
Transactional Collection Classes

Brian D. Carlstrom Austen McDonald Michael Carbin Christos Kozyrakis Kunle Olukotun
Computer Systems Laboratory

Stanford University
{bdc, austenmc, mcarbin, kozyraki, kunle}@stanford.edu

Abstract
While parallel programmers find it easier to reason about large
atomic regions, the conventional mutual exclusion-based primitives
for synchronization force them to interleave many small operations
to achieve performance. Transactional memory promises that pro-
grammers can use large atomic regions while achieving similar per-
formance. However, these large transactions can conflict when op-
erating on shared data structures, even for logically independent op-
erations. Transactional collection classes address this problem by
allowing long-running transactions to operate on shared data while
eliminating unnecessary conflicts. Transactional collection classes
wrap existing data structures, without the need for custom imple-
mentations or knowledge of data structure internals.

Without transactional collection classes, access to shared data
from within long-running transactions can suffer from data depen-
dency conflicts that are logically unnecessary, but are artifacts of
the data structure implementation such as hash table collisions or
tree-balancing rotations. Our transactional collection classes use
the concept of semantic concurrency control to eliminate these un-
necessary data dependencies, replacing them with conflict detec-
tion based on the operations of the abstract data type.

The design and behavior of these transactional collection classes
is discussed with reference to the related work from the database
community such as multi-level transactions and semantic concur-
rency control, as well as other concurrent data structures such
as java.util.concurrent. The required transactional semantics
needed for implementing transactional collection are enumerated,
including open-nested transactions and commit and abort handlers.
We also discuss how isolation can be reduced for greater concur-
rency. Finally, we provide guidelines on the construction of classes
that preserve isolation and serializability.

The performance of these classes is evaluated with a number
of benchmarks including targeted micro-benchmarks and a version
of SPECjbb2000 with increased contention. The results show that
easier-to-use long transactions can still allow programs to deliver
scalable performance by simply wrapping existing data structures
with transactional collection classes.

Categories and Subject Descriptors C.5.0 [Computer Systems
Implementation]: General; D.1.3 [Programming Techniques]: Con-
current Programming – parallel programming; D.3.3 [Program-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPoPP’07 March 14–17, 2007, San Jose, California, USA.
Copyright c© 2007 ACM 978-1-59593-602-8/07/0003. . . $5.00.

ming Languages]: Language Constructs and Features – concurrent
programming structures

General Terms Performance, Design, Languages

Keywords Transactional Memory, Collection Classes, Java, Mul-
tiprocessor Architecture

1. Introduction
Transactional memory has been proposed as a way to ease parallel
programming [15, 28, 14, 13], which has recently become more
important with the shift towards chip multiprocessors (CMPs) [18,
17]. Although the promise of transactional memory is an easier-to-
use programming model, evaluation of proposed systems thus far
has focused on applications that have short critical regions tuned
for use with locks [4].

For transactional memory to have a real impact, it should not fo-
cus on competing with existing hand-tuned applications but empha-
size how transactions can make parallel programming easier while
maintaining comparable performance [5]. Building efficient paral-
lel programs is difficult because fine-grained locking is required
for scaling, which burdens programmers with reasoning about op-
eration interleaving and deadlocks. Large critical regions make it
easier on programmers, but degrade performance. However, long-
running transactions promise the best of both worlds: a few coarse-
grained atomic regions speculatively executing in parallel.

While programming with fewer, longer transactions can make
it easier to create correct parallel programs, the downside is that
updates to shared state within these transactions can lead to fre-
quent data dependencies between transactions and more lost work
when there are conflcits. The dependencies can arise from both the
program’s own shared data structures as well as underlying library
and run-time code. Often the implementation of these structures is
opaque to a programmer, so eliminating dependencies is difficult.

Existing solutions utilize a technique called open nesting [2, 25]
to expose updates to shared data structures early, before commit,
and reduce the length of dependencies. This violates the isolation
property of transactions and can lead to incorrect and unpredictable
programs. However, structured use of open-nested transactions can
give the performance benefits of reduced isolation while preserving
the semantic benefits of atomicity and serializability for the pro-
grammer.

