation of entrySet.remove might use size to determine if

the remove operation actually found a matching key, which is used to calculate the

Boolean return value. This would add an unnecessary dependency on the size, which

could cause unnecessary conflicts if others concurrently added or removed other keys.

Extensions to java.util.Map

C++ programmers often use idioms like

if (map.size()) ...

instead of

if (!map.empty()) ...

104 CHAPTER 5. SEMANTIC CONCURRENCY CONTROL FOR TM

arguably because it is easy for a reader to miss the negation when reviewing code.

Similarly, Java programmers frequently use if (map.size() == 0) ... instead of

isEmpty. However, as noted in the previous discussion, using size instead of isEmpty

unnecessarily restricts concurrency.

Similar problems exist for Map methods that reveal more information than strictly

necessary. For example, since the write operations put and remove return the old

value for a key, they effectively read the key as well. If this return value is unused,

this is an unnecessary limitation of semantic concurrency. To be specific, there is no

reason that two transactions that write to the same key need to be ordered in any

way. For example, it is perfectly acceptable for two transactions to do this:

map.put("LastModified", new Date());

Logically, these transactions can commit in any order so long as they do not read the

“LastModified” key. However, the fact that the old value for a key is returned causes

a dependency on the key, causing the two put operations to conflict which each other.

The solution is to offer alternative variants to methods such as put and remove

that do not reveal unnecessary information through unused return values, allowing

the caller to decide which is appropriate.

TransactionalSet and TransactionalSortedSet

TransactionalSet and TransactionalSortedSet classes are not discussed at length

because they can be built as simple wrappers around the TransactionalMap and

TransactionalSortedMap, respectively, as has been done similarly for Concurren-

tHashSet implementations built on top of ConcurrentHashMap, and even HashSet

implementations around HashMap as found in [44].

Leaking uncommitted data

While the guidelines prevent leaking of uncommitted data between transactions using

the same transactional collection class, values used within the class’s semantic locks,

such as keys or range endpoints, can be visible to the other open-nested transactions

operating on the instance. For example, if a newly allocated string is used as a key

5.5. EVALUATION 105

name in a TransactionalMap, the key2lockers table would have an entry pointing to

an object that is only initialized within the adding transaction. However, if another

transaction adds another key that hashes to the same bucket, the table will call

Object.equals to compare the new key to the existing key, which is uninitialized

from this second transaction’s point of view.

In [97], Moss proposes making object allocation and type initialization an open-

nested transaction, so at least access to this uncommitted object will not violate Java

type safety. However, the constructor part of object allocation cannot be safely made

part of an open-nested transaction because it could perform arbitrary operations that

might require compensation. Moss notes that for some common key classes such as

java.lang.String, it is safe and even desirable to run the constructor as part of an

open-nested allocation, but this is not a general solution.

An alternative is to not directly insert such potentially uncommitted objects into

semantic locking tables but instead insert copies. One approach would be to use

existing mechanisms such as Object.clone or Serializable to make a copy, similar

to what is proposed by Harris in [54], which uses Serializable to copy selected

state out of transactions that are about to be aborted. Alternatively, a new interface

could be used to request a committed key from an object, allowing it to make a

selective copy of a subset of identifying state, rather than the whole object like clone

or Serializable, perhaps simply returning an already committed key.

5.5 Evaluation

This section will use variants of a common transactional memory micro-benchmark,

as well as a custom version of SPECjbb2000, designed to have higher contention,

to evaluate the performance of transactional collection classes created with semantic

concurrency control. High-contention versions of SPECjbb2000 have previously been

used for similar purposes [28, 16]. This evaluation includes results from lock-based

Java execution for comparison. The results focus on benchmark execution time,

skipping virtual machine startup. The single-processor Java version is used as the

baseline for calculating speedup.

106 CHAPTER 5. SEMANTIC CONCURRENCY CONTROL FOR TM

While the experiments are performed with a specific language, virtual machine,

and HTM implementation, the observations and conclusions apply to other hardware

transactional memory systems as well.

5.5.1 Map and SortedMap Benchmarks

TestMap is a micro-benchmark based on a description in [2] that performs multi-

threaded access to a single Map instance. Threads perform a mixture of operations

with a breakdown of 80% lookups, 10% insertions, and 10% removals. To emulate

access to the Map from within long-running transactions, each operation is surrounded

by computation. There should be little semantic contention in this benchmark but

frequent memory contention within the Map implementation, such as the internal size

field.

Figure 5.1 summarizes the results for TestMap. As expected, Java with HashMap

shows near linear scalability because the lock is only held for a small time relative

to the surrounding computation. The Atomos HashMap result shows what happens

when multiple threads try to simultaneously access the Map instance, with scalability

limited as the number of processors increases because of contention on the HashMap

size field. Atomos results with a ConcurrentHashMap show how some, but not all,

scalability can be regained by using the probabilistic approach of a segmented hash

table. The Atomos results with a TransactionalMap wrapped around the HashMap

show how the full scalability of the Java version can be regained when unnecessary

memory conflicts on the size field are eliminated.

TestSortedMap is a variant of TestMap that replaces lookup operations using

Map.get with a range lookup using SortedMap.subMap, taking the median key from

the returned range. As with TestMap, there is little semantic contention as the ranges

are relatively small and serve just to ensure there are not excessive overheads from

the range locking implementation.

Figure 5.2 shows that Java with a SortedMap scales linearly as expected. Atomos

with a plain TreeMap fails to scale because of non-semantic conflicts due to internal

5.5. EVALUATION 107

CPUs
1 2 4 8 16 32

S
pe

ed
up

0

5

10

15

20

25

30

35

40

Java HashMap

Atomos HashMap

Atomos ConcurrentHashMap

Atomos TransactionalMap

Figure 5.1:
TestMap results show that Atomos can achieve the scalability of Java when the con-
currently accessed HashMap is wrapped in a TransactionalMap. The results also
show that using a ConcurrentHashMap to probabilistically reduce data dependencies
within transactions falls short of the speedup of the semantic concurrency control
method of TransactionalMap.

108 CHAPTER 5. SEMANTIC CONCURRENCY CONTROL FOR TM

CPUs
1 2 4 8 16 32

S
pe

ed
up

0

5

10

15

20

25

30

35

40

Java TreeMap

Atomos TreeMap

Atomos TransactionalSortedMap

Figure 5.2: TestSortedMap results parallel TestMap showing that Transactional-

SortedMap provides similar benefits to a concurrently accessed TreeMap.

operations such as red-black tree balancing. Finally, Atomos with a Transaction-

alSortedMap wrapped around a TreeMap instance regains the scalability of the Java

version.

TestCompound is a variant of TestMap that composes two operations separated

by some computation. The results are shown in Figure 5.3. In the Java version, a

coarse-grained lock is used to ensure that two operations act as a single compound

operation. For Atomos, the entire loop body, including other computation before and

after the compound operation, is performed as a single transaction. In this case, the

Java version scales poorly since a single lock is held during the computation between

the two operations, with little difference to the Atomos HashMap result. However,

the TransactionalMap result shows that transactional collection classes can provide

both composable operations and concurrency.

5.5. EVALUATION 109

CPUs
1 2 4 8 16 32

S
pe

ed
up

0

5

10

15

20

25

30

35

40

Java HashMap

Atomos HashMap

Atomos TransactionalMap

Figure 5.3: TestCompound results shows that Java scalability is limited by use of a
coarse-grained lock to protect a compound operation which scales as a single Atomos
transaction.

110 CHAPTER 5. SEMANTIC CONCURRENCY CONTROL FOR TM

5.5.2 High-contention SPECjbb2000

As discussed before in Section 3.3.5, the SPECjbb2000 benchmark [121] is an embar-

rassingly parallel Java program with little inherent contention. As a benchmark its

focus is to ensure that the underlying virtual machine and supporting system software

are scalable. There are only a few shared fields and data structures in SPECjbb2000,

each protected by synchronized critical regions in the Java version. Each applica-

tion thread is assigned an independent warehouse to service TPC-C style requests,

with only a 1% chance of contention from inter-warehouse requests. The previous

results for JavaT in Section 3.3.5 and for Atomos in Section 4.3.1 have shown that a

transactional version of SPECjbb2000 can scale as well as Java.

Instead of reusing this embarrassingly parallel version of SPECjbb2000 that largely

partitions threads into separate warehouses, this section will use a high-contention

version of SPECjbb2000 that has a single warehouse for all operations. In addition, in

order to approximate the parallelization of a sequential program, the Atomos version

will remove all Java synchronized critical regions and instead turn each of five TPC-

C operations into atomic transactions. The correctness of this parallelization is easy

to reason about even for a novice parallel programmer, because all the parallel code

excluding the thread startup and loop setup is now executed within transactions.

Both the Java and Atomos versions use java.util collection classes in place of the

original tree implementation, following the pattern of SPECjbb2005.

Figure 5.4 shows the results for the modified version of SPECjbb2000. First, note

that the modifications to use a single warehouse significantly impact the scalability of

the Java version, which usually would achieve nearly linear speedup on 32 processors

as seen in Section 3.3.5.

The Atomos Baseline version is the first cut parallelization with each operation

in one long transaction. The performance of this version is limited by a large number

of violations from a variety of conflicting memory operations. Techniques described

in [25] were used to identify several global counters such as the District.nextOrder

ID generator as the main sources of lost work due to conflicts.

The Atomos Open version addresses the ID generator issue that was the main

source of performance degradation in the Atomos Baseline version. By wrapping

5.5. EVALUATION 111

CPUs
1 2 4 8 16 32

S
pe

ed
up

0

2

4

6

8

10

12

14

16

Java

Atomos Baseline

Atomos Open

Atomos Transactional

Atomos Queue

Figure 5.4: SPECjbb2000 results in a high-contention configuration caused by sharing
a single warehouse.

