
In Proceedings of the 27th Annual International Symposium on Computer Architecture, June 2000

1

Abstract
The microprocessor industry is currently struggling with higher
development costs and longer design times that arise from exceed-
ingly complex processors that are pushing the limits of instruction-
level parallelism. Meanwhile, such designs are especially ill suited
for important commercial applications, such as on-line transaction
processing (OLTP), which suffer from large memory stall times
and exhibit little instruction-level parallelism. Given that commer-
cial applications constitute by far the most important market for
high-performance servers, the above trends emphasize the need to
consider alternative processor designs that specifically target such
workloads. The abundance of explicit thread-level parallelism in
commercial workloads, along with advances in semiconductor
integration density, identify chip multiprocessing (CMP) as poten-
tially the most promising approach for designing processors
targeted at commercial servers.

This paper describes the Piranha system, a research prototype
being developed at Compaq that aggressively exploits chip multi-
processing by integrating eight simple Alpha processor cores
along with a two-level cache hierarchy onto a single chip. Piranha
also integrates further on-chip functionality to allow for scalable
multiprocessor configurations to be built in a glueless and modular
fashion. The use of simple processor cores combined with an
industry-standard ASIC design methodology allow us to complete
our prototype within a short time-frame, with a team size and
investment that are an order of magnitude smaller than that of a
commercial microprocessor. Our detailed simulation results show
that while each Piranha processor core is substantially slower than
an aggressive next-generation processor, the integration of eight
cores onto a single chip allows Piranha to outperform next-genera-
tion processors by up to 2.9 times (on a per chip basis) on impor-
tant workloads such as OLTP. This performance advantage can
approach a factor of five by using full-custom instead of ASIC
logic. In addition to exploiting chip multiprocessing, the Piranha
prototype incorporates several other unique design choices includ-
ing a shared second-level cache with no inclusion, a highly
optimized cache coherence protocol, and a novel I/O architecture.

1 Introduction
High-end microprocessor designs have become increasingly more
complex during the past decade, with designers continuously

pushing the limits of instruction-level parallelism and speculative
out-of-order execution. While this trend has led to significant
performance gains on target applications such as the SPEC
benchmark [40], continuing along this path is becoming less viable
due to substantial increases in development team sizes and design
times [18]. Furthermore, more complex designs are yielding
diminishing returns in performance even for applications such as
SPEC.

Meanwhile, commercial workloads such as databases and Web
applications have surpassed technical workloads to become the
largest and fastest-growing market segment for high-performance
servers. A number of recent studies have underscored the radically
different behavior of commercial workloads such as on-line trans-
action processing (OLTP) relative to technical workloads [4,7,
8,21,28,34,36]. First, commercial workloads often lead to ineffi-
cient executions dominated by a large memory stall component.
This behavior arises from large instruction and data footprints and
high communication miss rates which are characteristic for such
workloads [4]. Second, multiple instruction issue and out-of-order
execution provide only small gains for workloads such as OLTP
due to the data-dependent nature of the computation and the lack
of instruction-level parallelism [35]. Third, commercial workloads
do not have any use for the high-performance floating-point and
multimedia functionality that is implemented in modern micropro-
cessors. Therefore, it is not uncommon for a high-end micropro-
cessor to be stalling most of the time while executing commercial
workloads, leading to a severe under-utilization of its parallel
functional units and high-bandwidth memory system. Overall, the
above trends further question the wisdom of pushing for more
complex processor designs with wider issue and more speculative
execution, especially if the server market is the target.

Fortunately, increasing chip densities and transistor counts
provide architects with several alternatives for better tackling
design complexities in general, and the needs of commercial
workloads in particular. For example, the next-generation Alpha
21364 aggressively exploits semiconductor technology trends by
including a scaled 1GHz 21264 core (i.e., shrink of the current
Alpha processor core to 0.18um technology), two levels of caches,
memory controller, coherence hardware, and network router all on
a single die [2]. The tight coupling of these modules enables a
more efficient and lower latency memory hierarchy which can
substantially improve the performance of commercial
workloads [3]. Furthermore, the reuse of an existing high-perfor-
mance processor core in designs such as the Alpha 21364 effec-
tively addresses the design complexity issues and provides better
time-to-market without sacrificing server performance.

Higher transistor counts can also be used to exploit the inherent
and explicit thread-level (or process-level) parallelism which is
abundantly available in commercial workloads to better utilize on-
chip resources. Such parallelism typically arises from relatively
independent transactions or queries initiated by different clients,
and has traditionally been used to hide I/O latency in such
workloads. Previous studies have shown that techniques such as
simultaneous multithreading (SMT) can provide a substantial

ACM Copyright Notice
Permission to make digital or hard copies of part or all of this

work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

Piranha: A Scalable Architecture
Based on Single-Chip Multiprocessing

Luiz André Barroso, Kourosh Gharachorloo, Robert McNamara†, Andreas Nowatzyk, Shaz Qadeer†,
Barton Sano, Scott Smith‡, Robert Stets, and Ben Verghese

 Western Research Laboratory
Compaq Computer Corporation

Palo Alto, CA 94301

†Systems Research Center
Compaq Computer Corporation

Palo Alto, CA 94301

‡NonStop Hardware Development
Compaq Computer Corporation

Austin, TX 78728

2

performance boost for database workloads [27]. In fact, the Alpha
21464 (successor to Alpha 21364) is planning to combine aggres-
sive chip-level integration (see previous paragraph) along with an
eight-instruction-wide out-of-order processor with SMT support
for four simultaneous threads [13]. An alternative approach, often
referred to as chip multiprocessing (CMP) [15], involves integrat-
ing multiple (possibly simpler) processor cores onto a single chip.
This approach has been adopted by the next-generation IBM
Power4 design which integrates two superscalar cores along with a
shared second-level cache [9]. While the SMT approach is
superior in single-thread performance (important for workloads
without explicit thread-level parallelism), it is best suited for very
wide-issue processors which are more complex to design. In
comparison, CMP advocates using simpler processor cores at a
potential loss in single-thread performance, but compensates in
overall throughput by integrating multiple such cores. Further-
more, CMP naturally lends itself to a hierarchically partitioned
design with replicated modules, allowing chip designers to use
short wires as opposed to costly and slow long wires that can
adversely affect cycle time.

This paper presents a detailed description and evaluation of
Piranha, a research prototype being developed at Compaq (jointly
by Corporate Research and NonStop Hardware Development) to
explore chip multiprocessing architectures targeted at parallel
commercial workloads.1 The centerpiece of the Piranha architec-
ture is a highly-integrated processing node with eight simple
Alpha processor cores, separate instruction and data caches for
each core, a shared second-level cache, eight memory controllers,
two coherence protocol engines, and a network router all on a
single die. Multiple such processing nodes can be used to build a
glueless multiprocessor in a modular and scalable fashion.

The primary goal of the Piranha project is to build a system
that achieves superior performance on commercial workloads
(especially OLTP) with a small team, modest investment, and a
short design time. These requirements heavily influence the design
decisions and methodology used in implementing our prototype.
First, we have opted for extremely simple processor cores using a
single-issue in-order eight-stage pipelined design. Second, we
have opted for a semi-custom design based on industry-standard
ASIC methodologies and tools, making heavy use of synthesis
with standard cells. To achieve acceptable performance, we rely on
a state-of-the-art 0.18um ASIC process and make limited use of
custom-designed memory cells for a few time- or area-critical
memory structures. Nonetheless, some of our modules are larger in
area and our target clock speed is about half of what could be
achieved with custom logic in the same process technology.

We present a detailed performance evaluation of the Piranha
design based on full system simulations, including operating
system activity, of the Oracle commercial database engine running
under Compaq Tru64 Unix. Our results show that although each
Piranha processor core is substantially slower than an aggressive
next-generation processor, the integration of eight cores onto a
single chip allows Piranha to outperform next-generation proces-
sors by about 2.3 to 2.9 times on a per chip basis on important
commercial workloads. The true potential of the Piranha architec-
ture is more fairly judged by considering a full-custom design.
This approach clearly requires a larger design team and invest-
ment, but still maintains the relatively low complexity and short
design time characteristics. Our results show that a more custom
design can enhance Piranha’s performance advantage on
workloads such as OLTP to about 5.0 times better (on a per chip
basis) relative to next-generation processors. These results clearly
indicate that focused designs such as Piranha that directly target
commercial server applications can substantially outperform

general-purpose microprocessor designs with much higher
complexity.

In addition to exploring chip multiprocessing, the Piranha
architecture incorporates a number of other novel ideas. First, the
design of the shared second-level cache uses a sophisticated proto-
col that does not enforce inclusion in first-level instruction and
data caches in order to maximize the utilization of on-chip caches.
Second, the cache coherence protocol among nodes incorporates a
number of unique features that result in fewer protocol messages
and lower protocol engine occupancies compared to previous
protocol designs. Finally, Piranha has a unique I/O architecture,
with an I/O node that is a full-fledged member of the interconnect
and the global shared-memory coherence protocol.

The rest of the paper is structured as follows. Section 2
presents an overview of the Piranha architecture. We next describe
our experimental methodology, including the workloads and other
architectures that we study. Section 4 presents detailed perfor-
mance results for the Piranha prototype and considers more
custom implementations that better illustrate the full potential of
our approach. Our design methodology and implementation status
are described in Section 5. Finally, we discuss related work and
conclude.