In this paper, we use semantic concurrency control and multi-
level transactions combined with object-oriented encapsulation to
create data structures that maintain the transactional properties
of atomicity, isolation, and serializability by changing unneeded
memory dependencies into logical dependencies on abstract data
types. At times when full serializability is not required for pro-
gram correctness, isolation between transactions can be relaxed to
improve concurrency. Simple examples like global counters and
unique identifier (UID) generators illustrate the usefulness of re-

duced isolation. The UID example is quite similar to the monoton-
ically increasing identifier problem that the database community
uses to demonstrate the tradeoffs between isolation and serializ-
ability [10].

To illustrate the need for semantic concurrency control when
programming with long transactions, we present a parallelization
of a high contention variant of the SPECjbb2000 benchmark [29].
This parallelization includes both the use of Map and SortedMap
as well as the simpler examples of global counters and unique
identifier (UID) generation. While the abstract data type examples
show how transactional properties can be preserved, the counter
and UID examples illustrate how selectively reducing isolation and
forgoing serializability can be beneficial as well.

Specifically, our contributions are:

• The design and evaluation of transactional collection classes for
use with hardware or software transactional memory systems.
Transactional collection classes wrap existing Java collection
implementations, and then can be used in long-running transac-
tions without causing unnecessary dependencies. Because they
offer the same interface as the underlying implementation, they
can serve as drop-in replacements in existing programs.

• Transactional collection classes that allow programmers to
compose multiple operations on transactional objects atom-
ically — something unattainable with undisciplined use of
isolation-reducing mechanisms such as open nesting.

• We show how selectively reducing isolation can yield higher
performing data structures by creating a transactional work
queue from the Queue class.

• We provide an overview of the transactional memory semantics
needed to support the construction of collection classes in either
hardware or software systems.

• We summarize design principles about managing state with se-
mantic concurrency control for the case when full isolation and
serializability is desired. We also discuss alternative implemen-
tation strategies that we did not explore that may be more ap-
propriate for other transactional memory implementations.

The rest of the paper is organized as follows. Section 2 dis-
cusses semantic concurrency control in databases and its applica-
tion to transactional memory via transactional collection classes.
We also cover the related background on concurrent collection
classes. Section 3 covers the design and implementation of transac-
tional wrappers for Java collections. Section 4 discusses the trans-
actional memory semantics required for our proposal, and Section 5
lists our guidelines for serializability. Section 6 evaluates the scal-
ability of our transactional collection classes, and we conclude in
Section 7 with some observations and suggestions for future direc-
tions.

2. Supporting Long-Running Transactions
The database community has studied the problem of frequent de-
pendency conflicts within long-running transactions. We examined
the literature surrounding semantic concurrency control, one solu-
tion to the long-running transaction problem. This section describes
the evolution of semantic concurrency control, drawing similarities
between the problems of databases and the problems of transac-
tional memory. We will then show an example of how these ideas
can be applied directly to transactional memory.

2.1 Database Concurrency Control
Isolation, one of the four ACID properties of database transactions,
means that changes made by a transaction are not visible to other

transactions until that transaction commits. An important deriva-
tive property of isolation is serializability, which means that there
is a serial ordering of commits that would result in the same final
outcome. Serializability is lost if isolation is not preserved, because
if a later transaction sees uncommitted results that are then rolled
back, the later transaction’s outcome depends on data from a trans-
action that never committed, which means there is no way a serial
execution of the two transactions would lead to the same result.

One method for databases to maintain isolation and therefore
serializability, is strict two-phase locking. In this form of two-
phase locking, the growing phase consists of acquiring locks before
data access and the shrinking phase consists of releasing locks at
commit time [10].

While simple, this isolation method limits concurrency. Of-
ten transactions contain sub-operations, known as nested transac-
tions, which can access the state of their parent transaction without
conflict, but which themselves can cause dependencies with other
transactions. Moss showed how two-phase locking could be used to
build a type of nested transactions where sub-operations could be-
come child transactions, running within the scope of a parent, but
able to rollback independently, therefore increasing concurrency
(called closed nesting) [24]. Gray concurrently introduced a type
of nested transaction where the child transaction could commit be-
fore the parent, actually reducing isolation and therefore further
increasing concurrency because the child could logically commit
results based on a parent transactions that could later abort (called
open nesting) [9].

Open-nested transactions may seem dangerous — exposing
writes from a child transaction before the parent commits and dis-
carding any read dependencies created by the child — but they can
be very powerful if used correctly. Trager notes how System R used
open-nesting “informally” by releasing low-level page locks before
transaction commit in violation of strict two-phase locking [30].
System R protected serializability through higher-level locks that
are held until commit of the parent transaction, with compensating
transactions used to undo the lower-level page operations in case
the parent transaction needed to be rolled back.