112 CHAPTER 5. SEMANTIC CONCURRENCY CONTROL FOR TM

SPECjbb2000 Speedup on Coding Effort
Version 32 CPUs

Java 13.0 272 synchronized statements
Atomos Baseline 1.5 1 atomic statement
Atomos Open 2.9 4 open statements
Atomos Transactional 5.8 2 TransactionalMap

1 TransactionalSortedMap
2 transactional counters

Atomos Queue 8.8 Change TransactionalSortedMap
to a TransactionalMap
and a TransactionalQueue
(2 new calls: Queue.add & remove)

Atomos Short 25.5 272 atomic statements

Table 5.10: Comparison of coding effort and 32 CPU speedup of various versions
of a high-contention configuration of SPECjbb2000. Note that the Atomos Queue
parallelization with using long transaction required 14 changes to get a final speedup
of 7.3, where the Java version required 272 synchronized statements to get a speedup
of 11.7.

reads and writes to the these counters in open-nested transactions, the counter se-

mantics were preserved while reducing lost work. This technique was previously

discussed in Section 4.1.3. After this change, additional conflict analysis identified

three shared Map instances that were frequent sources of conflicts: Warehouse.his-

toryTable, District.orderTable, and District.newOrderTable. Also, two “year-

to-date” payment counters were found in Warehouse.ytd and District.ytd. Unlike

the unique ID generators, access to these payment fields cannot simply be wrapped

in open-nested transactions, since they need to be correctly maintained in the face of

the rollback of parent transactions for payment balances to be correctly maintained.

The Atomos Transactional version addresses both the Map and payment issues

using semantic concurrency control. The three mentioned Map instances were wrapped

with TransactionalMap and TransactionalSortedMap as appropriate. The float

payment counter fields were replaced with TransactionalFloatCounter objects that

follow a similar, though much simpler, design and implementation of the transactional

collection classes. The basic idea of the TransactionalFloatCounter is that it defers

5.5. EVALUATION 113

increments to a shared counter until a commit handler at the end of the transaction,

while still letting the transaction see its own local changes during the transaction.

With these changes, conflict analysis shows that memory-level conflicts are not the

primary factor limiting performance, although there is now a semantic conflict that

is the bottleneck. Specifically, the semantic conflict is that multiple threads attempt

to concurrently remove the first key of the District.newOrderTable, and logically

only one can succeed, since the first key changes whenever one of them completes.

This semantic dependency occurs because SPECjbb2000 uses a SortedMap for

the District.newOrderTable for two independent purposes. The first is to look

up NewOrder objects by ID. The second is to age out older NewOrder to maintain

a constant memory footprint. Fortunately, semantic dependencies, like the memory

dependencies, point directly to the source of the performance problem.

The Atomos Queue version shows the results of breaking this particular semantic

dependency by changing the single District.newOrderTable into two data struc-

tures, including one with reduced isolation. The first data structure is simply the

existing District.newOrderTable, but changed to be a Map instead of a SortedMap.

The second data structure is a new TransactionalQueue which is used to track an

approximate FIFO queue of NewOrder objects for aging. The key difference is that

the queue ordering is only approximate, which works well in this application, since it

really only needs to remove an old NewOrder object, not necessarily the oldest.

The use of simple open-nested counters and transactional classes yielded a rea-

sonable speedup for little effort on the high-contention SPECjbb2000 benchmark.

Table 5.10 summarizes the effort required for each parallelization attempted. Start-

ing from source code with no concurrency control primitives, the final Atomos Queue

with long transactions has a speedup of 8.8 on 32 CPUs relative to the single CPU

Java version of the program. While the Java version achieves a speedup of 13.0 on

32 CPUs, the programmer has added 272 synchronized statements to achieve these

results.

A final analysis of the long transaction version of the high-contention SPECjbb-

2000 application reveals more opportunities for improvement, such as splitting the

TPC-C operations into multiple transactions. Indeed, if the Atomos transactions are

114 CHAPTER 5. SEMANTIC CONCURRENCY CONTROL FOR TM

shrunk to match the scope of Java synchronized statements, a short-transaction

version of Atomos can achieve a speedup of 25.5 on 32 CPUs. However, the long-

transaction Atomos versions serve to show how a novice parallel programmer can

iteratively refine a parallelization in a guided way to achieve a reasonable level of

performance with obvious correctness at each step.

5.6 Conclusions

Semantic currency control allows concurrent access to data structures while preserv-

ing the isolation, and therefore serializability, properties of transactions. Transac-

tionalMap and TransactionalSortedMap collection classes were built for this pur-

pose using the concept of multi-level transactions built upon open nesting. Trans-

actionalQueue showed how these ideas can be used to break the isolation property

in structured ways when it is desired to trade serializability for performance. Such

reusable collection classes should be part of the standard library of a transactional

programming language such as Atomos.

While standard library classes are convenient for many programmers, a straight-

forward operational analysis and implementation guidelines allow programmers to

safely design their own concurrent classes, in cases where they need to create new or

augment existing data structures.

Chapter 6

Conclusion

If I have not seen as far as others, it is because

giants were standing on my shoulders.

– Hal Abelson

In this dissertation I set out to prove the following thesis:

If transactional memory is going to make parallel programming easier,

programmers will need more than a way to convert critical sections to

transactions.

In Chapter 3 I covered JavaT, a set of rules for the transactional execution of Java

with a transactional memory system. I showed why simply treating critical sections

as transactions could not maintain the expected behavior of programs involving mon-

itors. The performance evaluation showed that a JavaT execution was competitive

with fine-grained locks, and more importantly, that simpler coarse-grained transac-

tions could perform as well as fined-grained locks in some cases.

In Chapter 4 I covered Atomos, a programming language designed for transac-

tional memory. I presented the watch and retry constructs as a transactional alter-

native to monitors. I also showed the usefulness of going beyond simple transactions

by showing the usefulness of open-nested transactions and transaction handlers for

implementing applications, libraries, and the runtime system.

115

116 CHAPTER 6. CONCLUSION

In Chapter 5 I covered semantic concurrency control and how it can be used

to support a simpler programming model where most execution occurs in coarse-

grained transactions. I showed how the Atomos primitives combined with multi-level

transactions could be used to create transactional collection classes and demonstrated

their use in a parallelization of a high-contention version of SPECjbb2000.

The following sections discuss directions for future work and then conclude with

some final thoughts.

6.1 Future Work

Transactional memory is still a new and developing research area with many possible

avenues for future work. In the following sections I will give future directions related

to the work I have presented.

6.1.1 Programming Model

Chapter 4 briefly touched on supporting loop-level parallelism within the Atomos

programming language. Syntactic support for loop-level parallelism along the lines of

OpenTM transactional interface is well worth considering [9]. Loop-level parallelism

can be an easy way to find parallel tasks for execution without requiring the program

to explicitly use threads, although often its applicability is restricted to very regular

code.

A promising area for future work is alternative programming models that allow

programmers to more flexibly define potentially parallel computation. One such ex-

ample is the recent work on Automatic Mutual Exclusion [65]. Another area related

to the creation of parallel computation is allowing parallelism within a transaction as

described in recent new semantic models [93].

6.1.2 I/O

Appendix C covers approaches to dealing with non-transactional operations called

from within transactions. Many of the proposals discussed there have yet to be

6.1. FUTURE WORK 117

evaluated, and while there has been some work on characterizing workloads that

contain I/O based on their sequential behavior, there has been little practical work

in evaluating these approaches in transactional memory systems.

Some next steps in the development of a language like Atomos might include

demonstrating the use of semantic concurrency control with B-trees, adding transac-

tional aware versions of classes such as BufferedOutputStream, as well as a transac-

tion aware version of a logging interface such as Java’s java.util.logging or Apache

log4j.

A larger project would be to make the Java Transaction Service (JTS) aware of

transactional memory as a managed resource. This would allow coordinated access

with other transactional resources, such as databases.

6.1.3 Garbage Collection

The interaction between transactional memory systems and garbage collectors has

barely started to be explored. My experiments running on an architecture simulator

do not run long enough to exercise the garbage collector, even though an individual

experiment may run for more than a day of wall clock time. One line of future work

could simply be to survey a selection of common garbage collector algorithms and

categorize their behavior on a transactional memory system. Another possible area for

future work is how transactional memory could be used to aid in the implementation

of the garbage collector itself.

6.1.4 Database

Time and time again I have found solutions to problems facing transactional memory

in the literature of the transactional database community. Some possible paths for

exploration might include the use of savepoints in the implementation of transactional

memory systems, as well as ways of exploiting parallelism within a single transaction.

118 CHAPTER 6. CONCLUSION

6.2 Final Thoughts

I believe the true promise of transactional memory is in making parallel programming

easier. This means transactional memory systems should be evaluated for their ability

to run long transactions scalably, not by their ability to hold their own against code

with very short transactions based on fine-grained locking parallelizations. Even if

a system scales well with embarrassingly parallel applications or fine-grained trans-

actions, it is also important to show scalability for applications with long-running

transactions accessing shared data, since the ultimate goal is to make parallel pro-

gramming easier by giving the programmer the performance of fine-grained locking

while only using coarse-grained transactions.

Finally, I hope that my evaluation will convince the implementers of both hard-

ware and software transactional memory systems of the benefits and need for rich

transactional semantics. As the database community has shown, there is a lot more

to transactional systems than simple atomicity.

Appendix A

Simulation Environment

per aspera ad astra

– Seneca the Younger

A.1 Simulated Architecture Details

All execution results in this dissertation come from an x86 CMP simulator that im-

plements both a lazy versioning, optimistic conflict detecting hardware transactional

memory system for evaluation’s transactions and a MESI snoopy cache coherence

system for evaluating locks. As noted in Section 3.3, this CMP HTM system does

not support parallel commit. The HTM detects violations at the granularity of a

cache line. More details on the simulated architecture can be found in [89, 90].

