
CS161: Design and Analysis of Algorithms Summer 2004

Problem Set #3 Solutions

General Notes

• Regrade Policy: If you believe an error has been made in the grading of your problem
set, you may resubmit it for a regrade. If the error consists of more than an error in
addition of points, please include with your problem set a detailed explanation of
which problems you think you deserve more points on and why. We reserve the right
to regrade your entire problem set, so your final grade may either increase or decrease.

• If we ask for an answer in terms of n and d, please give the answer in terms of n and
d and do not assume that d is a constant. Many people did this on the first problem
as well as the skip list problem from the last problem set.

• In part (b) of problem 3, many people only showed that the probability that any slot
had k elements was ≤ nQk. You had to show the maximum number of elements was
k.

1. [14 points] Analysis of d-ary Heaps

Throughout this problem, when asked to give an implementation of a certain operation,
please provide pseudocode or a verbal description with the same level of clarity and
detail. When asked to analyze running times, your analysis does not need to be formal,
but should be justified.

Note that we are asking you to solve 6-2(e) before 6-2(d). Keep in mind that you may
always (not only in this problem) use the results of any previous parts in answering a
later part of a multi-part problem.

(a) [1 point] Do problem 6-2(a) on page 143 of CLRS.

Answer: A d-ary heap can be represented in a 1-dimensional array by keeping
the root of the heap in A[1], its d children in order in A[2] through A[d + 1], their
children in order in A[d+2] through A[d2 +d+1], and so on. The two procedures
that map a node with index i to its parent and to its jth child (for 1 ≤ j ≤ d) are

D-PARENT(i)
1 return d(i− 1)/de

D-CHILD(i, j)
2 return d(i− 1) + j + 1

(b) [1 point] Do problem 6-2(b) on page 143 of CLRS.

Answer: Since each node has d children, the total number of nodes in a tree
of height h is bounded above by 1 + d + . . . + dh inclusively and below by
1+d+ . . .+dh−1 exclusively. This yields h = dlogd(1+n(d−1))e−1 = Θ(logd n).
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(c) [2 points] Give an efficient implementation of HEAPIFY in a d-ary max-heap.
Analyze its running time in terms of d and n.

Answer: First, we will need to find if the root element given to D-HEAPIFY is
larger than all its children. If not, we swap it with its largest child and recursively
call D-HEAPIFY on that child.

D-HEAPIFY(A, i, d)
1 largest← i
2 for j ← 1 to d
3 j ← D-CHILD(i, j)
4 if j ≤ heapsize[A] and A[j] > A[largest]
5 then largest← j
6 if largest 6= i
7 then exchange A[i]↔ A[largest]
8 D-HEAPIFY(A, largest, d)

This algorithm does Θ(d) comparisons in each call to D-HEAPIFY as well as
O(logd n) calls to HEAPIFY, one for each level of the tree. Therefore, the total
running time for this algorithm is O(d logd n).

(d) [5 points] Give an efficient implementation of BUILD-HEAP in a d-ary max-
heap. Analyze its running time in terms of d and n.

Answer: To build a heap, we can simply assume that our array is already a heap
and call D-HEAPIFY in a bottom up manner to convert the array into a d-max-
heap. The leaves are already heaps since they have no children, so we start with
the lowest non-leaf element. By our procedure for D-PARENT, the parent of the
last element is d(n − 1)/de. By the time we call D-HEAPIFY on any element,
D-HEAPIFY will have already been called on all of its children and therefore the
call is valid since the children are all themselves heaps.

D-BUILD-HEAP(A, d)
1 heapsize[A] ← length[A]
2 for i← d(length[A]− 1)/de downto 1
3 do D-HEAPIFY(A, i, d)

We can bound the running time of this algorithm by modifying the analysis in
section 6.3 of CLRS. Notice that there are

dlogd(n(d−1))−(h+1) = dlogd(
n(d−1)

dh+1 ) =
n(d− 1)

dh+1

nodes at each height h. From part (c), the time for each call to HEAPIFY at a
node of height h is O(dh). So, the running time
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T (n) ≤

lgd(n(d−1))
∑

h=0

dh
n(d− 1)

dh+1

< n(d− 1)

∞
∑

h=0

h

dh

≤ n(d− 1)
1/d

(1− 1/d)2
A.8

= n
d

d− 1

= n

(

1 +
1

d− 1

)

For any d ≥ 2 we have 1 ≤ 1 + 1/(d− 1) ≤ 2, so T (n) = Θ(n).