2 Piranha Architecture Overview

Figure 1 shows the block diagram of a single Piranha processing
chip. Each Alpha CPU core (CPU) is directly connected to
dedicated instruction (iL1) and data cache (dL1) modules. These
first-level caches interface to other modules through the Intra-
Chip Switch (ICS). On the other side of the ICS is a logically
shared second level cache (L2) that is interleaved into eight
separate modules, each with its own controller, on-chip tag, and
data storage. Attached to each L2 module is a memory controller
(MC) which directly interfaces to one bank of up to 32 direct
Rambus DRAM chips. Each memory bank provides a bandwidth
of 1.6GB/sec, leading to an aggregate bandwidth of 12.8 GB/sec.
Also connected to the ICS are two protocol engines, the Home
Engine (HE) and the Remote Engine (RE), which support shared
memory across multiple Piranha chips. The interconnect
subsystem that links multiple Piranha chips consists of a Router
(RT), an Input Queue (IQ), an Output Queue (OQ) and a Packet
Switch (PS). The total interconnect bandwidth (in/out) for each
Piranha processing chip is 32 GB/sec. Finally, the System Control
(SC) module takes care of miscellaneous maintenance-related
functions (e.g., system configuration, initialization, interrupt
distribution, exception handling, performance monitoring). It
should be noted that the various modules communicate exclusively
through the connections shown in Figure 1, which also represent1. The project name is motivated by the analogy of seemingly small fish

that in concert can vanquish a much larger creature.

L20

CPU0

iL1 dL1

Intra-Chip Switch

MC0

0

1

31RDRAM

RDRAM

RDRAM

...

L27

CPU7

iL1 dL1

MC7

0

1

31RDRAM

RDRAM

RDRAM

...

Input
Queue

Output
Queue

Router

Home
Engine

Remote
EngineIn

te
rc

on
ne

ct
 L

in
ks

Direct
Rambus Array

System
Control

P
ac

ke
t

Sw
it

ch

Figure 1. Block diagram of a single-chip Piranha processing node.

3

the actual signal connections. This modular approach leads to a
strict hierarchical decomposition of the Piranha chip which allows
for the development of each module in relative isolation along
with well defined transactional interfaces and clock domains.

While the Piranha processing chip is a complete multiprocessor
system on a chip, it does not have any I/O capability. The actual
I/O is performed by the Piranha I/O chip, shown in Figure 2, which
is relatively small in area compared to the processing chip. Each
I/O chip is a stripped-down version of the Piranha processing chip
with only one CPU and one L2/MC module. The router on the I/O
chip is also simplified to support only two instead of four links,
thus alleviating the need for a routing table. From the program-
mer’s point of view, the CPU on the I/O chip is indistinguishable
from one on the processing chip. Similarly, the memory on the I/O
chip fully participates in the global cache coherence scheme. The
presence of a processor core on the I/O chip provides several
benefits: it enables optimizations such as scheduling device drivers
on this processor for lower latency access to I/O, or it can be used
to virtualize the interface to various I/O devices (e.g., by having
the Alpha core interpret accesses to virtual control registers).

Except for the PCI/X interface, which is available in our ASIC
library, most of the modules on the I/O chip are identical in design
to those on the processing chip. To simplify the design, we reuse
our first-level data cache module (dL1) to interface to the PCI/X
module. The dL1 module also provides the PCI/X with address
translation, access to I/O space registers, and interrupt generation.
The Piranha I/O chip may also be customized to support other I/O
standards such as Fiber Channel and System I/O.

Figure 3 shows an example configuration of a Piranha system
with both processing and I/O chips. The Piranha design allows for
glueless scaling up to 1024 nodes, with an arbitrary ratio of I/O to
processing nodes (which can be adjusted for a particular
workload). Furthermore, the Piranha router supports arbitrary
network topologies and allows for dynamic reconfigurability. One
of the underlying design decisions in Piranha is to treat I/O in a
uniform manner as a full-fledged member of the interconnect. In
part, this decision is based on the observation that available inter-
chip bandwidth is best invested in a single switching fabric that
forms a global resource which can be dynamically utilized for both
memory and I/O traffic.

One of the key design decisions in Piranha was to remain
binary compatible with the Alpha software base, including both
applications and system software (e.g., compilers, operating
system, etc.). Therefore, user applications will run without any
modification, and we are expecting a minimal porting effort for the
OS (Tru64 Unix).

The remaining sections provide more detail about the various
modules in the Piranha architecture.

2.1 Alpha CPU Core and First-Level Caches
The processor core uses a single-issue, in-order design capable of
executing the Alpha instruction set [39]. It consists of a 500MHz
pipelined datapath with hardware support for floating-point opera-
tions. The pipeline has 8 stages: instruction fetch, register-read,
ALU 1 through 5, and write-back. The 5-stage ALU supports
pipelined floating-point and multiply instructions. However, most
instructions execute in a single cycle. The processor core includes
several performance enhancing features including a branch target
buffer, pre-compute logic for branch conditions, and a fully
bypassed datapath. The processor core interfaces to separate first-
level instruction and data caches designed for single-cycle latency.
We use 64KB two-way set-associative, blocking caches with
virtual indices and physical tags. The L1 cache modules include tag
compare logic, instruction and data TLBs (256 entries, 4-way
associative), and a store buffer (data cache only). We also maintain
a 2-bit state field per cache line, corresponding to the four states in
a typical MESI protocol. For simplicity, the instruction and data
caches use virtually the same design. Therefore, unlike other Alpha
implementations, the instruction cache is kept coherent by
hardware. Treating the instruction and data caches in the same way
also simplifies our no-inclusion policy at the L2 level.

2.2 Intra-Chip Switch
Conceptually, the intra-chip switch (ICS) is a crossbar that inter-
connects most of the modules on a Piranha chip. However, manag-
ing the data transfers from its 27 clients efficiently poses a number
of implementation challenges, such as arbitration, flow control,
and layout. The ICS is also the primary facility for decomposing
the Piranha design into relatively independent, isolated modules.
In particular, the transactional nature of the ICS allows us to add or
remove pipeline stages during the design of various modules
without compromising the overall Piranha timing.

The ICS uses an uni-directional, push-only interface. The
initiator of a transaction always sources data. If the destination of a
transaction is ready, the ICS schedules the data transfer according
to datapath availability. A grant is issued to the initiator to
commence the data transfer at a rate of one 64-bit word per cycle
without any further flow control. Concurrently, the destination
receives a request signal that identifies the initiator and the type of
transfer. Transfers are atomic, and the implied ordering properties
are exploited in supporting intra-chip coherence.

Each port to the ICS consists of two independent 64-bit
datapaths (plus 8-bit parity/ECC bits) for sending and receiving
data. The ICS supports back-to-back transfers without dead-cycles
between transfers. In order to reduce latency, modules are allowed
to issue the target destination of a future request ahead of the
actual transfer request. This hint is used by the ICS to pre-allocate
datapaths and to speculatively assert the requester’s grant signal.

L2

CPU

iL1 dL1

Intra -Chip Switch

MC

0

1

31RDRAM

RDRAM

RDRAM

...

dL1

Router

Home
Engine

Remote
Engine

In
te

rc
on

ne
ct

 L
in

ks

Direct
Rambus Array

PCI/X
 I/O Bus

Input
Queue

Output
Queue

System
Control

P
ac

ke
t S

w
it

ch

Figure 2. Block diagram of a single-chip Piranha I/O node.

P chip

I/O chip

I/O chip

P chip P chip P chip

P chip

P chip

Figure 3. Example configuration for a Piranha system with six
processing (8 CPUs each) and two I/O chips.

4

The ICS is implemented by using a set of eight internal datap-
aths that run along the center of the Piranha chip. Given that the
internal ICS capacity is 32 GB/sec or about 3 times the available
memory bandwidth, achieving an optimal schedule is not critical
to achieve good performance.

The ICS supports two logical lanes (low- and high-priority)
that are used to avoid intra-chip cache coherence protocol
deadlocks. Instead of adding extra datapaths, multiple lanes are
supported by two ready lines with distinct IDs for each module. An
initiator can specify the appropriate lane for a transaction by using
the corresponding ID for the destination.

2.3 Second-Level Cache
Piranha’s second-level cache (L2) is a 1MB unified instruc-
tion/data cache which is physically partitioned into eight banks
and is logically shared among all CPUs. The L2 banks are inter-
leaved using the lower address bits of a cache line’s physical
address (64-byte line). Each bank is 8-way set-associative and uses
a round-robin (or least-recently-loaded) replacement policy if an
invalid block is not available. Each bank has its own control logic,
an interface to its private memory controller, and an ICS interface
used to communicate with other chip modules. The L2 controllers
are responsible for maintaining intra-chip coherence, and cooper-
ate with the protocol engines to enforce inter-chip coherence.

Since Piranha’s aggregate L1 capacity is 1MB, maintaining
data inclusion in our 1MB L2 can potentially waste its full capacity
with duplicate data. Therefore, Piranha opts for not maintaining the
inclusion property. Although non-inclusive on-chip cache hierar-
chies have been previously studied in the context of a single-CPU
chip [20], the use of this technique in the context of a CMP leads to
interesting issues related to coherence and allocation/replacement
policies. To simplify intra-chip coherence and avoid the use of
snooping at L1 caches, we keep a duplicate copy of the L1 tags and
state at the L2 controllers. Each controller maintains tag/state infor-
mation for L1 lines that map to it given the address interleaving.
The total overhead for the duplicate L1 tag/state across all control-
lers is less than 1/32 of the total on-chip memory.