All instructions, except loads and stores, have a CPI of 1.0. The memory system

models the timing of the L1 caches, the shared L2 cache, and buses. All contention

and queuing for accesses to caches and buses is modeled. In particular, the simulator

models the contention for the single data port in the L1 caches, which is used for

processor accesses and commits for transactions or cache-to-cache transfers for MESI.

A victim cache is used for recently evicted data from the L1 cache. Table A.1 presents

the main parameters for the simulated CMP architecture.

More details on the instruction set architecture extensions for transactional mem-

ory, which were co-developed to support Atomos, can be found in [88].

119

120 APPENDIX A. SIMULATION ENVIRONMENT

Feature Description

CPU 1–32 single-issue x86 cores
L1 64-KB, 32-byte cache line, 4-way associative, 1 cycle latency
L1 Victim Cache 8 entries fully associative
L2 512-KB, 32-byte cache line, 16-way associative, 3 cycle latency
L2 Victim Cache 16 entries fully associative

Bus Width 32 bytes
Bus Arbitration 3 pipelined cycles
Transfer Latency 3 pipelined cycles

Shared L3 Cache 8-MB, 32-byte cache line, 16-way associative, 20 cycle latency
Main Memory 100 cycle latency, up to 8 outstanding transfers

Table A.1: Parameters for the simulated CMP architecture. Bus width and latency
parameters apply to both commit and refill buses. Shared L3 hit time includes arbi-
tration and bus transfer time.

A.2 Signals

The simulator was modified to handle Unix signal delivery in a transactional sys-

tem. Unix signals can be classified into two categories: synchronous and asyn-

chronous. Synchronous signals are generated by the program itself when it performs

an exception-causing operation, such as dividing by zero. Asynchronous signals come

from outside the current program context, such as timer interrupts.

Because synchronous signals are caused by the current instruction, handlers run

as part of the current transaction. This allows Java exceptions that rely on signals

in the JikesRVM implementation such as NullPointerException to work as defined

in Section 3.2.4. Asynchronous signals are less straightforward. If they are deliv-

ered immediately, logically the transaction buffers would have to be saved so that

the unrelated signal handler could not interfere with the transaction that just hap-

pened to be interrupted. Non-synchronized transactions can just commit anywhere,

allowing us to commit and execute the asynchronous signal handler in a new transac-

tion. However, if all processors are executing synchronized transactions that must

complete atomically, then delivery of the signal must be postponed until one of the

transactions commits. This could result in unacceptably long interrupt-handling de-

lays, however, so it may be necessary to just roll back a synchronized transaction

A.3. PHYSICAL VERSUS VIRTUAL ADDRESSES 121

to free up a processor immediately. In my implementation, the simple approach of

delivering asynchronous signals on the first available non-transactional processor is

followed.

A.3 Physical versus Virtual Addresses

The simulator does not differentiate between physical and virtual addresses. In a

system with both physical and virtual addresses, applications programmers work with

virtual addresses while cache coherence is typically maintained on physical addresses

to avoid issues with different virtual addresses being aliases for the same physical

address.

System software frequently has to deal with mappings between these two address

domains. Mapping from virtual to physical address is easy as operating system soft-

ware can consult page tables. This might need to be done to provide a phyiscal address

as the target of a direct memory acesss (DMA) based on a user space pointer. How-

ever, mapping from physical to virtual addresses is not as straightforward, although

it can be done in selected cases. For example, an unaligned memory access might

be detected based on a physical address, but a signal handler needs to provide a

virtual address to an application level handler. Some architectures use the current

state of the processor to deduce the virtual address that causes a fault by inspecting

the instruction pointer and register state.

Violation handlers discussed in Section 4.2.1 also can suffer from this physical

to virtual address problem since conflict detection as part of the cache is based on

physical addresses, yet a handler might need to work in terms of virtual addresses.

However, a violation handler does not have the context of a faulting instruction to

assist in the mapping from physical to virtual address since a load that caused a

read dependency may have occured many cycles in the past. Generally, operatings

systems do not have an efficient way to perform an arbitrary physical address to

virtual address mapping.

Fortunately in the context of the Atomos scheduler implement, there is no need to

solve the full physical to virtual address mapping problem. Violations are expected,

122 APPENDIX A. SIMULATION ENVIRONMENT

either on well know queue addresses used to communicate with the scheduler thread

or on watch addresses specified by the program. The runtime system can ask the

operating system for the virtual to physical address mapping for queue addresses

when they are created and for new watch addresses as needed, so that it can perform

its own reverse mapping. The operating system would need to callback the runtime

system if these mapping changes to keep the scheduler map coherent so that expected

violations are not lost.

Appendix B

JikesRVM Implementation

The results are accurate.

– P. J. Denning [37]

In order to run Java-like programs with transactional semantics, it was first nec-

essary to get a Java virtual machine to run within a transactional memory environ-

ment. As mentioned in Chapter 2, the Jikes Research Virtual Machine (JikesRVM)

version 2.3.4 was chosen to evaluate Java programs. JikesRVM, formerly known as

the Jalapeño Virtual Machine, has performance competitive with commercial virtual

machines and is open source [7].

B.1 Running JikesRVM in a TM Environment

While getting applications to run transactionally with JavaT was straightforward, a

number of system issues and virtual machine implementation details needed to be

addressed to get a working system with good performance.

B.1.1 Scheduler

The JikesRVM scheduler multiplexes Java threads onto Pthreads. As Java threads

run, code inserted by the compiler in methods prologues, epilogues, and back-edges

123

124 APPENDIX B. JIKESRVM IMPLEMENTATION

determines if the current thread should yield control back to the scheduler. Unfor-

tunately, when the scheduler notifies threads to yield, all running transactions are

violated by the write. The scheduler also maintains a global wakeup queue of ready

threads. Multiple threads trying to yield and reschedule can violate each other. While

open-nested transactions could address the unwanted violations, they cannot help

with the problem of context switching Java threads between two different Pthreads.

It is not enough to simply move the register state, since the current transactional

state also includes the buffer read- and write-set.

The simple workaround to the context switching problem was to avoid multiplex-

ing threads by matching the number of Java threads to the number of Pthreads,

maintaining per processor scheduler queues, and pinning threads to processors. The

scheduler never needed to preempt the threads and could not migrate them to other

processors, avoiding the above issues. A next step could be to defer the thread switch

test until transaction commit time. Similar to signals, another solution could be

to commit non-synchronized transactions at thread switch points and to rollback

synchronized transactions.

B.1.2 Just-In-Time Compiler

JikesRVM features the Adaptive Optimization System (AOS), that is used to selec-

tively recompile methods dynamically. When it first compiles a method, JikesRVM

typically uses its baseline just-in-time (JIT) compiler that is geared to generating

code fast rather than generating fast code. The generated code contains invocation

counters to measure how often a method is called and edge counters to measure

statistics about basic block usage. Based on these statistics, the most-used methods

are selected for recompilation by an optimizing compiler that can use the basic block

statistics to guide compilation.

Unfortunately, these global counters introduce data dependencies between trans-

actions that are out of the application’s control. A simple workaround is to just disable

the adaptive optimizing system and force the use of the optimizing compiler at all

times, although without statistics information. However, since these counters do not

B.1. RUNNING JIKESRVM IN A TM ENVIRONMENT 125

need to be 100% accurate, a simple solution might be to allow non-transactional up-

dates of the counters. For example, if a load instruction could be non-transactional,

it could be used to read counters in all generated code [61]. Since no transaction

would consider the location to have been read as part of their transaction, violations

would be avoided. The newly incremented value could then be written back normally

as part of the surrounding transaction commit.

A more commonplace problem for all dynamic linkers, including JIT compilers

and traditional C applications, is avoiding violations when resolving references. Two

threads trying to dynamically link the same unresolved routine will both invoke the

JIT and update the reference, causing one of the threads to violate. Again, using a

non-transactional load to test the reference could avoid the violation, at the cost of the

occasional double compilation or reference resolution. This becomes more important

with systems like AOS, where high-usage methods are the ones most often recompiled

at run time.

While some hardware transactional memory systems allow non-transactional reads

and writes with transactions [61], open-nested transactions provide an alternative ap-

proach that preserves some atomicity transactional properties of transactions, while

reducing isolation between transactions. [88, 24, 99, 96]. By placing runtime opera-

tions, such as method invocation counter updates, within open-nested transactions,

the parent application transactions are not rolled back by conflicts involving only the

child open-nested transaction.

B.1.3 Memory Management

Memory management is another area where Java virtual machines need to be aware

of transactions. Poorly designed memory allocators can cause unnecessary violations.

Early Java virtual machines had scalability problems because of contention for a single

global allocator. While this has been addressed in current virtual machines intended

for server use, shared structures still exist. For example, page allocation requests

from a common free list cause data dependency violations. As a result, instead of

refilling local allocators on demand, if a threads allocator is running low on pages, it

126 APPENDIX B. JIKESRVM IMPLEMENTATION

may be better to refill it before entering a synchronized block.

Garbage collection can have issues similar to preemptive thread scheduling. Cur-

rent stop-the-world collectors assume they can suspend threads, possibly using those

threads’ processor resources for parallel collection. As with thread scheduling, the

garbage collector may want to commit or rollback all outstanding transactions. Con-

current collectors need to try to partition their root sets to avoid violations, and keep

their own transactions small to avoid losing too much work when violations do occur.

In the end, for this evaluation the garbage collector was disabled and applications

were run with a two gigabyte heap, but transactional garbage collection is a definite

area of future work.

B.1.4 Impact of Cache Line Granularity

When the JavaT results from Chapter 3 were first published [21, 20], the results were

collected on a TCC simulator that could detect violations with word-level granular-

ity [89]. However, when used to collect the results for this dissertation, as discussed

in Appendix A, it detects violations at the granularity of a cache line. This means

that a read and a write of different words by different transactions cause a violation,

even though logically these reads and writes are to independent words.