(e) [2 points] Do problem 6-2(c) on page 143 of CLRS.

Answer: The procedure D-EXTRACT-MAX is the same as for the binary heap.
We return the value of A[1], move the element in A[heapsize] into A[1], decrement
heapsize, and then call D-HEAPIFY on the root of the heap.

D-EXTRACT-MAX(A, d)
1 if heapsize[A] < 1
2 then error
3 max← A[1]
4 A[1]← A[heapsize]
5 heapsize← heapsize− 1
6 D-HEAPIFY(A, 1, d)
7 return max

All operations besides D-HEAPIFY take O(1) time. D-HEAPIFY takes time
Θ(d logd n) so D-EXTRACT-MAX takes time Θ(d logd n).

(f) [2 points] Do problem 6-2(e) on page 143 of CLRS.

Answer: If k < A[i], then D-INCREASE-KEY does not change the heap.
Otherwise, it will set A[i] to k and move the element upwards toward the root
until it is smaller than its parent.

D-INCREASE-KEY(A, i, k, d)
1 if k > A[i]
2 then A[i]← k
3 while i > 1 and A[D-PARENT(A, i, d)] < A[i]
4 do exchange A[i]↔ A[D-PARENT(A, i, d)]
5 i← A[D-PARENT(A, i, d)]
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The running time of the algorithm is proportional to the height of the heap, and
each level takes a constant amount of work, so the overall time is Θ(logd n).

(g) [1 point] Do problem 6-2(d) on page 143 of CLRS.

Answer: The procedure D-INSERT is the same as for the binary heap. We
add the element to the end of the array and set its key to −∞. Then, we call
D-INCREASE-KEY to increase to increase the key to key.

D-INCREASE-KEY(A, key, d)
1 heapsize[A] ← heapsize[A] + 1
2 A[heapsize[A]] ← −∞
3 D-INCREASE-KEY(A, heapsize[A], key, d)

The first two operations take constant time, and the call to D-INCREASE-KEY
takes time Θ(logd n). So, the running time for D-INCREASE-KEY is Θ(logd n).

2. [23 points] Average-Case Lower Bounds on Comparison Sorting

Throughout the next two problems, when asked to prove, argue, show or conclude
something, please make your explanations as clear and complete as possible.

(a) [4 points] Do problem 8-1(a) on page 178 of CLRS.

Answer: Since the sort can be run on any input, the algorithm must be able to
reach any permutation of the input in order to get the correct sorted order as an
answer. Because A is deterministic, any input will always follow exactly one path
in TA. There are n! possible permutations of n elements, and each permutation
should lead to a distinct leaf in TA in order to yield the correct sorted order.
Since we assume that every permutation of A’s input is equally likely and since
the probabilities must sum to 1, each leaf must have probability 1/n!. Any other
leaf is never reached and thus must have probability 0, as needed to be shown.

(b) [2 points] Do problem 8-1(b) on page 178 of CLRS.

Answer: The external path length T is given by the sum of the depths of all the
leaves contained in the right subtree plus the sum of the depths of all the leaves
contained in the left subtree. The sum of the depths of the leaves in the right
subtree is the sum of the depths up to the root of the right subtree plus one for
each leaf in the right subtree, and likewise for the sum of the depths in the left
subtree. So, the total depth D(T ) = D(RT )+ number of leaves in RT + D(LT )
+ number of leaves in LT . Each leaf must be in exactly one of the left or right
subtrees, so D(T ) = D(RT )+D(LT )+ number of leaves = D(RT )+D(LT )+ k.

(c) [3 points] Do problem 8-1(c) on page 178 of CLRS.

Answer: Consider a decision tree T with k leaves that achieves the minimum.
Let i0 be the number of leaves in LT and k − i0 be the number of leaves in RT .
From part (b), we have D(T ) = D(LT ) + D(RT ) + k. Notice that this implies
that LT and RT also have the minimum external path length over all subtrees
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with i0 and k− i0 leaves respectively, since otherwise we could replace them with
better trees and get a lower value of D(T ).