In order to lower miss latency and best utilize the L2 capacity,
L1 misses that also miss in the L2 are filled directly from memory
without allocating a line in the L2. The L2 effectively behaves as a
very large victim cache that is filled only when data is replaced
from the L1s. Hence, even clean lines that are replaced from an L1
may cause a write-back to the L2. To avoid unnecessary write-
backs when multiple L1s have copies of the same line, the duplicate
L1 state is extended to include the notion of ownership. The owner
of a line is either the L2 (when it has a valid copy), an L1 in the
exclusive state, or one of the L1s (typically the last requester) when
there are multiple sharers. Based on this information, the L2 makes
the decision of whether an L1 should write back its data and piggy-
backs this information with the reply to the L1’s request (that
caused the replacement). In the case of multiple sharers, a write-
back happens only when an owner L1 replaces the data. The above
approach provides a near-optimal replacement policy without
affecting our L2 hit time. We ruled out alternative solutions that
require checking all L1 states or the state of the victim in the L2
since they would require multiple tag lookup cycles in the critical
path of an L2 hit.

Intra-chip coherence protocol. The L2 controllers are responsi-
ble for enforcing coherence within a chip. Each controller has
complete and exact information about the on-chip cached copies
for the subset of lines that map to it. On every L2 access, the dupli-
cate L1 tag/state and the tag/state of the L2 itself are checked in
parallel. Therefore, our intra-chip coherence has similarities to a
full-map centralized directory-based protocol. Information about
sharing of data across chips is kept in the directory, which is stored
in DRAM and accessed through the memory controller (see

Section 2.5.2). Full interpretation and manipulation of the direc-
tory bits is only done by the protocol engines. However, the L2
controllers can partially interpret the directory information to
determine whether a line is cached by a remote node(s) and if so,
whether it is cached exclusively. This partial information, which is
kept in the L2 and duplicate L1 states, allows the L2 controller at
home to avoid communicating with the protocol engines for the
majority of local L1 requests. In many cases this partial informa-
tion also avoids having to fetch the directory from memory when a
copy of the line is already cached in the chip.

A memory request from an L1 is sent to the appropriate L2
bank based on the address interleaving. Depending on the state at
the L2, the L2 can possibly (a) service the request directly, (b)
forward the request to a local (owner) L1, (c) forward the request
to one of the protocol engines, or (d) obtain the data from memory
through the memory controller (only if the home is local). The L2
is also responsible for all on-chip invalidations, whether triggered
by local or remote requests. The ordering characteristics of the
intra-chip switch allow us to eliminate the need for acknowledg-
ments for on-chip invalidations. Invalidating and forwarding
requests to remote nodes are handled through the protocol engines.
Requests forwarded to the home engine carry a copy of the direc-
tory, which is updated by the home engine and later written back to
memory. In all forwarding cases, the L2 keeps a request pending
entry which is used to block conflicting requests for the duration of
the original transaction. A small number of such entries are
supported at each L2 controller in order to allow concurrent
outstanding transactions.

2.4 Memory Controller
Piranha has a high bandwidth, low latency memory system based
on direct Rambus RDRAM. In keeping with our modular design
philosophy, there is one memory controller and associated
RDRAM channel for each L2 bank, for a total of eight memory
controllers. Each Rambus channel can support up to 32 RDRAM
chips. In the 64Mbit memory chip generation, each Piranha
processing chip can support a total of 2GB of physical memory
(8GB/32GB with 256Mb/1Gb chips). Each RDRAM channel has a
maximum data rate of 1.6GB/sec, providing a maximum local
memory bandwidth of 12.8GB/sec per processing chip. The
latency for a random access to memory over the RDRAM channel
is 60ns for the critical word, and an additional 30ns for the rest of
the cache line.

Unlike other chip modules, the memory controller does not
have direct access to the intra-chip switch. Access to memory is
controlled by and routed through the corresponding L2 controller.
The L2 can issue read/write requests to memory, at the granularity
of a cache line, for both data and the associated directory.

The design of the memory controller consists of two parts: the
Rambus Access Controller (RAC) and the memory controller
engine. The RAC is provided by Rambus and incorporates all the
high-speed interface circuitry. The memory controller engine
functionality includes the MC/L2 interface and the scheduling of
memory accesses. Most of the complexity comes from deciding
what pages to keep open across the various devices. In a fully
populated Piranha chip, we have as many as 2K (512-byte) pages
open. A hit to an open page reduces the access latency from 60ns
to 40ns. Our simulations show that keeping pages open for about 1
microsecond will yield a hit rate of over 50% on workloads such as
OLTP.

2.5 Protocol Engines
As shown in Figure 1, the Piranha processing node has two
separate protocol engines that are used to support shared-memory
across multiple nodes. The home engine is responsible for export-
ing memory whose home is at the local node, while the remote

5

engine imports memory whose home is remote. The following
sections describe the protocol engine design, the directory storage,
and the inter-node coherence protocol in more detail.

2.5.1 Protocol Engine Structure
The protocol engines in Piranha are implemented as micropro-
grammable controllers, with the home and remote engines being
virtually identical except for the microcode that they execute. Our
approach uses the same design philosophy as the protocol engines
used in the S3.mp project [32]. Figure 4 shows a high-level block
diagram of one protocol engine consisting of three independent
(and decoupled) stages: the input controller, the microcode-
controlled execution unit, and the output controller. The input
controller receives messages from either the local node or the
external interconnect, while the output controller sends messages
to internal or external destinations.

The bottom right section of Figure 4 depicts the micro-
sequencer which consists of a microcode memory and a current
instruction register. The microcode memory supports 1024 21-bit-
wide instructions (the current protocol uses about 500 microcode
instructions per engine). Each microcode instruction consists of a
3-bit opcode, two 4-bit arguments, and a 10-bit address that points
to the next instruction to be executed. Our design uses the follow-
ing seven instruction types: SEND, RECEIVE, LSEND (to local
node), LRECEIVE (from local node), TEST, SET, and MOVE.
The RECEIVE, LRECEIVE, and TEST instructions behave as
multi-way conditional branches that can have up to 16 different
successor instructions, achieved by OR-ing a 4-bit condition code
into the least significant bits of the 10-bit next-instruction address
field. To allow for 500MHz operation, we use an interleaved
execution model whereby we fetch the next instruction for an
even-addressed (odd-addressed) thread while executing the
instruction for an odd-addressed (even-addressed) thread.

The actual protocol code is specified at a slightly higher level
with symbolic arguments, and C-style code blocks, and a sophisti-
cated microcode assembler is used to do the appropriate translation
and mapping to the microcode memory. Typical cache coherence
transactions require only a few instructions at each engine that
handles the transaction. For example, a typical read transaction to
a remote home involves a total of four instruction at the remote
engine of the requesting node: a SEND of the request to the home,
a RECEIVE of the reply, a TEST of a state variable, and an
LSEND that replies to the waiting processor at that node.

On a new transaction, the protocol engine allocates an entry
from the transaction state register file (TSRF) that represents the

state of this thread (e.g., addresses, program counter, timer, state
variables, etc.). A thread that is waiting for a response from a local
or remote node has its TSRF entry set to a waiting state, and the
incoming response is later matched with this entry based on the
transaction address. Our design supports a total of 16 TSRF entries
per protocol engine to allow for concurrent protocol transactions.

We believe our design provides a nice balance between flexi-
bility (e.g., for late binding of protocol) and performance. While
the design is less flexible than using a general-purpose processor
as in FLASH [24], the specialized (more powerful) instructions
lead to much lower protocol engine latency and occupancy.

2.5.2 Directory Storage
The Piranha design supports directory data with virtually no
memory space overhead by computing ECC at a coarser granular-
ity and utilizing the unused bits for storing the directory
information [31,38]. ECC is computed across 256-bit boundaries
(typical is 64-bit), leaving us with 44 bits for directory storage per
64-byte line. Compared to having a dedicated external storage and
datapath for directories, this approach leads to lower cost by
requiring fewer components and pins, and provides simpler system
scaling. In addition, we leverage the low latency, high bandwidth
path provided by the integration of memory controllers on the
chip.

We use two different directory representations depending on
the number of sharers: limited pointer [1] and coarse vector [14].
Two bits of the directory are used for state, with 42 bits available
for encoding sharers. The directory is not used to maintain infor-
mation about sharers at the home node. Furthermore, directory
information is maintained at the granularity of a node (not individ-
ual processors). Given a 1K node system, we switch to coarse
vector representation past 4 remote sharing nodes.

2.5.3 Inter-node Coherence Protocol
Piranha uses an invalidation-based directory protocol with support
for four request types: read, read-exclusive, exclusive (requesting
processor already has a shared copy), and exclusive-without-data2.
We also support the following features: clean-exclusive optimiza-
tion (an exclusive copy is returned to a read if there are no other
sharers), reply forwarding from remote owner, and eager exclusive
replies (ownership given before all invalidations are complete).
Invalidation acknowledgments are gathered at the requesting node.
Finally, the protocol does not depend on point-to-point order, thus
allowing the external interconnect to use techniques such as
adaptive routing.