System R’s approach was later formalized as multi-level trans-
actions: protecting serializability through locks at different lay-
ers [32, 26]. Going a step further and incorporating knowledge
about the way specific data structures operate allowed semantically
non-conflicting operations to execute concurrently; this was called
semantic currency control [31, 27]. Finally, sagas focused on using
compensating transactions to decompose a long-running transac-
tion into a series of smaller, serial transactions [8].

2.2 Concurrent Collection Classes
Beyond parallel databases, another area of research in concur-
rency is data structures. Easier access to multi-processor systems
and programming languages, like Java, that include threads have
brought attention to the subject of concurrent collection classes.
One major area of effort was util.concurrent [20], which be-
came the Java Concurrency Utilities [16]. The original work within
util.concurrent focused on ConcurrentHashMap and Con-
currentLinkedQueue, the later based on work by [23]. However,
the upcoming JDK 6 release extends this to include a Concur-
rentSkipListMap that implements the new NavigableMap in-
terface that is an extension SortedMap.

The idea behind ConcurrentHashMap is reducing contention
on a single size field and frequent collisions in buckets. The ap-
proach is to partition the table into many independent segments,
each with their own size and buckets. This approach of reducing
contention through alternative data structure implementations has
been explored in the transactional memory community as well as
we will see below.

2.3 Transactional Memory
Hardware Transactional Memory (HTM) [15] and Software Trans-
actional Memory (STM) [28] have both seen a resurgence of re-
search activity. For HTM, this has been due to the move from pursu-
ing gains through instruction-level parallelism to thread-level par-
allelism with chip multi-processors. For STM, this has been due to
the arrival of new innovative techniques for lower overhead imple-
mentations [13, 6], as well as the need to more easily take advan-
tage of chip multi-processor systems.

There has been some work at the intersection of transactional
memory and concurrent data structures. Adl-Tabatabai et al. used
a ConcurrencyHashMap-like data structure to evaluate their STM
system [1]. Kulkarni et al. suggested the use of open-nested trans-
actions for queue maintenance for Delaunay mesh generation [19].
While this work addressed issues with specific structures, it did not
provide a general framework for building transactional data struc-
tures.

Pausing transactions was suggested as an alternative to open-
nesting for reducing isolation between transactions by Zilles and
Baugh in [33]. Pausing could be used in the place of open nesting
to implement semantic concurrency control, but because pausing
does not provide any transactional semantics, traditional methods
of moderating concurrent access to shared state such lock tables
would need to be used.

Recently, Moss has advocated a different approach less focused
on specific data structures. Based on his experience with closed-
nested transactions [24], multi-level transactions [26], and trans-
actional memory [15], he has been advocating the use of abstract
locks built with open-nested transactions for greater concurrency.
This paper builds on this concept and develops a set of general
guidelines and mechanisms for practical semantic concurrency in
object-oriented languages. We also include an evaluation of a full
implementation of collection classes for use in SPECjbb2000.

2.4 The Need for Semantic Concurrency Control
To explain how ideas from the database community can be ap-
plied to transactional memory, we will consider a hypothetical
HashTable class:

class HashTable {
Object get (Object key) {...};
void put (Object key, Object value) {...}; }

Semantically speaking, get and put operations on different
keys should not cause data dependencies between two different
transactions. Taking advantage of this would be utilizing semantic
concurrency control and is based on the fact that such operations
are commutative.

The problem is that semantically independent operations may
actually be dependent at the memory level due to implementation
decisions. For example, hash tables typically maintain a load factor
which relies on a count of the current number of entries. If we
just use the traditional java.util.HashMap-style implementation
within a transaction, semantically non-conflicting inserts of new
keys will cause a memory-level data dependency as both inserts
will try and increment the internal size field. Similarly, a put
operation can conflict with other get and put operations accessing
the same bucket.

Alternative Map implementations built especially for concurrent
access such as ConcurrentHashMap, internally use multiple hash
table segments to reduce contention. As mentioned above, others
have used similar techniques in transactional contexts to reduce
chances of conflicts on a single size field [1]. Unfortunately, while
the segmented hash table approach statistically reduces the chances
of conflicts in many cases, its does not eliminate them. In fact,
the more updates to the hash table, the more segments likely to

be touched. If two long-running transactions perform a number
of insert or remove operations on different keys, there is a large
probability that at least one key from each transaction will end up
in the same segment, leading to memory conflicts on the segment’s
size field.