When running with cache line granularity, careful Java array and object allocation

layout can help minimize some of the worst problems from these false violations. For

arrays, allocating the header, which includes the size and element type information,

in a different cache line than the first elements can reduce violations. Having the size

in a different cache line avoids violations between transactions reading the size and

those writing elements at the start of the array that are in the same cache line as the

size. Similarly, having the element type in a separate cache line reduces violations

threads writing elements in the same cache line as the the element type and those

reading the element type but writing to other cache lines. For objects, a similar split

of object header and body into two cache lines can reduce some violations between

writers to fields in the first cache line of the objects and other transactions that access

the header for vtable and other similar information. However, it is worth noting that

B.1. RUNNING JIKESRVM IN A TM ENVIRONMENT 127

Feature Transactional implementation
Signals synchronous signals delivered within transactions

asynchronous signals delivered between transactions
Scheduler Context Switching 1.) rollback partial transactions on context switch

2.) delay context switch until end of transaction
Just-In-Time Compiler 1.) non-transactional update of shared runtime values

2.) open-nested update of shared runtime values
Memory Allocation thread local pool refilled between transaction
Garbage Collector rollback partial transactions before collection

Table B.1: Java virtual machine issues in a transactional memory system.

there is a trade-off between wasted space and reduced violations that probably only

makes this worth while for larger objects and arrays that span several cache lines,

since if the object is less than a cache line in size, there is no way to avoid violations

between a read and write to different parts of the object.

It is also worth noting that this word-level versus cache-line granularity issue

is a serious correctness problem for hardware implementations of “early release” in

hardware transactional memory systems, as mentioned briefly in Chapter 4 [33, 119].

Typically, a programmer thinks of early release as a way to remove a word from the

transactions read-set, but in an HTM system with cache line granularity, it is unclear

what to do with such an instruction from the programmer. For correctness, the early

release directive should be ignored since other words in the line may also have been

speculatively read, but this would negatively impact the expected performance under

contention when compared to a system with word granularity.

B.1.5 Summary of JikesRVM Issues and Changes

Table B.1 provides a summary of issues found in the Java virtual machine implemen-

tation.

All execution results in this dissertation were evaluated using JikesRVM with the

following changes. The scheduler was changed to pin threads to processors and not

migrate threads between processors. Methods were compiled before the start of the

main program execution. The garbage collector was disabled and a two gigabyte

128 APPENDIX B. JIKESRVM IMPLEMENTATION

heap was used. Results focus on benchmark execution time, skipping virtual machine

startup.

B.2 Atomos

The following discusses additional details on building and running Atomos on top of

JikesRVM.

B.2.1 Atomos Language Implementation

The Atomos programming language was implemented as a source-to-source trans-

formation using Polyglot [102]. The transformation is fairly shallow, with the Ato-

mos transactional constructs converted in a relatively straightforward way to use

JikesRVM VM Magic methods extensions. The VM Magic methods are replaced by the

baseline and optimizing compiler with simulator’s HTM extensions to the x86 ISA.

B.2.2 Violations from Long Transactions

Running long-running transactions within Atomos found two new sources of violations

within the underlying JikesRVM virtual machine. The first was from the BumpPointer

allocator requests to the MonotonePageResource. The MonotonePageResource is a

global allocator that provides pages to the per processor BumpPointer allocator. The

second source of violations was from ReferenceGlue.addCandidate which keeps a

global list of weak references, which was invoked because of the use of ThreadLocal

storage. In both cases, accessing the global state from an open-nested transaction

prevents this from being an unnecessary source of violations to applications.

B.2.3 Open Nesting and Stack Discipline

The use of synchronized-style block statements for nested transactions in Atomos

is critical for correctness in TM systems that do not exclude the stack from the

read- and write-sets. Without proper block nesting of transactions on the stack, a

B.2. ATOMOS 129

closed-nested transaction may roll back to find its stack modified by an open-nested

transaction. For example, in a system with a library style interface for beginning and

committing transactions, a program might create a new closed-nested transaction in

a function and then return. If that transaction aborts, it will need the stack to be

restored to its previous state so that the function can properly find values such as

its return address on the stack. However, if after returning, the program commits

an open-nested transaction that reuses an overlapping part of the stack, the closed-

nested transaction may fail to find needed state on rollback, causing anything from

incorrect program execution to an exploitable stack-smashing attack on the return

address. This is very similar to the problem of live stack overwrite problem faced by

TxLinux x86 interface handlers [108].

JikesRVM running on x86 provided an additional challenge to properly maintain-

ing the stack in the face of open-nested transactions. When starting a transaction,

transactional memory systems checkpoint register state to enable rollback of the pro-

gram state. When initially running Atomos on a PowerPC-based simulator, this

was sufficient for supporting open-nested transactions in the JikesRVM environment.

However, on register starved x86, JikesRVM uses a calling convention that did not

work with open-nested transactions without modification. The problem was that the

frame pointer was not stored in a register, but instead stored in a thread local vari-

able accessed indirectly through a register dedicated for processor specific state. If a

thread only used closed-nested transactions, this frame pointer value, which is stored

in memory, would be rolled back along with other memory state. However, if an

open-nested transaction made a functional call and committed, it would write a new

value for the frame pointer to memory that would not be rolled back if the parent

closed-nested transaction was aborted. The solution is to have an abort handler for

closed-nested transactions that restores the proper frame pointer on rollback.

130 APPENDIX B. JIKESRVM IMPLEMENTATION

Appendix C

Non-transactional Operations

Don’t do that, then! :imp.

[from an old doctor’s office joke about a patient with a trivial complaint]

Stock response to a user complaint. ‘When I type control-S, the whole

system comes to a halt for thirty seconds.” ‘Don’t do that, then!” (or ‘So

don’t do that!”). Compare RTFM.

– The Jargon File 4.4.7

Transactions started out in the database world as a way to allow concurrent and

possibly conflicting access to disk storage. Over time, the concept of transactions

generalized to allow distributed transactions, potentially over a network, with a trans-

action manager coordinating multiple resource managers. This appendix will look at

many different approaches to integrating transactional memory systems with non-

transactional resources, such as disks and networks, that have traditionally been

supported within transactional systems.

The approaches to integrating transactional memory and non-transactional op-

erations can range from disallowing such operations, to allowing the programmer to

potentially shoot themselves in the foot, all the way up to semantic concurrency con-

trol and distributed transaction systems. The following sections will work from the

simplest proposals up, noting the pros and cons of each.

131

132 APPENDIX C. NON-TRANSACTIONAL OPERATIONS

C.1 Forbid Non-transactional Operations in Trans-

actions

The simplest approach to non-transactional operations in a transactional memory

system is just to to forbid their use within transactions. This can be done either by

reporting a runtime error [55] or at compile-time through use of a type system [56, 65].

The primary advantage of prohibiting non-transactional operations within transac-

tions is simplicity. The major disadvantages are forcing programmers to partition

their access from shared data from the I/O, as well as issues with composability of

libraries that consist of both computation and I/O.

To take an example application, an HTTP server can read a request from the

network interface into memory, use a transaction to process the request, producing

a response to a buffer in memory, and finally write the response to the network

after the transaction has committed. Moving the network I/O out of the transaction

processing the request does not require a major restructuring of this code. However,

since the actual processing of the request is within a transaction, it is restricted from

doing other types of I/O such as reading files or talking to a database, leaving the

server restricted to the serving responses based only on the input and the contents of

memory.

C.2 Serialize Non-transactional Operations

Another relatively simple approach is to allow only one transaction at a time to

perform a non-transactional operation. This thread becomes non-speculative and

can no longer abort, even at its own request, since there is no way to undo the

non-transactional operation it has performed. In addition, any contention between

the non-speculative thread and other transactions must be decided in favor of the

non-speculative thread. The advantage of this approach is the simplicity. The dis-

advantages are the serialization caused by transactions performing non-transactional

operations and the lack of user directed abort.

To continue the HTTP server example, no I/O would be allowed to happen while

C.3. ALLOW SELECTED NON-TRANSACTIONAL OPERATIONS 133

processing a request. A typical request for a static file could read the file and return

its contents to the request, potentially reading the contents into an in-memory cache

to avoid serializing on requests to that file in the near future. However, if the server

had little locality in its file requests, the requests would be serialized as each request

took turns accessing the disk within their transactions.

C.3 Allow Selected Non-transactional Operations

Another approach is for non-transactional operations to serialize transactions in the

common case, but then allow selected classes of operations and specially marked

instances of operations as not causing serialization. The advantage of this is removing

some unnecessary serialization when it is unneeded with the disadvantage of allowing

programmers to incorrectly perform non-transactional operations with no way to undo

their effects.

In the HTTP server example, consider the use cases of gettimeofday and debug

logging. The gettimeofday system call might be used to check if cached data is still

valid or to expire old data. Since it does not modify any non-memory state, it is

reasonable to run it without serializing on the calling transaction. For debug logging,

any tracing of the request processing is desired regardless of the transaction outcome.

Since this information is simply for the programmers use in diagnosing issues, it is

okay that there is no way to undo it if the calling transaction aborts in the future.

Note that not all output should happen non-transactionally. While the instances of

debug output should be allowed, other file output should still cause serialization.

C.4 Use Transaction Handlers to Delay or Undo

Operations

Another approach to dealing with non-transactional operations is through the use of

transaction handlers, as discussed previously in Section 4.1.4. Commit handlers offer

a way to delay non-transactional operations until after a transaction completes. Abort

134 APPENDIX C. NON-TRANSACTIONAL OPERATIONS

handlers allow a compensating action to be performed if a transaction fails, allowing

transactions to perform I/O in a transaction, but giving a structured way to undo

its effects if necessary. The great advantage of transaction handlers is the flexibility

they give to the programmer, but at the same time the correct design compensating

actions also adds to the burden of programmers.