A unique property of our protocol is that it avoids the use of
negative acknowledgment (NAK) messages and the corresponding
retries. There are two reasons why NAKs are used in scalable
coherence protocols: (i) requests are NAKed to avoid deadlock
when outgoing network lanes back up, and (ii) requests are
NAKed due to protocol races where a request fails to find the data
at the node it is forwarded to. We avoid the first use of NAKs by
using three virtual lanes (I/O, L, H). Explaining the need for the
I/O lane is beyond the scope of this paper. The low priority lane
(L) is used by requests sent to a home node (except for write-
back/replacement requests which use H), while the high priority
lane (H) is used by forwarded requests and all replies. Our
deadlock solution also relies on sufficient buffering in the network
(explained later). We avoid the second use of NAKs by guarantee-
ing that forwarded requests can always be serviced by their target
nodes. For example, when an owner node writes back its data to
home, it maintains a valid copy of the data until the home

TSRFs

Input Buffers

Input Controller (FSM)

Output Buffers Microcode
RAM

Instruction

Output Controller (FSM)

Test & Execution
Unit

To Packet Switch

From Packet Switch

Conditional Branching

Input Stage
(Hardwired)

Execution Stage
(Firmware Controlled)

Output Stage
(Hardwired)

From Intra-Chip Switch

To Intra-Chip Switch

Figure 4. Block diagram of a protocol engine.

2. This corresponds to the Alpha write-hint instruction (wh64) which indi-
cates that the processor will write the entire cache line, thus avoiding a
fetch of the line’s current contents (e.g., useful in copy routines).

6

acknowledges the writeback (allowing it to satisfy forwarded
requests). There are also cases where a forwarded request may
arrive at an owner node too early, i.e., before the owner node has
received its own data. In this case, we delay the forwarded request
until the data is available.3

The lack of NAKs/retries leads to a more efficient protocol and
provides several important and desirable characteristics. First,
since an owner node is guaranteed to service a forwarded request,
the protocol can complete all directory state changes immediately.
This property eliminates the need for extra confirmation messages
sent back to the home (e.g., “ownership change” in DASH [26]),
and also eliminates the associated protocol engine occupancy.
Therefore, our protocol handles 3-hop write transactions involving
a remote owner more efficiently. Second, we inherently eliminate
livelock and starvation problems that arise due to the presence of
NAKs. In contrast, the SGI Origin [25] uses a number of compli-
cated mechanisms such as keeping retry counts and reverting to a
strict request-reply protocol, while most other protocols with
NAKs ignore this important problem (e.g, DASH [26],
FLASH [24]).

We use a number of unique techniques to limit the amount of
buffering needed in the network for avoiding deadlocks. First, the
network uses ‘‘hot potato’’ routing with increasing age and prior-
ity when a message is non-optimally routed. This enables a
message to theoretically reach an empty buffer anywhere in the
network, making our buffering requirements grow linearly as
opposed to quadratically with additional nodes. Second, the buffer
space is shared among all lanes, so we do not need separate buffer
space per lane. Third, we bound the number of messages injected
in the network as a result of a single request. The key place where
this is necessary is for invalidation messages. We have developed a
new technique, called cruise-missile-invalidates (CMI), that
allows us to invalidate a large number of nodes by injecting only a
handful of invalidation messages into the network. Each invalida-
tion message visits a predetermined set of nodes, and eventually
generates a single acknowledgment message when it reaches the
final node in that set. Our studies show that CMI can also lead to
superior invalidation latencies by avoiding serializations that arise
from injecting many invalidation messages from the home node
and gathering the corresponding acknowledgments at the request-
ing node. The above properties allow us to provide a limited
amount of buffering per node that does not need to grow as we add
more nodes.4

2.6 System Interconnect
The Piranha system interconnect consists of three distinct compo-
nents: the output queue (OQ), the router (RT) and the input queue
(IQ). The OQ accepts packets via the packet switch from the proto-
col engines or from the system controller. The RT transmits and
receives packets to and from other nodes, and also deals with
transit traffic that passes through the RT without impacting other
modules. The IQ receives packets that are addressed to the local
node and forwards them to the target module via the packet switch.

The interconnect system can also be used to initialize Piranha
chips. This method relies on the RT to initialize channels automat-
ically. By default (after reset), the RT forwards all initialization

packets to the system controller (SC), which interprets control
packets and can access all control registers on a Piranha node.
Other SC capabilities related to initialization include accessing the
on-chip memories, updating the routing table, starting/stopping
individual Alpha cores, and testing the off-chip memory. Piranha
can also be initialized using the traditional Alpha boot process,
where the primary caches are loaded from a small external
EPROM over a bit-serial connection.

2.6.1 The Router (RT)
The RT is similar to the S-Connect design developed for the S3.mp
project [30]. Like the S-Connect, the RT uses a topology-indepen-
dent, adaptive, virtual cut-through router core based on a common
buffer pool that is shared across multiple priorities and virtual
channels. Since Piranha nodes are not separated by long distances,
we do not use in-band clock distribution and synchronization
mechanisms as in the S-Connect. Furthermore, Piranha links are
nearly 50 times faster than S-Connect links, hence the internal
structure of our router is more advanced.

Each Piranha processing node has four channels that are used
to connect it to other nodes in a point-to-point fashion. Each I/O
node has two channels, allowing it to be connected to two other
nodes for redundancy. The system interconnect supports two
distinct packet types. The Short packet format is 128 bits long and
is used for all data-less transactions. The Long packet has the same
128-bit header format along with a 64 byte (512 bit) data section.
Packets are transferred in either 2 or 10 interconnect clock cycles.

Each interconnect channel consists of two sets of 22 wires, one
set for each direction. These wires are high-quality transmission
lines that are driven by special low-voltage swing CMOS drivers
and are terminated on-chip at the remote end by matching receiv-
ers. The signaling rate is four times the system clock frequency, or
2 Gbits/sec per wire. With four channels, each Piranha processing
node has a total interconnect bandwidth of 32GB/sec. Channels
use a piggyback handshake mechanism that deals with flow-
control and transmission error recovery. Piranha uses a DC-
balanced encoding scheme to minimize electrical problems related
to high-speed data transmission. By guaranteeing that 11 of the 22
wires will always be in the ‘1’ state while the others are in the ‘0’
state, the net current flow along a channel is zero. This also allows
a reference voltage for differential receivers to be generated at the
termination without doubling the number of signal wires. The
signaling scheme encodes 19 bits into a 22-bit DC-balanced word.
Piranha sends 16 data bits along with 2 extra bits that are used for
CRC, flow control and error recovery. By design, the set of codes
used to represent 18 bits has no two elements that are complemen-
tary. This allows the 19th bit, which is generated randomly, to be
encoded by inverting all 22 bits. The resulting code is inversion
insensitive and it DC-balances the links statistically in the time-
domain along each wire. Therefore Piranha can use fiber-optic
ribbons to interconnect nodes, as well as transformer coupling to
minimize EMI problems for cables connecting two Piranha boxes.

2.6.2 The Input (IQ) and Output (OQ) Queues
The OQ provides a modest amount of buffering through a set of
FIFOs that de-couple the operation of the router from the local
node. The fall-through path is optimized, with a single cycle delay
when the router is ready for new traffic. However, as the intercon-
nect load increases, the router gives priority to transit traffic, and
accepts new packets only when it has free buffer space and no
incoming packets. This policy results in better overall perfor-
mance. The OQ also supports 4 priority levels and ensures that
lower priority packets cannot block higher priority traffic. This
property is maintained throughout the system interconnect.

The IQ receives packets from the RT and forwards them to
their target modules via the packet switch. It is important to
quickly remove terminal packets from the RT because the high

3. Our protocol needs to support only a single forwarded request per
request that is outstanding from the owner node. Therefore, we can use
the TSRF entry allocated for the outstanding request to save information
about the delayed forwarded request.

4. For example, with 16 TSRF entries per protocol engine and the use of
CMI to limit invalidation messages to a total of 4, buffering for a total of
128 message headers (2 protocol engines * 16 TSRFs * 4 invalidations)
is needed at each node with only 32 of them requiring space for data.
Note that this buffer size is not a function of the number of nodes in the
system!

7

speed operation makes buffering in the RT expensive. For this
reason, the IQ has more buffer space than the OQ. Like the OQ,
the IQ supports four priority levels. To improve overall system
performance, the IQ allows low priority traffic to bypass high
priority traffic if the latter is blocked and the former can proceed to
its destination.

The IQ is more complex than the OQ because it must interpret
packets to determine their destination module. This process is
controlled by a disposition vector that is indexed by the packet type
field (4 bits encode 16 major packet types). During normal opera-
tion, most packets are directed at the protocol engines while some
packets (e.g., interrupts) are delivered to the system controller.

2.7 Reliability Features
Piranha supports a number of elementary Reliability, Availability,
and Serviceability (RAS) features such as redundancy on all
memory components, CRC protection on most datapaths, redun-
dant datapaths, protocol error recovery5, error logging, hot-
swappable links, and in-band system reconfiguration support.
Furthermore, Piranha attempts to provide a platform for investigat-
ing advanced RAS features for future large-scale servers. Although
developing complete solutions for RAS in large-scale systems is
beyond the scope of the project, our design provides hardware
hooks to enable future research in this area. These RAS features
can be implemented by changing the semantics of memory
accesses through the flexibility available in the programmable
protocol engines.

Examples of RAS features of interest are persistent memory
regions, memory mirroring, and dual-redundant execution. Persis-
tent memory regions can survive power failures, system crashes or
other transient errors, and can greatly accelerate database applica-
tions that currently rely on committing state to disk or NVDRAM
at transaction boundaries. Beyond adding a battery to the main
memory banks and designing the memory controller so that it can
power cycle safely, persistent memory requires mechanisms to
force volatile (cached) state to safe memory, as well as mecha-
nisms to control access to persistent regions. This can be imple-
mented by making the protocol engines intervene in accesses to
persistent areas and perform capability checks or persistent
memory barriers. Similarly, Piranha’s protocol engines can be
programmed to intervene on memory accesses to provide
automatic data mirroring, or to perform checks on the results of
dual-redundant computation.