The solution is to use multi-level transactions. The low-level
transactions are open-nested and used to record local changes and
acquire higher-level abstract data type locks. The high-level trans-
action then uses these locks to implement semantic concurrency
control.

In our HashTable example, the get operation takes a read lock
on the key and retrieves the appropriate value, if any, all within an
open-nested transaction. The put operation can use a thread-local
variable to store the intent to add a new key-value pair to the ta-
ble, deferring the actual operation. If the parent transaction eventu-
ally commits, a commit handler is run that updates the HashTable
to make its changes visible to other transactions, as well as abort-
ing other transactions that hold conflicting read locks. If the par-
ent transaction is aborted, an abort handler rolls back any state
changed by open-nested transactions.

Before applying multi-level transactions, an unnecessary memory-
level conflict would abort the parent transaction. Now, memory-
level rollbacks are confined to the short-running, open-nested trans-
action on get and the closed-nested transaction that handles com-
mitting put operations. In the get case, the parent does not roll-
back, and the get operation is simply replayed. In the put case,
only the commit handler can have memory-level conflicts, and it
too can be replayed without rolling back the parent transaction.
Note that semantic conflicts are now handled through code in the
commit handler that explicitly violates other transactions hold-
ing locks on modified keys. The responsibility for isolation, and
therefore serializability, has moved from the low-level transactional
memory system to our higher-level abstract data type.

To summarize, our general approach to building transactional
versions of abstract data types is as follows:

1. take semantic locks on read operations

2. check for semantic conflicts while writing during commit

3. clear semantic locks on abort and commit

Having a general approach is more desirable than relying
on data structure-specific solutions, like segmented hash tables.
For example, the SortedMap interface is typically implemented
by some variant of a balanced binary tree. Parallelizing a self-
balancing tree would involve detailed analysis of the implementa-
tion and solving issues like conflicts arising from rotations. Seman-
tic concurrency control avoids these issues by allowing the designer
to reuse existing, well-designed and tested implementations.

In the following section, we will discuss more about our ap-
proach, as we cover the semantic operations involved with Java
collection classes as well as our implementation of semantic locks.

3. Transactional Collection Classes
Simply accessing data structures within a transaction will achieve
atomicity, isolation, and serializability, but long-running transac-
tions will be more likely to violate due to the many dependencies
created within the data structure. Simply using open-nesting to per-
form data structure updates would increase concurrency, but pre-
vents users from atomically composing multiple updates, as modi-
fications will be visible to other transactions. Transactional collec-
tion classes leverage semantic knowledge about abstract data types
to allow concurrent and atomic access, without the fear of long-
running transactions frequently violating.

Creating a transactional collection class involves first identify-
ing semantic dependencies, namely which operations much be pro-

XXXXXXXXRead
Write put remove

containsKey if put adds a new entry with same key if remove takes away entry with matching key
get if put adds a new entry with same key if remove takes away entry with matching key
size if put adds a new entry if remove takes away an entry
entrySet.iterator.hasNext if hasNext is false and put adds a new entry remove takes away key in iterated range
entrySet.iterator.next put adds key in iterated range remove takes away key in iterated range
Write
put if both write to the same key if both operate on the same key
remove if both operate on the same key if both remove the same key

Table 1. Semantic operational analysis of the Map interface showing the conditions under which conflicts arise between primitive operations.
Both read and write operations are listed along the left side but only write operations are listed across the top. The read operations are omitted
along the top since read operations do not conflict with other read operations. If the condition is met, there needs to be an ordering dependency
between the two operations. For example, the upper left condition says that if a put operation adds an entry with a new key in one transaction
and another transaction calls containsKey on that same key returning false, there is a conflict between the transactions because they are
not serializable if the put operations commits before the containsKey operation, which would be required to return true in a serializable
schedule.

Methods Read Lock Write Conflict
Read
containsKey key lock on argument
get key lock on argument
size size lock
entrySet.iterator.hasNext size lock on false return value
entrySet.iterator.next key lock on return value
Write
put key lock on argument key conflict based on argument, size conflict if size increases
remove key lock on argument key conflict based on argument, size conflict if size decreases

Table 2. Semantic locks for Map describe read locks that are taken when executing operations as well as lock based conflict detection that
is done by writes at commit time. For example, the containsKey, get, put, and remove operations take a lock for the key that was passed
as an argument to these methods. When a transaction containing put or remove operations commits, it aborts other transactions that hold
locks on the keys it is adding or removing from the Map as well as on other transactions that have read the size of the Map if it is growing or
shrinking.