There is some hope that some common patterns of using commit handlers could

be implemented by library authors rather then the application programmer directly.

Non-transactional operations within transactions are recorded at each call but only

performed at commit time using transaction callbacks, a common solution in tradi-

tional database systems [63]. For example, a reusable wrapper class could be created

for the common case of buffered stream output, to automatically delay output un-

til commit time. In a transactional runtime, this functionality could be built into

the standard Java classes like BufferedOutputStream and BufferedWriter classes,

allowing common code to work without modification.

To return to the HTTP server example, transaction handlers could be used to re-

move more cases of serialization from file and network I/O. Consider the processing of

a file upload via the HTTP POST method. The file could be uploaded to a temporary

location as part of the transaction. If the transaction commits, the temporary file can

be moved to its permanently location. If the transaction aborts, the temporary file

can be deleted. In perhaps a more important case, the request could now be allowed

to talk over the network to a database to perform a single database transaction. The

final commit or abort of the database transaction can be tied to the success or failure

of the memory transaction.

C.5 Semantic Concurrency Control

The approach of semantic concurrency control can be applied to abstract data types

involving non-transactional operations. A logical extension of the previous approach,

a TransactionalMap could be used around a Map implementation that provides

durable storage, such as a B-tree. The advantage of this approach is that programs can

use existing semantic concurrency control implementations, while the disadvantage is

C.6. DISTRIBUTED TRANSACTIONS 135

that not all non-transactional operations have well defined inverses to allow perfect

compensating actions. To use a common database example, if the non-transactional

operation is to launch a missile, the compensating action might be to have the missile

self-destruct, but it does not return us to the original state of the system.

To continue the HTTP server example, the incoming requests could use a set of

B-trees protected by semantic concurrency control to implement a small database.

Note that a transaction involving operations involving multiple trees would have full

ACID transaction semantics, even though the B-tree implementations all operate

independently of each other.

C.6 Distributed Transactions

The final approach to discuss is making the transactional memory system simply one

of many resource managers. The memory transactions could then interact with other

transactional resource manager, such as file systems, databases, and message queues.

Given commodity OS for transactional file systems [103], handling the common case

file operations at a system wide level rather than with ad hoc approaches within

the transactional memory implementation seems like a good solution. However, the

downside is the potential performance downside of interacting with the system trans-

action coordinator, although this can be avoided in the potentially common case of

memory only transactions.

In the HTTP server example, request processing could interact with a transaction

file systems and databases without any special handlers or concurrency control outside

the transactional memory implementation.

C.7 Summary of Approaches

Modular systems are built on composable libraries. What is needed are general ways

to address non-transactional operations without disturbing the logical structure of

the code. However, different types of non-transactional operations may need different

approaches.

136 APPENDIX C. NON-TRANSACTIONAL OPERATIONS

To finish the HTTP server example, many of these approaches may end up work-

ing together. Distributed transactions could address the common problems with

access to files and transactional resources over the network. Semantic concurrency

control might be used to implement durable resource managers within the transac-

tional memory system. Commit handlers might provide ways of coping with output

to peripherals that lack undo such as printers, ATM machines, and missiles. Certain

operations such as gettimeofday can simply be allowed to run without any restric-

tions from the system. Finally, any remaining non-transactional operations, such as

process creation, can be handled by serializing the call transaction.

C.8 Related Work

C.8.1 No I/O in Transactions

Harris et al. integrated TM into Concurrent Haskell to take advantage of Haskell’s

type system, which identifies I/O operations as part of signatures [56]. This allows

static checking to prevent non-transactional operations with atomic regions.

Isard and Birrell introduced Automatic Mutual Exclusion, which is a programming

model where non-transactional operations can only occur in unprotected regions that

are outside of the transactional execution environment [65].

C.8.2 Serialization

Hammond et al. allowed a thread that needed to perform a non-transactional op-

eration to take and hold a commit token to ensure that only one transaction could

perform a non-transactional operation at a time [53, 50]. Blundell et al. evaluated a

similar system that allows one unrestricted transaction to perform non-transactional

operations [13]. Both of these approaches are similar to the non-speculative thread

in TLS and related systems discussed in Section 2.5.2 and Section 2.5.3.

C.8. RELATED WORK 137

C.8.3 Transaction Handlers

Harris explored how the ContextListener listener, a form of transaction handler

discussed in Section 4.1.4, [54] could be used to defer output until after transactions

commit as well as rewind input on transaction abort.

McDonald et al. presented the HTM semantics for a system with support for

transaction handlers, demonstrating how I/O could be deferred until transaction com-

mit [88]. This was the system used for the original Atomos evaluation [24].

Baugh and Zilles did a study of the use of system calls in a desktop application,

the Firefox web browser, as well as a server application, the MySQL database, to

estimate the effectiveness of some of the proposed approaches to non-transactional

operations [10]. They found that some system calls required no compensation and

that many could be compensated for by another syscall, while others might require

some sort of higher level knowledge of the program behavior to provide compensation.

Their analysis showed that simple deferral of system calls until a commit handler

would not work in many cases since callers depended on the results of the system

call. They also found that approaches that serialize on transactions could seriously

hurt the performance of the studied application.

C.8.4 Distributed Transactions

Carlstrom et al. discussed integrating transactional memory systems with distributed

transaction environments [22]. The previously mentioned Baugh and Zilles work also

discussed how integrating with a transactional file system could address compensation

for many file system system calls [10].

The Apache Commons Transaction Component provides resource managers for

Map classes as well as for file access [43]. Similar to the transactional collection class

approach of Chapter 5, programmers use a wrapper class that implements standard

interfaces [23]. Three different wrappers are provided: a basic TransactionalMap-

Wrapper, an OptimisiticMapWrapper, and a PessimisticMapWrapper. Transac-

tional file access is allowed via standard InputStream and OutputStream interfaces.

Note that Commons Transaction is not related to transactional memory, but allows

138 APPENDIX C. NON-TRANSACTIONAL OPERATIONS

an application to tie memory and file operations to a transaction outcome that include

other transactional resources such as a database.

C.8.5 Memory Mapped I/O

Kuszmaul and Sukha explored performing file I/O in a page-based STM system by

using memory mapped files [79]. This meant that file I/O did not need to be treated

differently than memory operations and also meant that a conflicting file I/O between

multiple threads were caught by the TM system. While this technique is applicable

to file I/O, it is not useful in general non-transactional operations.

C.8.6 OS Work

Ramadan et al. approached transactional memory and system calls from a differ-

ent perspective, that of using transactional memory within the Linux kernel syscall

implementation [108]. Their MetaTM is an HTM system with special features to

support implementing x86 interrupt handlers for their TxLinux kernel. Rossbach et

al. explains how the TxLinux kernel uses HTM, particularly in its scheduler imple-

mentation [110].

Bibliography

[1] M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of transactional

memory and automatic mutual exclusion. In POPL ’08: Proceedings of the 35th

annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 63–74, New York, NY, USA, 2008. ACM.

[2] A.-R. Adl-Tabatabai, B. Lewis, V. Menon, B. R. Murphy, B. Saha, and T. Sh-

peisman. Compiler and runtime support for efficient software transactional

memory. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN Conference

on Programming Language Design and Implementation, New York, NY, USA,

2006. ACM Press.

[3] S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tuto-

rial. IEEE Computer, 29(12):66–76, December 1996.

[4] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock rate versus

IPC: the end of the road for conventional microarchitectures. In Proceedings

of the 27th Annual International Symposium on Computer Architecture, pages

248–259, 2000.

[5] K. Agrawal, C. E. Leiserson, and J. Sukha. Memory models for open-nested

transactions. In MSPC: Workshop on Memory Systems Performance and Cor-

rectness, October 2006.

[6] E. Allen, D. Chase, V. Luchangco, J.-W. Maessen, S. Ryu, G. L. Steele, Jr., and

S. Tobin-Hochstadt. The Fortress Language Specification. Sun Microsystems,

2005.

139

140 BIBLIOGRAPHY

[7] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi,

A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov,

M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd,

S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño virtual

machine. IBM Systems Journal, 39(1):211–238, 2000.

[8] C. S. Ananian, K. Asanović, B. C. Kuszmaul, C. E. Leiserson, and S. Lie. Un-

bounded Transactional Memory. In Proceedings of the 11th International Sym-

posium on High-Performance Computer Architecture (HPCA’05), pages 316–

327, San Francisco, California, February 2005.

[9] W. Baek, C. Cao Minh, M. Trautmann, C. Kozyrakis, and K. Olukotun. The

OpenTM transactional application programming interface. In PACT ’07: Pro-

ceedings of the 16th International Conference on Parallel Architecture and Com-

pilation Techniques, pages 376–387, Washington, DC, USA, 2007. IEEE Com-

puter Society.

[10] L. Baugh and C. Zilles. An analysis of I/O and syscalls in critical sections

and their implications for transactional memory. In 2008 IEEE International

Symposium on Performance Analysis of Systems and Software, April 2008.

[11] C. Blundell, E. C. Lewis, and M. M. K. Martin. Deconstructing transactional

semantics: The subtleties of atomicity. In Workshop on Duplicating, Decon-

structing, and Debunking (WDDD), June 2005.

[12] C. Blundell, E. C. Lewis, and M. M. K. Martin. Subtleties of transactional

memory atomicity semantics. IEEE Computer Architecture Letters, 5(2), July–

December 2006.

[13] C. Blundell, E. C. Lewis, and M. M. K. Martin. Unrestricted transactional

memory: Supporting I/O and system calls within transactions. Technical Re-

port CIS-06-09, Department of Computer and Information Science, University

of Pennsylvania, April 2006.

BIBLIOGRAPHY 141

[14] J. Bobba, K. E. Moore, L. Yen, H. Volos, M. D. Hill, M. M. Swift, and D. A.

Wood. Performance pathologies in hardware transactional memory. In Proceed-

ings of the 34th Annual International Symposium on Computer Architecture.