3 Evaluation Methodology
This section describes the workloads, simulation platform, and
various architectures that are used in this study.

3.1 Workloads
Our OLTP workload is modeled after the TPC-B benchmark [43].
This benchmark models a banking database system that keeps
track of customers’ account balances, as well as balances per
branch and teller. Each transaction updates a randomly chosen
account balance, which includes updating the balance of the
branch the customer belongs to and the teller from which the trans-
action is submitted. It also adds an entry to the history table, which
keeps a record of all submitted transactions. Our DSS workload is
modeled after Query 6 of the TPC-D benchmark [44]. The TPC-D
benchmark represents the activities of a business that sells a large

number of products on a worldwide scale. It consists of several
inter-related tables that keep information such as parts and
customer orders. Query 6 scans the largest table in the database to
assess the increase in revenue that would have resulted if some
discounts were eliminated. The behavior of this query is represen-
tative of other TPC-D queries [4], though some queries exhibit less
parallelism.

We use the Oracle 7.3.2 commercial database management
system as our database engine. In addition to the server processes
that execute the actual database transactions, Oracle spawns a few
daemon processes that perform a variety of duties in the execution
of the database engine. Two of these daemons, the database writer
and the log writer, participate directly in the execution of transac-
tions. The database writer daemon periodically flushes modified
database blocks that are cached in memory out to disk. The log
writer daemon is responsible for writing transaction logs to disk
before it allows a server to commit a transaction.

Our OLTP and DSS workloads are set up and scaled in a
similar way to a previous study that validated such scaling [4]. We
use a TPC-B database with 40 branches with a shared-memory
segment (SGA) size of approximately 600MB (the size of the
metadata area is about 80MB). Our runs consist of 500 transac-
tions after a warm-up period. We use Oracle in a dedicated mode
for this workload, whereby each client process has a dedicated
server process for serving its transactions. To hide I/O latencies,
including the latency of log writes, OLTP runs are usually config-
ured with multiple server processes per processor. We use 8
processes per processor in this study. For DSS, we use Oracle with
the Parallel Query Optimization option, which allows the database
engine to decompose the query into multiple sub-tasks and assign
each one to an Oracle server process. The DSS experiments use an
in-memory 500MB database, and the queries are parallelized to
generate four server processes per processor.

3.2 Simulation Environment
For our simulations, we use the SimOS-Alpha environment (the
Alpha port of SimOS [37]), which was used in a previous study of
commercial applications and has been validated against Alpha
multiprocessor hardware [4]. SimOS-Alpha is a full system
simulation environment that simulates the hardware components
of Alpha-based multiprocessors (processors, MMU, caches, disks,
console) in enough detail to run Alpha system software. Specifi-
cally, SimOS-Alpha models the micro-architecture of an Alpha
processor [10] and runs essentially unmodified versions of Tru64
Unix 4.0 and PALcode.

The ability to simulate both user and system code under
SimOS-Alpha is essential given the rich level of system interac-
tions exhibited by commercial workloads. For example, for the
OLTP runs in this study, the kernel component is approximately
25% of the total execution time (user and kernel). In addition,
setting up the workload under SimOS-Alpha is particularly simple
since it uses the same disk partitions, databases, application
binaries, and scripts that are used on our hardware platforms to
tune the workload.

SimOS-Alpha supports multiple levels of simulation detail,
enabling the user to choose the most appropriate trade-off between
simulation detail and slowdown. The fastest simulator uses an on-
the-fly binary translation technique similar to Embra [48] to
position the workload into a steady state. For the medium-speed
(in simulation time) processor module, SimOS-Alpha models a
single-issue pipelined processor. Finally, the slowest-speed proces-
sor module models a multiple-issue out-of-order processor. We use
the medium-speed in-order model for evaluating the Piranha
processor cores and the slow-speed out-of-order model to evaluate
aggressive next-generation processors.

5. The TSRF associated with each protocol transaction maintains its state
and keeps track of expected replies. The protocol engines can monitor
for failures via mechanisms such as time-outs and error messages. When
necessary, such state can be encapsulated in a control message and
directed to recovery or diagnostic software.

8

3.3 Simulated Architectures
Table 1 presents the processor and memory system parameters for
the different processor configurations we study. For our next-
generation microprocessor, we model a very aggressive design
similar to Alpha 21364 which integrates a 1GHz out-of-order core,
two levels of caches, memory controller, coherence hardware, and
network router all on a single die (with a comparable area to
Piranha’s processing chip). The use of an ASIC process limits the
frequency of the processor cores in Piranha to 500 MHz. In
addition, the use of the lower density ASIC SRAM cells, along
with the integration of eight simple processor cores, limits the
amount of second-level on-chip cache in Piranha. However, the
lower target clock frequency in Piranha allows for a higher
associativity cache. The full-custom Piranha parameters are used
to illustrate the potential for the Piranha architecture if the design
were to be done with a larger team and investment. Given the
simple single-issue in-order pipeline, it is reasonable to assume
that a full-custom approach can lead to a faster clock frequency
than a 4-issue out-of-order design.

Table 1 also shows the memory latencies for different configu-
rations. Due to the lack of inclusion in Piranha’s L2 cache, there
are two latency parameters corresponding to either the L2 servic-
ing the request (L2 Hit) or the request being forwarded to be
serviced by another on-chip L1 (L2 Fwd). As shown in Table 1, the
Piranha prototype has a higher L2 hit latency than a full-custom
processor due to the use of slower ASIC SRAM cells.

4 Performance Evaluation of Piranha
This section compares the performance of Piranha with an aggres-
sive out-of-order processor (OOO in Table 1) in both single-chip
and multi-chip configurations. In addition, we present results for a
potential full-custom Piranha design (P8F in Table 1) that more
fairly judges the merits of the architecture. We use the OLTP and
DSS database workloads described in the previous section for this
evaluation.

Figure 5 shows our results for single-chip configurations for
both OLTP and DSS. We study four configurations: a hypothetical
single-CPU Piranha chip (P1), a next-generation out-of-order
processor (OOO), a hypothetical single-issue in-order processor
otherwise identical to OOO (INO), and the actual eight-CPU
Piranha chip (P8). The P1 and INO configurations are used to
better isolate the various factors that contribute to the performance

differences between OOO and P8. The figure shows execution
time normalized to that of OOO. The execution time is divided
into CPU busy time, L2 hit stall time, and L2 miss stall time. For
the P8 configuration, the L2 hit stall time includes both L2 hits as
well as forwarded L2 requests served by an L1 (see L2 Fwd
latency in Table 1). Focusing on the OLTP results, we observe that
OOO outperforms P1 (as expected) by about 2.3 times. The INO
result shows that the faster frequency (1GHz vs. 500MHz) and
lower L2 hit latency (12ns in INO/OOO vs. 16/24ns in P1/P8)
alone account for an improvement of 1.6 times. The wider-issue
and out-of-order features provide the remaining 1.45 times gain.
However, once we integrate eight of the simple CPUs, the single-
chip Piranha (P8) outperforms OOO by almost 3 times.

As shown in Figure 6(a), the reason for Piranha’s exceptional
performance on OLTP is that it achieves a speedup of nearly seven
times with eight on-chip CPUs relative to a single CPU (P1). This
speedup arises from the abundance of thread-level parallelism in
OLTP, along with the extremely tight-coupling of the on-chip
CPUs through the shared second-level cache (leading to small
communication latencies), and the effectiveness of the on-chip
caches in Piranha. The last effect is clearly observed in Figure 6(b)
which shows the behavior of the L2 cache as more on-chip CPUs
are added. This figure shows a breakdown of the total number of
L1 misses that are served by the L2 (L2 Hit), forwarded to another
on-chip L1 (L2 Fwd), or served by the memory (L2 Miss).
Although the fraction of L2 hits drops from about 90% to under
40% when we go from 1 to 8 CPUs, the fraction of L2 misses that
go to memory remains constant at under 20% past a single CPU. In
fact, adding CPUs (and their corresponding L1s) in Piranha’s non-
inclusive cache hierarchy actually increases the amount of on-chip
memory (P8 doubles the on-chip memory compared to P1), which
partially offsets the effects of the increased pressure on the L2. The
overall trend is that as the number of CPUs increases, more L2
misses are served by other L1s instead of going to memory. Even
though “L2 Fwd” accesses are slower than L2 Hits (24ns vs. 16ns),
they are still much faster than a memory access (80ns). Overall,
Piranha’s non-inclusion policy is effective in utilizing the total
amount of on-chip cache memory (i.e., both L1 and L2) to contain
the working set of a parallel application.