Category Field Description
Commited State commited state visible to all transactions

Map map the underlying Map instance
Shared Transaction State state managed by open nesting, encapsulated within TransactionalMap

Map key2lockers map from keys to set of lockers
Set sizeLockers set of size lockers

Local Transaction State state visible by the local thread
Set keyLocks set of key locks held by the thread
Map storeBuffer map of keys to new values, special value for removed keys
int delta change in size due to changes in storeBuffer

Table 3. Summary of TransactionalMap state.

tected from seeing each other’s effects. The second step is then to
enforce these dependencies with semantically meaningful locks. In
this section, we discuss the creation of the TransactionalMap,
TransactionalSortedMap, and TransactionalQueue transac-
tional collection classes.

3.1 TransactionalMap
Our TransactionalMap class allows concurrent access to a Map
from multiple threads while allowing multiple operations from
within a single thread to be treated as a single atomic transaction.
TransactionalMap acts as a wrapper around existing Map imple-
mentations allowing the use of special purpose implementations to
be used.

Determining Semantic Conflicts
We build classes such as TransactionalMap by determining
which operations cannot be reordered without violating serial-

izability. Our first step is to analyze the Map abstract data type
to understand which operations commute under which condi-
tions. We then use semantic locks to preserve serializability of
non-commutative operations based on these conditions. To under-
stand which Map operations can be reordered to build Transac-
tionalMap, we performed a multi-step categorization of the oper-
ations as described below.

The first categorization of operations is between primitive or
derivative methods. Primitive methods provide the fundamental
operations of the data structure while the derivative methods are
conveniences built on top of primitive methods. For example, op-
erations such as isEmpty and putAll can be implemented using
size and put, respectively, and need not be considered further in
our analysis. In the case of Map, this categorization helps us reduce
the dozens of available methods to those shown in the left column
of Table 1.

XXXXXXXXRead
Write put remove

entrySet.iterator.hasNext hasNext is false and put adds new lastKey hasNext returns true about lastKey and remove takes away lastKey
entrySet.iterator.next put adds key in iterated range remove takes away key in iterated range
comparator
subMap.iterator.next put adds key in iterated range remove takes away key in iterated range
headMap.iterator.next put adds key in iterated range remove takes away key in iterated range
tailMap.iterator.next put adds key in iterated range remove takes away key in iterated range
tailMap.iterator.hasNext hasNext is false and put adds new lastKey hasNext returns true about lastKey and remove takes away lastKey
lastKey put adds a new lastKey remove takes away the lastKey

Table 4. Semantic operational analysis of the SortedMap interface. This focuses on new and changed primitive operations relative to the
Map interface in Table 1.

Methods Read Lock Write Conflict
Read Only
entrySet.iterator.hasNext last lock on false return value
entrySet.iterator.next range lock over iterated values, first lock
comparator
subMap.iterator.next range lock over iterated values
headMap.iterator.next range lock over iterated values, first lock
tailMap.iterator.next range lock over iterated values
tailMap.iterator.hasNext last lock on false return value
firstKey first lock
lastKey last lock
Write
put key lock on argument key&range conflicts on argument

first&last lock on endpoint change
size conflict on increases

remove key lock on argument key&range conflicts on argument
first&last lock on endpoint change
size conflict on decreases

Table 5. Semantic locks for SortedMap. This focuses on new and changed primitive operations relative to the Map interface in Table 2.

Category Field Description
Commited Transactional State commited state visible to all transactions

SortedMap sortedMap the underlying SortedMap instance
Comparator comparator read-only Comparator instance

Shared Transactional State state managed by open nesting, encapsulated within TransactionalMap

Set firstLockers set of first key lockers
Set lastLockers set of last key lockers
Set rangeLockers set of last key lockers

Local Transactional State state visible by the local thread
Set rangeLocks set of range locks held by the thread
SortedMap sortedStoreBuffer sorted map of keys to new values, special value for removed keys

Table 6. Summary of TransactionalSortedMap state. This focuses on the additions of state of the the TransactionalMap superclass
in Table 3.