June 2007.

[15] H.-J. Boehm. Threads cannot be implemented as a library. In PLDI ’05:

Proceedings of the 2005 ACM SIGPLAN conference on Programming language

design and implementation, pages 261–268, New York, NY, USA, 2005. ACM

Press.

[16] E. Brevnov, Y. Dolgov, B. Kuznetsov, D. Yershov, V. Shakin, D.-Y. Chen,

V. Menon, and S. Srinivas. Practical experiences with Java software trans-

actional memory. In PPoPP ’08: Proceedings of the 13th ACM SIGPLAN

Symposium on Principles and practice of parallel programming, pages 287–288,

New York, NY, USA, 2008. ACM.

[17] Broadcom. The Broadcom BCM1250 multiprocessor. In Presentation at 2002

Embedded Processor Forum, San Jose, CA, April 2002.

[18] M. Campione, K. Walrath, and A. Huml. The Java Tutorial. Addison-Wesley

Professional, third edition, January 2000.

[19] C. Cao Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson, J. Casper,

C. Kozyrakis, and K. Olukotun. An effective hybrid transactional memory

system with strong isolation guarantees. In Proceedings of the 34th Annual

International Symposium on Computer Architecture. June 2007.

[20] B. D. Carlstrom, J. Chung, H. Chafi, A. McDonald, C. Cao Minh, L. Hammond,

C. Kozyrakis, , and K. Olukotun. Executing Java programs with transactional

memory. Science of Computer Programming, 63(10):111–129, December 2006.

[21] B. D. Carlstrom, J. Chung, H. Chafi, A. McDonald, C. Cao Minh, L. Hammond,

C. Kozyrakis, and K. Olukotun. Transactional Execution of Java Programs.

In OOPSLA 2005 Workshop on Synchronization and Concurrency in Object-

Oriented Languages (SCOOL). University of Rochester, October 2005.

142 BIBLIOGRAPHY

[22] B. D. Carlstrom, J. Chung, C. Kozyrakis, and K. Olukotun. The software stack

for transactional memory: Challenges and opportunities. In First Workshop on

Software Tools for Multi-Core Systems. March 2006.

[23] B. D. Carlstrom, A. McDonald, M. Carbin, C. Kozyrakis, and K. Olukotun.

Transactional Collection Classes. In Proceeding of the Symposium on Principles

and Practice of Parallel Programming, March 2007.

[24] B. D. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. Cao Minh, C. Kozyrakis,

and K. Olukotun. The Atomos Transactional Programming Language. In PLDI

’06: Proceedings of the 2006 ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, pages 1–13, New York, NY, USA, June 2006.

ACM Press.

[25] H. Chafi, C. Cao Minh, A. McDonald, B. D. Carlstrom, J. Chung, L. Hammond,

C. Kozyrakis, and K. Olukotun. TAPE: a transactional application profiling en-

vironment. In ICS ’05: Proceedings of the 19th annual international conference

on Supercomputing, pages 199–208, New York, NY, USA, 2005. ACM.

[26] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. Cao Minh, W. Baek,

C. Kozyrakis, and K. Olukotun. A scalable, non-blocking approach to transac-

tional memory. In HPCA ’07: Proceedings of the 2007 IEEE 13th International

Symposium on High Performance Computer Architecture, pages 97–108, Wash-

ington, DC, USA, 2007. IEEE Computer Society.

[27] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,

C. von Praun, and V. Sarkar. X10: an object-oriented approach to non-uniform

cluster computing. In OOPSLA ’05: Proceedings of the 20th annual ACM

SIGPLAN conference on Object oriented programming systems languages and

applications, pages 519–538, New York, NY, USA, 2005. ACM Press.

[28] J. Chung, C. Cao Minh, B. D. Carlstrom, and C. Kozyrakis. Parallelizing

SPECjbb2000 with Transactional Memory. In Workshop on Transactional

Memory Workloads, June 2006.

BIBLIOGRAPHY 143

[29] J. Chung, C. Cao Minh, A. McDonald, H. Chafi, B. D. Carlstrom, T. Skare,

C. Kozyrakis, and K. Olukotun. Tradeoffs in transactional memory virtual-

ization. In ASPLOS-XII: Proceedings of the 12th international conference on

Architectural support for programming languages and operating systems. ACM

Press, October 2006.

[30] J. Chung, H. Chafi, C. Cao Minh, A. McDonald, B. D. Carlstrom, C. Kozyrakis,

and K. Olukotun. The Common Case Transactional Behavior of Multithreaded

Programs. In Proceedings of the 12th International Conference on High-

Performance Computer Architecture, February 2006.

[31] C. Click. A tour inside the Azul 384-way Java appliance. Tutorial held in con-

junction with the Fourteenth International Conference on Parallel Architectures

and Compilation Techniques (PACT), September 2005.

[32] C. Click. A lock-free hashtable. JavaOne Conference, May 2006.

[33] Cray. Chapel Specification. February 2005.

[34] L. Dalessandro, V. J. Marathe, M. F. Spear, and M. L. Scott. Capabilities

and limitations of library-based software transactional memory in C++. In

TRANSACT ’07: Second ACM SIGPLAN Workshop on Languages, Compilers,

and Hardware Support for Transactional Computing, August 2007.

[35] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum.

Hybrid transactional memory. In ASPLOS-XII: Proceedings of the 12th inter-

national conference on Architectural support for programming languages and

operating systems, October 2006.

[36] J. Danaher, I.-T. Lee, and C. Leiserson. The JCilk Language for Multithreaded

Computing. In OOPSLA 2005 Workshop on Synchronization and Concurrency

in Object-Oriented Languages (SCOOL). University of Rochester, October 2005.

[37] P. J. Denning. The working set model for program behavior. Communications

of the ACM, 11(5):323–333, 1968.

144 BIBLIOGRAPHY

[38] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In DISC’06:

Proceedings of the 20th International Symposium on Distributed Computing,

March 2006.

[39] D. Dice and N. Shavit. What really makes transactions faster? In TRANSACT:

First ACM SIGPLAN Workshop on Languages, Compilers, and Hardware Sup-

port for Transactional Computing, 2006.

[40] R. Ennals. Efficient software transactional memory. Technical Report IRC-TR-

05-051,, Intel Research Cambridge, 2005.

[41] J. L. Eppinger, L. B. Mummert, and A. Z. Spector, editors. Camelot and

Avalon: a distributed transaction facility. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 1991.

[42] C. Flanagan. Atomicity in multithreaded software. In Workshop on Transac-

tional Systems, April 2005.

[43] T. A. S. Foundation. package org.apache.commons.transaction. http://

commons.apache.org/transaction, January 2005.

[44] Free Software Foundation, GNU Classpath 0.18 . http://www.gnu.org/

software/classpath/, 2005.

[45] H. Garcia-Molina and K. Salem. Sagas. In SIGMOD ’87: Proceedings of the

1987 ACM SIGMOD international conference on Management of data, pages

249–259, New York, NY, USA, 1987. ACM Press.

[46] J. Gray. The transaction concept: Virtues and limitations. In Proceedings of the

7th International Conference on Very Large Data Bases, pages 144–154. IEEE

Computer Society, 1981.

[47] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.

Morgan Kaufmann, 1993.

http://commons.apache.org/transaction
http://commons.apache.org/transaction
http://www.gnu.org/software/classpath/
http://www.gnu.org/software/classpath/

BIBLIOGRAPHY 145

[48] D. Grossman, J. Manson, and W. Pugh. What do high-level memory models

mean for transactions? In MSPC: Workshop on Memory Systems Performance

and Correctness, October 2006.

[49] R. Guerraoui, M. Herlihy, M. Kapalka, and B. Pochon. Robust Contention

Management in Software Transactional Memory. In OOPSLA 2005 Workshop

on Synchronization and Concurrency in Object-Oriented Languages (SCOOL).

University of Rochester, October 2005.

[50] L. Hammond, B. D. Carlstrom, V. Wong, M. Chen, C. Kozyrakis, and K. Oluko-

tun. Transactional coherence and consistency: Simplifying parallel hardware

and software. Micro’s Top Picks, IEEE Micro, 24(6), Nov/Dec 2004.

[51] L. Hammond, B. D. Carlstrom, V. Wong, B. Hertzberg, M. Chen, C. Kozyrakis,

and K. Olukotun. Programming with transactional coherence and consistency

(TCC). In ASPLOS-XI: Proceedings of the 11th international conference on

Architectural support for programming languages and operating systems, pages

1–13, New York, NY, USA, October 2004. ACM Press.

[52] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. Chen, and K. Olukotun.

The Stanford Hydra CMP. IEEE Micro, 20(2):71–84, March/April 2000.

[53] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg,

M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional mem-

ory coherence and consistency. In Proceedings of the 31st International Sympo-

sium on Computer Architecture, pages 102–113, June 2004.

[54] T. Harris. Exceptions and side-effects in atomic blocks. In 2004 PODC Work-

shop on Concurrency and Synchronization in Java Programs, July 2004.

[55] T. Harris and K. Fraser. Language support for lightweight transactions. In

OOPSLA ’03: Proceedings of the 18th annual ACM SIGPLAN conference on

Object-oriented programing, systems, languages, and applications, pages 388–

402. ACM Press, 2003.

146 BIBLIOGRAPHY

[56] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable memory

transactions. In PPoPP ’05: Proceedings of the tenth ACM SIGPLAN sym-

posium on Principles and practice of parallel programming, pages 48–60, New

York, NY, USA, July 2005. ACM Press.

[57] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing memory trans-

actions. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN Conference

on Programming Language Design and Implementation, New York, NY, USA,

2006. ACM Press.

[58] M. Herlihy. SXM: C# software transactional memory. http://research.

microsoft.com, May 2006.