In addition to the above on-chip memory effects, the simulta-
neous execution of multiple threads enables Piranha to tolerate
long latency misses by allowing threads in other CPUs to proceed
independently. As a result, a Piranha chip can sustain a relatively
high CPU utilization level despite having about 3x the number of
L2 misses compared to OOO (from simulation data not shown
here). On-chip and off-chip bandwidths are also not a problem
even with eight CPUs because OLTP is primarily latency bound.
Finally, OLTP workloads have been shown to exhibit constructive

Parameter
Piranha

(P8)

Next-Generation
Microprocessor

(OOO)

Full-Custom
Piranha

(P8F)

Processor Speed 500 MHz 1 GHz 1.25 GHz

Type in-order out-of-order in-order

Issue Width 1 4 1

Instruction Window Size - 64 -

Cache Line Size 64 bytes 64 bytes 64 bytes

L1 Cache Size 64 KB 64 KB 64 KB

L1 Cache Associativity 2-way 2-way 2-way

L2 Cache Size 1 MB 1.5 MB 1.5 MB

L2 Cache Associativity 8-way 6-way 6-way

L2 Hit / L2 Fwd Latency 16 ns / 24 ns 12 ns / NA 12 ns / 16 ns

Local Memory Latency 80 ns 80 ns 80 ns

Remote Memory Latency 120 ns 120 ns 120 ns

Remote Dirty Latency 180 ns 180 ns 180 ns

Table 1. Parameters for different processor designs.

||0

|50

|100

|150

|200

|250

|300

|350

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e L2Miss

 233

 145

 100

 34

 350

 191

 100

 44

P1
500MHz
1-issue

INO
1GHz

1-issue

OOO
1GHz

4-issue

P8
500MHz
1-issue

OLTP

P1
500MHz
1-issue

INO
1GHz

1-issue

OOO
1GHz

4-issue

P8
500MHz
1-issue

DSS

L2Hit
CPU

Figure 5. Estimated performance of a single-chip Piranha (8
CPUs/chip) versus a 1GHz out-of-order processor.

9

interference in the instruction and data streams [27], and this
works to the benefit of Piranha.

Piranha’s performance edge over OOO in transaction process-
ing is robust to the specific workload used and to changes in
design parameters. Using a workload modeled after the TPC-C
benchmark [45], our results showed that P8 outperforms OOO by
over a factor of 3 times. We also studied the sensitivity of
Piranha’s performance to more pessimistic design parameters:
400MHz CPUs with 32KB one-way L1s, and L2 latencies of 22ns
(L2 Hit) and 32ns (L2 Fwd). Even though the execution time
increases by 29% with these parameters, Piranha still holds a 2.25
times performance advantage over OOO on OLTP.

Referring back to Figure 5, we see that Piranha (P8) also
outperforms OOO for DSS, although by a narrower margin than
for OLTP (2.3 times). The main reason for the narrower margin
comes from the workload’s smaller memory stall component
(under 5% of execution time) and better utilization of issue slots in
a wide-issue out-of-order processor. DSS is composed of tight
loops that exploit spatial locality in the data cache and have a
smaller instruction footprint than OLTP. Since most of the execu-
tion time in DSS is spent in the CPU, OOO’s faster clock speed
alone nearly doubles its performance compared to P1 (P1 vs.
INO), with almost another doubling due to wider-issue and out-of-
order execution (INO vs. OOO). However, the smaller memory
stall component of DSS also benefits Piranha, as it achieves near-
linear speedup with 8 CPUs (P8) over a single CPU (P1).

One interesting alternative to consider for Piranha is to trade
CPUs for a larger L2 cache. However, since the fraction of L2 miss
stall time is relatively small (e.g., about 22% for P8 in Figure 5),
the improvement in execution time from even an infinite L2 would

also be modest. Moreover, since Piranha CPUs are small,
relatively little SRAM can be added per CPU removed. As a result,
such a trade-off does not seem advantageous for Piranha. There is
however a relatively wide design space if one considers increas-
ingly complex CPUs in a chip-multiprocessing system. A thorough
analysis of this trade-off is beyond the scope of this paper.

In addition to the single-chip comparisons above, it is impor-
tant to evaluate how a Piranha system performs in multi-chip (i.e.,
NUMA) configurations. Figure 7 shows the speedup trends for
OLTP when going from a single chip to a four-chip system for
both Piranha and OOO (DSS scalability, not shown, is near linear
for both systems). In these experiments, the Piranha chip uses 4
CPUs per chip6 (i.e., P4). The figure shows that the Piranha system
scales better than OOO (3.0 vs. 2.6) for the range of system sizes
studied. This is somewhat surprising, since operating system
scalability limitations could adversely affect Piranha given its
higher total count of 16 (albeit slower) CPUs versus 4 for OOO.
However, we observe that the effectiveness of on-chip communi-
cation in Piranha offsets the OS overheads normally associated
with larger CPU counts. In general we expect Piranha system
scalability to be on par with that of OOO systems.

So far we have considered the performance of Piranha under
the constraints of the ASIC design methodology being used to
implement the prototype. To fairly judge the potential of the
Piranha approach, we also evaluate the performance of a full-

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|1

|2

|3

|4

|5

|6

|7

|8

 S
pe

ed
up

 Number of cores

�

�

�

�

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

 N
or

m
al

iz
ed

 B
re

ak
do

w
n

of
 L

1
m

is
se

s
(%

)

L2 Miss

P1 P2 P4 P8
500MHz, 1-issue

L2 Fwd
L2 Hit

Figure 6. Piranha’s (a) speedup and (b) L1 miss
breakdown for OLTP.

(a)

(b)

6. The current version of the operating system that we use in our simula-
tion environment limits us to 16 CPUs. Therefore, to study multi-chip
scaling, we consider Piranha chips with four on-chip CPUs.

� PIRANHA
� OOO

|
0

|
1

|
2

|
3

|
4

|0

|1

|2

|3

|4

 Number of chips

 S
pe

ed
up

�

�

�

�

�

�

Figure 7. Speedup of OLTP in multi-chip systems with 500
MHz 4-CPU Piranha chips versus 1GHz out-of-order chips. (A
single-chip 4-CPU Piranha is approximately 1.5x faster than

the single-chip OOO).

||0

|50

|100

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e L2Miss

 100

 34

 20

 100

 43

 19

OOO
1GHz

4-issue

P8
500MHz
1-issue

P8F
1.25GHz
1-issue

OLTP

OOO
1GHz

4-issue

P8
500MHz
1-issue

P8F
1.25GHz
1-issue

DSS

L2Hit
CPU

Figure 8. Performance potential of a full-custom Piranha chip for
OLTP and DSS.

10

custom implementation (see Table 1 for P8F parameters). Figure 8
compares the performance of a full-custom Piranha with that of
OOO, both in single-chip configurations. The figure shows the
faster full-custom implementation can further boost Piranha’s
performance to 5.0 times over OOO in OLTP and 5.3 times in
DSS. DSS sees particularly substantial gains since its performance
is dominated by CPU busy time, and therefore it benefits more
from the 150% boost in clock speed (P8 vs. P8F). The gains in
OLTP are also mostly from the faster clock cycle, since the relative
improvement in memory latencies is smaller with respect to the
original P8 parameters.

Overall, the Piranha architecture seems to be a better match for
the underlying thread-level parallelism available in database
workloads than a typical next generation out-of-order superscalar
processor design which relies on its ability to extract instruction-
level parallelism.

5 Design Methodology and Implementation
Status
Our design methodology starts with architectural specification in
the form of C++ based models for each of the major Piranha
modules (e.g., L2 cache, protocol engine). The C++ models imple-
ment behavior in a cycle-accurate fashion and use the same bound-
ary signals as in the actual implementation. These models form the
starting point for Verilog coding. We have currently completed a
first pass of the Verilog for the processor core and are doing initial
synthesis for timing. The remaining modules are at different
phases of C++ or Verilog development. The C++ models execute
much faster than their Verilog counterparts, allowing for more
efficient functional and architectural verification. Our environment
also allows C++ and Verilog models to be interchanged or mixed
for development and verification purposes. Finally, the coherence
protocols will also be verified using formal methods.

Piranha is being implemented in a semi-custom 0.18 micron
ASIC design flow [19]. This design flow uses industry standard
hardware description languages and synthesis tools. Hence, it has
the advantage of improved portability to evolving ASIC process
technologies and shorter time-to-market when compared to full-
custom design methodologies. To achieve our target 500 MHz
frequency, we depend on a small number of custom circuit blocks
for some of our time-critical SRAM cache memory, and use a few
specialized synthesis and layout tools that specifically target
datapaths and arithmetic units. The ASIC process technology
includes high density SRAM with cell sizes on the order of 4.2
µm2 [6] and gate delays of 81ps (worst case) for an unloaded 2-
input NAND.

Although the entire Piranha implementation is not complete,
we can infer the clock frequency from preliminary logic synthesis
of the processor core and critical path estimates for the various
modules. We have also calculated the area for each of the major
modules using estimates from compilable memory arrays, logic
synthesis, and simple gate counts. From these area estimates, we
have developed a general floor-plan of the Piranha processing
node illustrated in Figure 9. Roughly 75% of the Piranha process-
ing node area is dedicated to the Alpha cores and L1/L2 caches,
with the remaining area allocated to the memory controllers, intra-
chip interconnect, router, and protocol engines.

6 Discussion and Related Work
In addition to chip multiprocessing (CMP), the Piranha project
incorporates other interesting ideas in the general area of scalable
shared-memory designs. Much of the related work has already
been referenced in earlier sections. We further discuss some of the
previous work pertinent to database workloads and CMP in this
section.