Finally, the optimal tree T represents the best possible split of the k leaves into
(optimal) subtrees with i0 and k− i0 leaves. Since each subtree must have at least
one leaf, we have d(k) = min1≤i≤k−1{d(i) + d(k − i) + k}.

(d) [4 points] Do problem 8-1(d) on page 178 of CLRS.

Answer: We can find the minimum by setting the derivative with respect to i
equal to zero.

d

di
(i lg i + (k − i) lg(k − i)) = (i)(1/i)(lg e) + (1)(lg i) +

(k − i)(1/(k − i))(− lg e) + (−1)(lg(k − i))

= lg e + lg i− lg e− lg(k − i)

= lg i− lg(k − i)

This is zero when i = k − i or i = k/2. We can verify that this is in fact a
minimum by taking the second derivative and checking that it is positive.

We can now check that d(k) = Ω(k lg k) using the guess-and-check method.
Assume that d(i) ≥ ci lg i for i < k.

d(k) = min
1≤i≤k−1

(d(i) + d(k − i) + k)

≥ min
1≤i≤k−1

(ci lg i + c(k − i) lg(k − i) + k)

= k + c min
1≤i≤k−1

{i lg i + (k − i) lg(k − i)}

≥ k + c((k/2) lg(k/2) + (k/2) lg(k/2))

= ck lg(k/2) + k

= ck(lg k − lg 2) + k

= ck lg k + k(1− c)

≥ ck lg k

with the last inequality holding as long as c ≤ 1. Therefore, d(k) = Ω(k lg k).

(e) [2 points] Do problem 8-1(e) on page 178 of CLRS.

Answer: In part (a), we showed that any deterministic tree TA has at least n!
leaves. Since d(k) is the minimum value over all decision trees with k leaves, we
know that D(TA) ≥ d(k). In part (d), we showed that d(k) = Ω(k lg k). Since TA

has k ≥ n! leaves, we know D(TA) ≤ d(k) = Ω(k lg k) = Ω(n! lg(n!)).

The expected time to sort n elements is the sum over all leaves of the length
of the path to that leaf times the probability of reaching that leaf. Since the
probability of reaching each leaf is 1/n! (ignoring leaves with probability 0 that
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contribute nothing to the sum), this is precisely D(TA)/n!. Thus, E[T (n)] =
Ω(n! lg(n!))/n! = Ω(lg n!) = Ω(n lg n).

(f) [8 points] Do problem 8-1(f) on page 178 of CLRS.

Answer: Consider the decision tree TB for algorithm B. We will work from the
bottom to the top, replacing each randomization node with the branch that has
the smallest external path length. We call the resulting tree TA and we show that
TA represents a valid deterministic sorting algorithm and E[TA(n)] ≤ E[TB(n)].

First, consider the issue of correctness. Since the decision tree for A represents a
possible execution of B (with appropriate random choices made at each step), and
B is correct, the resulting decision tree must represent a valid sorting algorithm.
Since all randomization nodes have been removed, this algorithm is deterministic.

Now notice that at each randomization node N , the expected execution time
after that node is reached is equal to

∑

r

i=1(1/r)E[T (Si)], where Si is the ith

subtree of N . Clearly we have E[T (N)] ≥ minr
i=1E[T (Si)], since all terms in the

average must be at least the minimum. Thus, each transformation that replaces
a randomization node with its best child does not increase the expected running
time.

We formalize these notions slightly. Consider a sequence of decision trees
T1, . . . , Tm where T1 = TB and Tm = TA, and each Ti was obtained from Ti−1

by choosing a randomization node all of whose descendants are deterministic
and replacing it with the subtree with the smallest external path length. Notice
that since no descendants of N are randomization nodes, the notion of expected
running time and external path length (given random input) is the same for its
children.

The correctness argument above applies, as does the running time argument:
E[T (Ti)] ≤ E[T (Ti−1)]. Finally, when all the randomization nodes are removed,
we have a deterministic sorting algorithm with the decision tree Tm = TA and
expected running time no worse than the expected running time of B.