[59] M. Herlihy, V. Luchangco, and M. Moir. A flexible framework for implement-

ing software transactional memory. In OOPSLA ’06: Proceedings of the 21st

annual ACM SIGPLAN conference on Object-oriented programming systems,

languages, and applications, pages 253–262, New York, NY, USA, 2006. ACM

Press.

[60] M. Herlihy, V. Luchangco, M. Moir, and I. William N. Scherer. Software trans-

actional memory for dynamic-sized data structures. In PODC ’03: Proceedings

of the twenty-second annual symposium on Principles of distributed computing,

pages 92–101, New York, NY, USA, July 2003. ACM Press.

[61] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for

lock-free data structures. In Proceedings of the 20th International Symposium

on Computer Architecture, pages 289–300, 1993.

[62] B. Hindman and D. Grossman. Atomicity via source-to-source translation. In

MSPC: Workshop on Memory Systems Performance and Correctness, October

2006.

[63] IBM Corporation. Encina Transactional-C Programmer’s Guide and Reference

for AIX, SC23-2465-02, 1994.

http://research.microsoft.com
http://research.microsoft.com

BIBLIOGRAPHY 147

[64] International Organization for Standardization. ISO/IEC 9075-5:1999: In-

formation technology —- Database languages — SQL — Part 5: Host Lan-

guage Bindings (SQL/Bindings). International Organization for Standardiza-

tion, Geneva, Switzerland, 1999.

[65] M. Isard and A. Birrell. Automatic Mutual Exclusion. In 11th Workshop on

Hot Topics in Operating Systems, May 2007.

[66] S. Jagannathan, J. Vitek, A. Welc, and A. Hosking. A transactional object

calculus. Science of Computer Programming, 57(2):164–186, August 2005.

[67] Java Grande Forum, Java Grande Benchmark Suite. http://www.epcc.ed.

ac.uk/javagrande/, 2000.

[68] Java Specification Request (JSR) 133: Java Memory Model and Thread Speci-

fication, September 2004.

[69] Java Specification Request (JSR) 166: Concurrency Utilities , September 2004.

[70] M. Jordan and M. Atkinson. Orthogonal Persistence for the Java Platform.

Technical report, Sun Microsystems, October 1999.

[71] R. Kalla, B. Sinharoy, and J. Tendler. Simultaneous multi-threading imple-

mentation in POWER5. In Conference Record of Hot Chips 15 Symposium,

Stanford, CA, August 2003.

[72] S. Kapil. UltraSparc Gemini: Dual CPU processor. In Conference Record of

Hot Chips 15 Symposium, Palo Alto, CA, August 2003.

[73] A. Kimball and D. Grossman. Software transactions meet first-class contin-

uations. In Scheme and Functional Programming Workshop ’07, September

2007.

[74] T. Knight. An architecture for mostly functional languages. In LFP ’86: Pro-

ceedings of the 1986 ACM conference on LISP and functional programming,

pages 105–112, New York, NY, USA, August 1986. ACM Press.

http://www.epcc.ed.ac.uk/javagrande/
http://www.epcc.ed.ac.uk/javagrande/

148 BIBLIOGRAPHY

[75] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way multithreaded

Sparc processor. IEEE Micro, 25(2):21–29, March–April 2005.

[76] V. Krishnan and J. Torrellas. A chip multiprocessor architecture with spec-

ulative multithreading. IEEE Transactions on Computers, Special Issue on

Multithreaded Architecture, 48(9):866–880, September 1999.

[77] M. Kulkarni, L. P. Chew, and K. Pingali. Using Transactions in Delaunay Mesh

Generation. In Workshop on Transactional Memory Workloads, June 2006.

[78] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid trans-

actional memory. In PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN

symposium on Principles and practice of parallel programming, New York, NY,

USA, March 2006. ACM Press.

[79] B. C. Kuszmaul and J. Sukha. Concurrent cache-oblivious B-trees using trans-

actional memory. In Workshop on Transactional Memory Workloads, Ottawa,

Canada, June 2006.

[80] J. Larus and R. Rajwar. Transactional Memory. Morgan Claypool Synthesis

Series, 2006.

[81] D. Lea. package util.concurrent . http://gee.cs.oswego.edu/dl, May 2004.

[82] S. Liang. Java Native Interface: Programmer’s Guide and Reference. Addison-

Wesley Longman Publishing Company, Inc., 1999.

[83] B. Liblit. An operational semantics for LogTM. Technical Report CS-TR-2006-

1571, University of Wisconsin-Madison, Department of Computer Sciences, Au-

gust 2006.

[84] B. Liskov and R. Scheifler. Guardians and actions: Linguistic support for

robust, distributed programs. ACM Transactions on Programming Languages

and Systems, 5(3):381–404, 1983.

http://gee.cs.oswego.edu/dl

BIBLIOGRAPHY 149

[85] V. Luchangco and V. Marathe. Transaction Synchronizers. In OOPSLA 2005

Workshop on Synchronization and Concurrency in Object-Oriented Languages

(SCOOL). University of Rochester, October 2005.

[86] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N. Scherer,

and M. L. Scott. Lowering the overhead of nonblocking software transactional

memory. In TRANSACT: First ACM SIGPLAN Workshop on Languages,

Compilers, and Hardware Support for Transactional Computing, 2006.

[87] J. F. Mart́ınez and J. Torrellas. Speculative synchronization: applying thread-

level speculation to explicitly parallel applications. In ASPLOS-X: Proceedings

of the 10th international conference on Architectural support for programming

languages and operating systems, pages 18–29, New York, NY, USA, October

2002. ACM Press.

[88] A. McDonald, J. Chung, B. D. Carlstrom, C. Cao Minh, H. Chafi, C. Kozyrakis,

and K. Olukotun. Architectural Semantics for Practical Transactional Mem-

ory. In ISCA ’06: Proceedings of the 33rd annual international symposium on

Computer Architecture, pages 53–65, Washington, DC, USA, June 2006. IEEE

Computer Society.

[89] A. McDonald, J. Chung, H. Chafi, C. Cao Minh, B. D. Carlstrom, L. Ham-

mond, C. Kozyrakis, and K. Olukotun. Characterization of TCC on Chip-

Multiprocessors. In PACT ’05: Proceedings of the 14th International Conference

on Parallel Architectures and Compilation Techniques, pages 63–74, Washing-

ton, DC, USA, September 2005. IEEE Computer Society.

[90] A. N. McDonald. Architectures for Transactional Memory. PhD thesis, Stanford

University, 2008.

[91] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and

blocking concurrent queue algorithms. In PODC ’96: Proceedings of the fifteenth

annual ACM symposium on Principles of distributed computing, pages 267–275,

New York, NY, USA, 1996. ACM Press.

150 BIBLIOGRAPHY

[92] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood. LogTM:

Log-Based Transactional Memory. In 12th International Conference on High-

Performance Computer Architecture, February 2006.

[93] K. F. Moore and D. Grossman. High-level small-step operational semantics for

transactions. In POPL ’08: Proceedings of the 35th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, pages 51–62, New

York, NY, USA, 2008. ACM.

[94] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill, B. Liblit, M. M.

Swift, and D. A. Wood. Supporting nested transactional memory in LogTM.

In Proceedings of the 12th international conference on Architectural support for

programming languages and operating systems, pages 359–370, New York, NY,

USA, 2006. ACM Press.

[95] J. E. B. Moss. Nested Transactions: An Approach to Reliable Distributed Com-

puting. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA,

USA, April 1981.

[96] J. E. B. Moss. Nested Transactions: An Approach to Reliable Distributed Com-

puting. MIT Press, March 1985.

[97] J. E. B. Moss. Open Nested Transactions: Semantics and Support. In Poster

at the 4th Workshop on Memory Performance Issues (WMPI-2006). February

2006.

[98] J. E. B. Moss, N. D. Griffeth, and M. H. Graham. Abstraction in recovery

management. In SIGMOD ’86: Proceedings of the 1986 ACM SIGMOD inter-

national conference on Management of data, pages 72–83, New York, NY, USA,

1986. ACM Press.

[99] J. E. B. Moss and T. Hosking. Nested Transactional Memory: Model and

Preliminary Architecture Sketches. In OOPSLA 2005 Workshop on Synchro-

nization and Concurrency in Object-Oriented Languages (SCOOL). University

of Rochester, October 2005.

BIBLIOGRAPHY 151

[100] J. D. Newton. Uncommon Friends: Life with Thomas Edison, Henry Ford,

Harvey Firestone, Alexis Carrel & Charles Lindbergh. Harcourt, 1987.

[101] Y. Ni, V. S. Menon, A.-R. Adl-Tabatabai, A. L. Hosking, R. L. Hudson, J. E. B.

Moss, B. Saha, and T. Shpeisman. Open nesting in software transactional

memory. In PPoPP ’07: Proceedings of the 12th ACM SIGPLAN symposium

on Principles and Practice of Parallel Programming, pages 68–78, New York,

NY, USA, 2007. ACM Press.

[102] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: an extensible compiler

framework for Java. In G. Hedin, editor, CC 2005: International Conference

on Compiler Construction, volume 2622 of Lecture Notes in Computer Science,

pages 138–152. Springer-Verlag, April 2003.

[103] J. Olson. NTFS: Enhance your apps with file system transactions. MSDN

Magazine, July 2007.

[104] W. Pugh. The Java memory model is fatally flawed. Concurrency - Practice

and Experience, 12(6):445–455, 2000.

[105] R. Rajwar and J. R. Goodman. Speculative Lock Elision: Enabling Highly

Concurrent Multithreaded Execution. In MICRO 34: Proceedings of the 34th

annual ACM/IEEE International Symposium on Microarchitecture, pages 294–

305. IEEE Computer Society, 2001.

[106] R. Rajwar and J. R. Goodman. Transactional lock-free execution of lock-based

programs. In ASPLOS-X: Proceedings of the 10th international conference on

Architectural support for programming languages and operating systems, pages

5–17, New York, NY, USA, October 2002. ACM Press.