 There have been a large number of recent studies of database
applications (both OLTP and DSS) due to the increasing impor-
tance of these workloads [4,7,8,12,21,27,28,34,35,36,42,46]. To
the best of our knowledge, this is the first paper that provides a
detailed evaluation of database workloads in the context of chip
multiprocessing. Ranganathan et al. [35] study user-level traces of
database workloads in the context of wide-issue out-of-order
processors, and show that the gains for DSS are substantial while
the gains for OLTP are more limited (consistent with our results in
Section 4). A number of studies address issues related to the effec-
tiveness of different memory system architectures for OLTP
workloads. Barroso et al. [4] show the need for large direct-
mapped off-chip caches (8 MB). Lo et al. [27] show that a large
off-chip cache (16 MB) is not adversely affected by cache interfer-
ence caused by fine-grain multithreading. A more recent study
shows that smaller, more associative caches (e.g., 2MB 4-way)
that can be integrated on-chip can actually outperform larger
direct-mapped off-chip caches [3]. Our results here show that
small associative second-level on-chip caches (1MB 8-way in our
case) are still effective when shared among multiple processors or
threads. Finally, Barroso et al. [3] show that aggressive chip-level
integration of the memory system, coherence, and network
modules on a single chip (as in Alpha 21364) can provide large
gains for OLTP workloads.

Piranha advocates a focused design that targets commercial
applications (which currently constitute the largest segment for
high-performance servers) at the possible expense of other types of
workloads. There are several other contemporary processor
designs that are specifically focused on commercial
markets [5,23].7

Several papers from Stanford have advocated and evaluated the
use of chip multiprocessing (CMP) in the context of workloads
such as SPEC [15,29,33], and the Hydra project is exploring CMP
with a focus on thread-level speculation [16,17]. The current
implementation integrates four 250MHz processors each with 8KB
instruction and data caches and a shared 128KB second-level cache
onto a small chip. There are a number of differences between
Hydra and Piranha. For example, Piranha has eight cores, a second-
level cache which does not maintain inclusion, a high-speed switch
instead of a bus to connect the on-chip cores, and provides scalabil-
ity past a single chip by integrating the required on-chip function-

7. The latest IBM RS-III 450MHz processor currently holds the TPC-C
benchmark record (models OLTP) with 24 processors, outperforming
some systems with over 64 processors (see http://www.tpc.org).

Clock

H
om

e
E

ng
in

e
R

em
ot

e
E

ng
in

e

R
ou

te
r

Intra-Chip Switch

M
C

0

L20 Data

RAC0

CPU0

L
2 0

 C
nt

r

iL1+dL1

L20
State
Tag

L21 Data

RAC1

CPU1

L
2 1

 C
nt

r

iL1+dL1

L21
State
Tag

M
C

1

P
ac

ke
t S

w
itc

h

L22 Data

RAC2

CPU2

L
2 2

 C
nt

r

iL1+dL1

L22
State
Tag

M
C

2

L23 Data

RAC3

CPU3

L
2 3

 C
nt

r

iL1+dL1

L23
State
Tag

M
C

3

L24 Data

RAC4

CPU4

L
2

4 C
ntr iL1+dL1

L24
State
Tag

M
C

4

L25 Data

RAC5

CPU5

L
2

5 C
ntr iL1+dL1

L25
State
Tag

M
C

5

L26 Data

RAC6

CPU6

L
2

6 C
ntr iL1+dL1

L26
State
Tag

M
C

6

L27 Data

RAC7

CPU7

L
2

7 C
ntr iL1+dL1

L27
State
Tag

M
C

7

Figure 9. Floor-plan of the Piranha processing node with
eight CPU cores.

11

ality to support glueless multiprocessing. Furthermore, Piranha
focuses on commercial workloads, which have an abundance of
explicit thread-level parallelism. Therefore, support for thread-
level speculation as proposed by Hydra and others [22,41] is not
necessary for achieving high performance on such workloads.

Another CMP design in progress is the IBM Power4 [9]. Each
Power4 chip has two 1-GHz, five-issue, out-of-order superscalar
processor cores, along with an on-chip shared L2 cache. Four such
chips can be connected on a multi-chip module to form an eight
processor system with a logically shared L2 cache. The informa-
tion from IBM does not elaborate on the expansion capabilities
past four chips. Piranha takes a more extreme approach by incor-
porating eight much simpler processor cores on a single chip, and
provides on-chip functionality for a scalable design. Finally, Sun
Microsystems has also announced a new CMP design called the
MAJC 5200 [47], which is the first implementation of the MAJC
architecture targeted at multimedia and Java applications. The
5200 contains two 500MHz VLIW processors, each capable of
issuing four instructions per cycle. The cores each have their own
16KB instruction cache, but share a 16KB, 4-way L1 data cache.
The choice of sharing the L1 cache clearly does not scale well to
more cores. Furthermore, the small size of the L1 along with the
lack of an on-chip L2 cache makes this design non-optimal for
commercial workloads such as OLTP.

Simultaneous multithreading (SMT) [11] (and other forms of
multithreading) is an alternative to CMP for exploiting the thread-
level parallelism in commercial workloads. In fact, Lo et al. [27]
have shown that SMT can provide a substantial gain for OLTP
workloads and a reasonably large gain for DSS workloads when it
is coupled with very wide-issue out-of-order processors. An SMT
processor adds extra functionality and resources (e.g., larger regis-
ter file) to an out-of-order core to support multiple simultaneous
threads. As such, SMT increases the implementation and verifica-
tion complexity that comes with such designs. Furthermore, intel-
ligent software resource management is sometimes necessary in
SMT to avoid negative performance effects due to the simulta-
neous sharing of critical resources such as the physical register
file, L1 caches, and TLBs [27]. The advantage of SMT over CMP
is that it provides superior performance on workloads that do not
exhibit thread-level parallelism. Because the Piranha design
targets workloads with an abundance of parallelism, we have opted
to forgo single-thread performance in favor of design simplicity.

Our evaluation of Piranha has primarily focused on commer-
cial database workloads. We expect Piranha to also be well suited
for a large class of web server applications that have explicit
thread-level parallelism. Previous studies have shown that some
web server applications, such as the AltaVista search engine,
exhibit behavior similar to decision support (DSS) workloads [4].

7 Concluding Remarks
The use of chip multiprocessing is inevitable in future micropro-
cessor designs. Advances in semiconductor technology are
enabling designs with several hundred million transistors in the
near future. Next-generation processors such as the Alpha 21364
are appropriately exploiting this trend by integrating the complete
cache hierarchy, memory controllers, coherence hardware, and
network routers all onto a single chip. As more transistors become
available, further increasing on-chip cache sizes or building more
complex cores will only lead to diminishing performance gains
and possibly longer design cycles in the case of the latter option.
While techniques such as simultaneous multithreading can remedy
the diminishing gains, they do not address the increasing design
complexity. At the same time, using the extra transistors to
integrate multiple processors onto the same chip is quite promis-
ing, especially given the abundance of explicit thread-level paral-
lelism in important commercial workloads. At least a couple of

next-generation processor designs subscribe to this philosophy by
integrating two superscalar cores on a single die. The key
questions for designers of future processors will not be whether to
use chip multiprocessing, but the appropriate trade-off between the
number of cores and the power of each core, and how to best parti-
tion the memory hierarchy among the multiple cores.

This paper described the Piranha architecture which takes an
extreme position on chip multiprocessing (CMP) by integrating
eight simple processor cores along with a complete cache hierar-
chy, memory controllers, coherence hardware, and network router
all onto a single chip to be built with the next-generation 0.18um
CMOS process. Due to our small design team and the modest
investment in this research prototype, we opted for an ASIC design
with simple single-issue in-order processor cores. Even with this
handicap, our results show that Piranha can outperform aggressive
next-generation processors by a factor of 2.9 times (on a per chip
basis) on important commercial workloads such as OLTP. A full-
custom design, which would require a larger design team, has the
potential to extend this performance advantage to almost five
times. Our results clearly indicate that focused designs such as
Piranha that directly target commercial server applications can
substantially outperform general-purpose microprocessor designs
with much higher complexity. On the other hand, Piranha is the
wrong design choice if the goal is to achieve the best SPECint or
SPECfp numbers because of the lack of sufficient thread-level
parallelism in such workloads.

We hope that our experience in building the Piranha prototype
provides a proof point for CMP designs based on simple processor
cores. We also hope that some of the design options we are explor-
ing, such as the lack of inclusion in the shared second-level cache,
the interaction between the intra-node and inter-node coherence
protocols, the efficient inter-node protocol, and the unique I/O
architecture, provide further insight for future CMP processors and
scalable designs in general.

Acknowledgments
Several people have contributed to the Piranha effort and to the
preparation of this manuscript. We would like to thank Gary
Campbell for his sponsorship of this project, Alan Eustace and
Bob Iannucci for their continuing support, and Marco Annaratone
and Bob Supnik for their early support of the idea. Bill Bruckert,
Harold Miller, and Jim Whatley have been key in steering Piranha
toward a real design effort. The following people have also made
significant technical contributions to Piranha: Joan Pendleton
wrote the initial Verilog for the Alpha core, Dan Scales helped
with the inter-chip coherence protocol, Basem Nayfeh was an
early member of the architecture team, Robert Bosch developed
the SimOS-Alpha out-of-order processor model, and Jeff Sprouse
has helped with the Verilog development. Technical discussions
with Pete Bannon, John Edmonson, Joel Emer, and Rick Kessler
were important in focusing our effort and refining our strategy. We
are grateful to Keith Farkas, Jeff Mogul, Dan Scales, and Deborah
Wallach for their careful review of the manuscript. Finally, we
would like to thank the anonymous reviewers for their comments.

References
[1] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. An Evaluation

of Directory Schemes for Cache Coherence. In 15th Annual Interna-
tional Symposium on Computer Architecture, pages 280-289, May
1988.