3. [18 points] Slot-Size Bound for Chaining

(a) [2 points] Do problem 11-2(a) on page 250 of CLRS.

Answer The probability that exactly k keys hash to the same spot is given by
first choosing k keys from the n, multiplying by the probability that those k keys
hashed to a particular spot, and multiplying by the probability that the remaining
n − k keys hashed to a different spot (see appendix C.4 for a discussion of the
binomial distribution if this is unclear). Thus we have

Qk =

(

1

n

)k (

1−
1

n

)n−k (

n

k

)

.

(b) [2 points] Do problem 11-2(b) on page 250 of CLRS.

Answer: The probability of the event M = k is equal to Pr{∪n

i=1Ei}, where Ei

is the event that slot i has the maximum number of elements and that slot i has
exactly k elements.
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The probability of a union of a set of events is bounded by the sum of the
probabilities of those events (with equality if and only if those events are mutually
exclusive), so Pr{M = k} ≤

∑

n

i=1 Pr{Ei} = nPr{E1} due to symmetry.

Finally, observe that the event Ei subsumes the event that exactly k keys hash to
slot i, because Ei represents the event { k keys hash to i and i has the maximum
number of elements}. Thus, Pr{Ei} ≤ Qk. Combining this with the previous
equation yields

Pk = Pr{M = k} ≤ nPr{E1} ≤ nQk.

(c) [2 points] Do problem 11-2(c) on page 250 of CLRS.

Answer:

Qk =

(

1

n

)k (

1−
1

n

)n−k (

n

k

)

≤

(

1

n

)k (

n

k

)

since

(

1−
1

n

)n−k

≤ 1

≤

(

1

n

)k
(en

k

)k

equation C.5

=
( e

k

)k

(d) [8 points] Do problem 11-2(d) on page 250 of CLRS.

Answer: We will find a c > 1 such that (e/k0)
k0 < 1/n3. Since (e/k)k is a

decreasing function for k > e (when e/k < 1), this means that Qk < 1/n3 for
k ≥ k0. Finally, combining this with the result of part (b) will yield the desired
bound on Pk.

Thus, we want (e/k0)
k0 < 1/n3. Taking lg of both sides yields

k0 lg

(

e

k0

)

< −3 lg n

k0(lg e− lg k0) < −3 lg n

c lg n

lg lg n

(

lg e− lg
c lg n

lg lg n

)

< −3 lg n

c

lg lg n
(lg e− lg c− lg lg n + lg lg lg n) < −3

c

lg lg n
(− lg e + lg c + lg lg n− lg lg lg n) > 3

For c > e, the lg c term is larger than the lg e term, so we need to make sure the
rest of the left side is greater than the right side, i.e.
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c

lg lg n
(lg lg n− lg lg lg n) > 3

c >
3 lg lg n

lg lg n− lg lg lg n

c >
3

1− lg lg lg n

lg lg n

As n gets large, the second term in the denominator will go to zero; in fact for
n ≥ 16 we have lg lg lg n

lg lg n
≤ 1/2 so the right hand side is ≤ 6.

Thus, we can choose an appropriate constant c to guarantee that (e/k0)
k0 < 1/n3

and therefore Qk < 1/n3 for k ≥ k0. Thus, Pk ≤ nQk < 1/n2 for k ≥ k0.

(e) [4 points] Do problem 11-2(e) on page 250 of CLRS.

Answer:

E[M ] =

n
∑

i=1

i · Pr{M = i}

=

k0
∑

i=1

i · Pr{M = i}+

n
∑

i=k0+1

i · Pr{M = i}

≤ k0

k0
∑

i=0

Pr{M = i}+ n

n
∑

i=k0+1

Pr{M = i}

= k0Pr{M ≤ k0}+ nPr{M > k0}

= n · Pr

{

M >
c lg n

lg lg n

}

+
c lg n

lg lg n
· Pr

{

M ≤
c lg n

lg lg n

}

Plugging in the values from part (d), we have

E[M ] ≤ (n)(n− k0)(1/n
2) +

c lg n

lg lg n
· 1

≤ (n)(n)(1/n2) +
c lg n

lg lg n

Thus, E[M ] ≤ 1 + c lg n/ lg lg n = O(lg n/ lg lg n).