[107] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing Transactional Memory. In

ISCA ’05: Proceedings of the 32nd Annual International Symposium on Com-

puter Architecture, pages 494–505, Washington, DC, USA, June 2005. IEEE

Computer Society.

152 BIBLIOGRAPHY

[108] H. E. Ramadan, C. J. Rossbach, D. E. Porter, O. S. Hofmann, A. Bhandari,

and E. Witchel. MetaTM/TxLinux: transactional memory for an operating

system. SIGARCH Computer Architecture News, 35(2):92–103, 2007.

[109] M. F. Ringenburg and D. Grossman. AtomCaml: first-class atomicity via roll-

back. In ICFP ’05: Proceedings of the tenth ACM SIGPLAN international

conference on Functional programming, pages 92–104, New York, NY, USA,

2005. ACM Press.

[110] C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E. Ramadan, B. Aditya, and

E. Witchel. TxLinux: using and managing hardware transactional memory in

an operating system. In SOSP ’07: Proceedings of twenty-first ACM SIGOPS

symposium on Operating systems principles, pages 87–102, New York, NY, USA,

2007. ACM.

[111] B. Saha, A. Adl-Tabatabai, and Q. Jacobson. Architectural support for soft-

ware transactional memory. In MICRO ’06: Proceedings of the International

Symposium on Microarchitecture, 2006.

[112] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. Cao Minh, and B. Hertzberg.

McRT-STM: A high performance software transactional memory system for a

multi-core runtime. In PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN

symposium on Principles and practice of parallel programming, New York, NY,

USA, March 2006. ACM Press.

[113] B. Sandén. Coping with Java threads. IEEE Computer, 37(4):20–27, 2004.

[114] P. M. Schwarz and A. Z. Spector. Synchronizing shared abstract types. ACM

Transactions on Computer Systems, 2(3):223–250, 1984.

[115] N. Shavit and D. Touitou. Software transactional memory. In Proceedings of the

14th Annual ACM Symposium on Principles of Distributed Computing, pages

204–213, Ottawa, Canada, August 1995.

BIBLIOGRAPHY 153

[116] M. Sherman. Architecture of the encina distributed transaction processing fam-

ily. In SIGMOD ’93: Proceedings of the 1993 ACM SIGMOD international

conference on Management of data, pages 460–463, New York, NY, USA, 1993.

ACM Press.

[117] O. Shivers and B. D. Carlstrom. Scsh Reference Manual, 0.3 edition, December

1994. Current version of manual available at http://scsh.net.

[118] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer, D. Grossman,

R. L. Hudson, K. Moore, and B. Saha. Enforcing isolation and ordering in

STM. In PLDI ’07: Proceedings of the 2007 ACM SIGPLAN Conference on

Programming Language Design and Implementation, June 2007.

[119] T. Skare and C. Kozyrakis. Early release: Friend or foe? In Workshop on

Transactional Memory Workloads. June 2006.

[120] G. S. Sohi, S. E. Breach, and T. Vijaykumar. Multiscalar processors. In Proceed-

ings of the 22nd Annual International Symposium on Computer Architecture,

pages 414–425, June 1995.

[121] Standard Performance Evaluation Corporation, SPECjbb2000 Benchmark .

http://www.spec.org/jbb2000/, 2000.

[122] STAMP: Stanford transactional applications for multi-processing. http://

stamp.stanford.edu.

[123] J. G. Steffan and T. C. Mowry. The potential for using thread-level data spec-

ulation to facilitate automatic parallelization. In HPCA ’98: Proceedings of

the 4th International Symposium on High-Performance Computer Architecture,

page 2, Washington, DC, USA, 1998. IEEE Computer Society.

[124] I. L. Trager. Trends in systems aspects of database management. In Proceedings

of the 2nd International Conference on Databases. Wiley & Sons, 1983.

http://scsh.net
http://www.spec.org/jbb2000/
http://stamp.stanford.edu
http://stamp.stanford.edu

154 BIBLIOGRAPHY

[125] M. Tremblay. Transactional memory for a modern microprocessor. In PODC

’07: Proceedings of the twenty-sixth annual ACM symposium on Principles of

distributed computing, pages 1–1, New York, NY, USA, 2007. ACM.

[126] M. Tremblay and S. Chaudhry. A Third-Generation 65nm 16-Core 32-Thread

Plus 32-Scout-Thread CMT SPARC Processor. In IEEE International Solid-

State Circuits Conference (ISSCC 2008), San Francisco, CA, February 2008.

[127] J. Vitek, S. Jagannathan, A. Welc, and A. L. Hosking. A semantic framework

for designer transactions. In D. A. Schmidt, editor, Proceedings of the Euro-

pean Symposium on Programming, volume 2986 of Lecture Notes in Computer

Science, pages 249–263. Springer-Verlag, April 2004.

[128] D. W. Wall. Limits of instruction-level parallelism. In ASPLOS-IV: Proceedings

of the fourth international conference on Architectural support for programming

languages and operating systems, pages 176–188. ACM Press, 1991.

[129] W. Weihl and B. Liskov. Specification and implementation of resilient, atomic

data types. In SIGPLAN ’83: Proceedings of the 1983 ACM SIGPLAN sympo-

sium on Programming language issues in software systems, pages 53–64, New

York, NY, USA, 1983. ACM Press.

[130] G. Weikum and H.-J. Schek. Architectural issues of transaction management

in multi-layered systems. In VLDB ’84: Proceedings of the 10th International

Conference on Very Large Data Bases, pages 454–465, San Francisco, CA, USA,

1984. Morgan Kaufmann Publishers Inc.

[131] A. Welc, S. Jagannathan, and A. L. Hosking. Transactional monitors for con-

current objects. In M. Odersky, editor, Proceedings of the European Conference

on Object-Oriented Programming, volume 3086 of Lecture Notes in Computer

Science, pages 519–542. Springer-Verlag, June 2004.

[132] P. T. Wojciechowski. Isolation-only transactions by typing and versioning. In

PPDP ’05: Proceedings of the 7th ACM SIGPLAN international conference on

BIBLIOGRAPHY 155

Principles and practice of declarative programming, pages 70–81, New York,

NY, USA, 2005. ACM.

[133] C. Zilles and L. Baugh. Extending hardware transactional memory to sup-

port non-busy waiting and non-transactional actions. In TRANSACT: First

ACM SIGPLAN Workshop on Languages, Compilers, and Hardware Support

for Transactional Computing, 2006.

	Abstract
	Acknowledgements
	Introduction
	Locks
	Alternatives to Locks
	Transactional Memory
	Thesis
	Organization

	Choices in the Design of a Transactional Memory System
	Semantics
	Weak Isolation versus Strong Isolation

	Interface
	Explicit versus Implicit Transactions
	Library Interface versus Language Integration

	Implementation
	Eager versus Lazy Versioning
	Optimistic versus Pessimistic Conflict Detection
	Uniprocessor versus Multiprocessor
	Hardware versus Software

	Evaluation Environment
	Related Work
	Early Hardware Transactional Memory
	Thread Level Speculation
	Speculating through Locks
	Recent Hardware Transactional Memory
	Software Transactional Memory
	Semantics

	JavaT: Executing Java with TM
	JavaT: Mapping Java to Transactions
	synchronized Statements
	Object wait, notify, notifyAll Methods
	volatile Fields

	Impact of Transactions on Java
	Java Memory Model
	Java Native Interface
	Non-transactional Operations
	Exceptions

	Evaluation of JavaT
	Benchmarks
	TestHistogram
	TestHashtable
	TestCompound
	SPECjbb2000
	Java Grande

	Related Work
	Speculating through Locks
	Java with TM
	Other Languages with TM

	Conclusion

	The Atomos Transactional Programming Language
	Atomos = Java - Locks + TM
	Transactional Memory with Closed Nesting
	Fine-Grained Conditional Waiting
	Open Nesting
	Transaction Handlers
	Transaction Class

	Implementing Transactional Features
	Implementing retry
	Loop Speculation

	Evaluation of Atomos
	Handler Overhead in SPECjbb2000
	Conditional Waiting in TestWait

	Related Work
	Programming Languages with Durable Transactions
	Open Nesting
	Atomos Compared to Other TM Systems

	Conclusions

	Semantic Concurrency Control for Transactional Memory
	Supporting Long-Running Transactions
	Database Concurrency Control
	Concurrent Collection Classes
	Transactional Memory
	The Need for Semantic Concurrency Control

	Transactional Collection Classes
	TransactionalMap
	TransactionalSortedMap
	TransactionalQueue

	Semantics for Transactional Collection Classes
	Nested Transactions: Open and Closed
	Commit and Abort Handlers
	Program-directed Transaction Abort

	Serializability Guidelines
	Discussion

	Evaluation
	Map and SortedMap Benchmarks
	High-contention SPECjbb2000

	Conclusions

	Conclusion
	Future Work
	Programming Model
	I/O
	Garbage Collection
	Database

	Final Thoughts

	Simulation Environment
	Simulated Architecture Details
	Signals
	Physical versus Virtual Addresses

	JikesRVM Implementation
	Running JikesRVM in a TM Environment
	Scheduler
	Just-In-Time Compiler
	Memory Management
	Impact of Cache Line Granularity
	Summary of JikesRVM Issues and Changes

	Atomos
	Atomos Language Implementation
	Violations from Long Transactions
	Open Nesting and Stack Discipline

	Non-transactional Operations
	Forbid Non-transactional Operations in Transactions
	Serialize Non-transactional Operations
	Allow Selected Non-transactional Operations
	Use Transaction Handlers to Delay or Undo Operations
	Semantic Concurrency Control
	Distributed Transactions
	Summary of Approaches
	Related Work
	No I/O in Transactions
	Serialization
	Transaction Handlers
	Distributed Transactions
	Memory Mapped I/O
	OS Work

	Bibliography