[2] P. Bannon. Alpha 21364: A Scalable Single-chip SMP. Presented at
the Microprocessor Forum ‘98 (http://www.digital.com/alpha-
oem/microprocessorforum.htm), October 1998.

[3] L. A. Barroso, K. Gharachorloo, A. Nowatzyk, and B. Verghese. Im-
pact of Chip-Level Integration on Performance of OLTP Workloads.
In 6th International Symposium on High-Performance Computer Ar-

12

chitecture, pages 3-14, January 2000.
[4] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory System

Characterization of Commercial Workloads. In 25th Annual Interna-
tional Symposium on Computer Architecture, pages 3-14, June 1998.

[5] J. Borkenhagen and S. Storino. 5th Generation 64-bit PowerPC-Com-
patible Commercial Processor Design. http://www.rs6000.ibm.com
/resource/technology/pulsar.pdf. September 1999.

[6] S. Crowder et al. IEDM Technical Digest, page 1017, 1998.
[7] Z. Cvetanovic and D. Bhandarkar. Characterization of Alpha AXP

Performance using TP and SPEC Workloads. In 21st Annual Interna-
tional Symposium on Computer Architecture, pages 60–70, April
1994.

[8] Z. Cvetanovic and D. Donaldson. AlphaServer 4100 Performance
Characterization. In Digital Technical Journal, 8(4), pages 3-20,
1996.

[9] K. Diefendorff. Power4 Focuses on Memory Bandwidth: IBM Con-
fronts IA-64, Says ISA Not Important. In Microprocessor Report, Vol.
13, No. 13, October 1999.

[10] Digital Equipment Corporation. Digital Semiconductor 21164 Alpha
Microprocessor Hardware Reference Manual. March 1996.

[11] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm, and D. M.
Tullsen. Simultaneous Multithreading: A Platform for Next-Genera-
tion Processors. In IEEE Micro, pages 12–19, October 1997.

[12] R. J. Eickemeyer, R. E. Johnson, S. R. Kunkel, M. S. Squillante, and
S. Liu. Evaluation of Multithreaded Uniprocessors for Commercial
Application Environments. In 23rd Annual International Symposium
on Computer Architecture, pages 203–212, May 1996.

[13] J. S. Emer. Simultaneous Multithreading: Multiplying Alpha's Perfor-
mance. Presentation at the Microprocessor Forum ‘99, October 1999.

[14] A. Gupta, W.-D. Weber, and T. Mowry. Reducing Memory and Traf-
fic Requirements for Scalable Directory-Based Cache Coherence
Schemes. In International Conference on Parallel Processing, July
1990.

[15] L. Hammond, B. Nayfeh, and K. Olukotun. A Single-Chip Multipro-
cessor. In IEEE Computer 30(9), pages 79-85, September 1997.

[16] L. Hammond, M. Willey, and K. Olukotun. Data Speculation Support
for a Chip Multiprocessor. In 8th ACM International Symposium on
Architectural Support for Programming L anguages and O perating
Systems, San Jose, California, October 1998.

[17] L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Willey, M. Chen,
M. Kozyrczak, and K. Olukotun. The Stanford Hydra CMP. Presented
at Hot Chips 11, August 1999.

[18] J. Hennessy. The Future of Systems Research. In IEEE Computer,
Vol. 32, No. 8, pages 27-33, August 1999.

[19] IBM Microelectronics. ASIC SA27E Databook. International Busi-
ness Machines, 1999.

[20] N. P. Jouppi and S. Wilton. Tradeoffs in Two-Level On-Chip Cach-
ing. In 21st Annual International Symposium on Computer Architec-
ture, pages 34-45, April 1994.

[21] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and W. E. Baker.
Performance Characterization of the Quad Pentium Pro SMP Using
OLTP Workloads. In 25th Annual International Symposium on Com-
puter Architecture, pages 15-26, June 1998.

[22] V. Krishnan and J. Torrellas. Hardware and Software Support for
Speculative Execution of Sequential Binaries on Chip-Multiproces-
sor. In ACM International Conference on Supercomputing (ICS’98),
pages 85-92, June 1998.

[23] S. Kunkel, B. Armstrong, and P. Vitale. System Optimization for
OLTP Workloads. IEEE Micro, Vol. 19, No. 3, May/June 1999.

[24] J. Kuskin et al. The Stanford FLASH Multiprocessor. In 21st Annual
International Symposium on Computer Architecture, April 1994.

[25] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scal-
able Server. In 24 th Annual International Symposium on Computer
Architecture, pages 241-251, June 1997.

[26] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. L. Hen-
nessy. The Directory-Based Cache Coherence Protocol for the DASH
Multiprocessor. In 17 th Annual International Symposium on Comput-
er Architecture, pages 94-105, May 1990.

[27] J. Lo, L. A. Barroso, S. Eggers, K. Gharachorloo, H. Levy, and S.
Parekh. An Analysis of Database Workload Performance on Simulta-
neous Multithreaded Processors. In 25th Annual International Sympo-
sium on Computer Architecture, June 1998.

[28] A. M. G. Maynard, C. M. Donnelly, and B. R. Olszewski. Contrasting
Characteristics and Cache Performance of Technical and Multi-User
Commercial Workloads. In 6th International Conference on Architec-
tural Support for Programming L anguages and O perating Systems,
pages 145–156, October 1994.

[29] B. Nayfeh, L. Hammond, and K. Olukotun. Evaluation of Design Al-
ternatives for a Multiprocessor Microprocessor. In 23rd Annual Inter-
national Symposium on Computer Architecture, May 1996.

[30] A. Nowatzyk, G. Aybay, M. Browne, W. Radke, and S. Vishin. S-
Connect: from Networks of Workstations to Supercomputing Perfor-
mance. In 22nd Annual International Symposium on Computer Archi-
tecture, pages 71-82, May 1995.

[31] A. Nowatzyk, G. Aybay, M. Browne, E. Kelly, M. Parkin, W. Radke,
and S. Vishin. The S3.mp Scalable Shared Memory Multiprocessor.
In International Conference on Parallel Processing (ICPP’95), pages
I.1 - I.10, July 1995.

[32] A. Nowatzyk, G. Aybay, M. Browne, E. Kelly, M. Parkin, W. Radke,
and S. Vishin. Exploiting Parallelism in Cache Coherency Protocol
Engines. In EuroPar’95 International Conference on Parallel Pro-
cessing, August 1995.

[33] K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, and K.-Y. Chang.
The Case for a Single-Chip Multiprocessor. In 7 th International Sym-
posium on Architectural Support for Programming L anguages and
O perating Systems, October 1996.

[34] S. E. Perl and R. L. Sites. Studies of Windows NT Performance Using
Dynamic Execution Traces. In 2nd Symposium on O perating System
Design and Implementation, pages 169–184, October 1996.

[35] P. Ranganathan, K. Gharachorloo, S. Adve, and L. A. Barroso. Perfor-
mance of Database Workloads on Shared- Memory Systems with Out-
of-Order Processors. In 8th International Conference on Architectural
Support for Programming L anguages and O perating Systems, pages
307-318, October 1998.

[36] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and A. Gupta.
The Impact of Architectural Trends on Operating System Perfor-
mance. In 15th Symposium on O perating System Principles, Decem-
ber 1995.

[37] M. Rosenblum, E. Bugnion, S. Herrod, and S. Devine. Using the Si-
mOS Machine Simulator to Study Complex Computer Systems. In
ACM Transactions on Modeling and Computer Simulation, Vol. 7,
No. 1, pages 78-103, January 1997.

[38] A. Saulsbury, F. Pong, and A. Nowatzyk. Missing the Memory Wall:
The Case for Processor/Memory Integration. In 23rd Annual Interna-
tional Symposium on Computer Architecture. May 1996.

[39] R. L. Sites and R. T. Witek. Alpha AXP Architecture Reference Man-
ual (second edition). Digital Press, 1995.

[40] Standard Performance Council. The SPEC95 CPU Benchmark Suite.
http://www.specbench.org, 1995.

[41] J. Steffan and T. Mowry. The Potential for Using Thread-Level Data
Speculation to Facilitate Automatic Parallelization. In 4 th Interna-
tional Symposium on High-Performance Computer Architecture, pag-
es 2-13, February 1998.

[42] S. S. Thakkar and M. Sweiger. Performance of an OLTP Application
on Symmetry Multiprocessor System. In 17 th Annual International
Symposium on Computer Architecture, pages 228–238, May 1990.

[43] Transaction Processing Performance Council. TPC Benchmark B
Standard Specification Revision 2.0. June 1994.

[44] Transaction Processing Performance Council. TPC Benchmark D
(Decision Support) Standard Specification Revision 1.2. November
1996.

[45] Transaction Processing Performance Council. TPC Benchmark C,
Standard Specification Revision 3.6, October 1999.

[46] P. Trancoso, J.-L. Larriba-Pey, Z. Zhang, and J. Torrellas. The Mem-
ory Performance of DSS Commercial Workloads in Shared-Memory
Multiprocessors. In 3rd Annual International Symposium on High-
Performance Computer Architecture, pages 250–260, February 1997.

[47] M. Tremblay. MAJC-5200: A VLIW Convergent MPSOC. In Micro-
processor Forum, October 1999.

[48] E. Witchel and M. Rosenblum. Embra: Fast and Flexible Machine
Simulation. In 1996 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, pages 68-79, May 1996.