The second categorization is between read-only methods and
those that write logical state of the Map. Since read-only opera-
tions always commute, the writing methods affect the serializabil-
ity of each read method, so we focus our conflict detection efforts
there. In Table 1, we list the read and write operations in the left
column, showing when they conflict with the write operations in
the put and remove columns.

The put and remove operations can conflict with methods that
read keys, such as containsKey, get, and entrySet.itera-
tor.next. Note that even the non-existence of a key, as de-
termined by containsKey, conflicts with the addition of that
key via put. Similarly, in cases where put and remove update
the semantic size of the Map, these methods conflict with oper-
ations that reveal the semantic size, namely the size and en-
trySet.iterator.hasNext. entrySet.iterator.hasNext
reveals the size indirectly since it allows someone to count the
number of semantic entries in the Map. Typically this is used by

transactions that enumerate the entire Map, which conflict with a
transaction that adds or removes keys.

Implementing Semantic Locks
Up to this point, we have focused on analyzing the behavior of
the Map abstract data type. Such analysis is largely general and
can be used with a variety of implementation strategies. Now we
shift gears to discuss how we used this analysis in our specific
TransactionalMap class implementation. We discuss alternative
implementation strategies in Section 5.1.

Our discussion in Section 2 concluded that we must release de-
pendencies on data structure internals (using open nesting) to avoid
unnecessary memory conflicts. To maintain correctness, we then
use semantic locks to implement multi-level transactions, preserv-
ing the logical dependencies of the abstract data type.

In our analysis of Map, we found that reordering methods de-
pended on two semantic properties: size and the key being operated

on. While these choices are Map specific, other classes should have
similar elements of abstract state.

Table 2 shows the conditions under which locks are taken during
different operations. Read operations lock abstract state throughout
the transaction. Write operations detect conflicts at commit time
by examining the locks held by other transactions. If other transac-
tions have read abstract state being written by the committing trans-
action, there is a conflict and the readers are aborted to maintain
isolation. For example, a transaction that calls the size method ac-
quires the size lock and would conflict with any committing trans-
action that changes the size (e.g., put or get).

Table 3 summarizes the internal state used to implement Trans-
actionalMap. The map field is simply a reference to the wrapped
Map instance containing the committed state of the map. Any read
operations on the map field are protected by the appropriate key and
size locks. These locks are implemented by the key2lockers and
sizeLockers fields. These fields are shared so that transactions
can detect conflicts with each other but encapsulated to prevent un-
structured access to this potentially isolation-reducing data.

To maintain isolation, the effects of write operations are buffered
locally in the current transaction. The storeBuffer field records
the results of these write operations. Almost all read operations
need to consult the storeBuffer to ensure they return the correct
results with respect to the transaction’s previous writes. The one ex-
ception is size, which instead consults the delta field providing
the difference in size represented by the storeBuffer operations.

Commit and abort handlers are critical to the correct mainte-
nance of transactional classes. When a transaction is aborted, a
compensating transaction must be run to undo changes made by
earlier open-nested transactions, in this case releasing semantic
locks and clearing any locally buffered state. The keyLocks field
locally stores locks to avoid explicitly enumerating key2lockers
when performing this compensation. Commit handlers are used to
perform semantic conflict detection as described above, to release
the committing transaction’s locks after it has completed, and to
merge the locally buffered changes into the underlying data struc-
ture.

The owner of lock is the top-level transaction at the time of
the read operation, not the open-nested transaction that actually
performs the read. This is because the open-nested transaction
will end soon, but we need to record that the outermost parent
transaction needs to be aborted if a conflict is detected. Indeed, it
is the handlers of the top-level transaction, whether successful or
unsuccessful, that are responsible for releasing any locks taken on
its behalf by its children.

One of the most complicated parts of TransactionalMap was
the implementation of Iterator instances for the entrySet, key-
Set, and values. The iterators need to both enumerate the under-
lying map with modifications for new or deleted values from the
storeBuffer and enumerate the storeBuffer for newly added
keys. The iterator takes key locks as necessary as they are returned
by the next methods as well as the size lock if hasNext indicates
that the entire Set was enumerated.

3.2 TransactionalSortedMap
Our TransactionalSortedMap class extends Transaction-
alMap to provide concurrent atomic access by multiple non-
conflicting readers and writers to implementations of the Java
SortedMap interface. The SortedMap abstract data type extends
Map by adding support for ordered iteration, minimum and maxi-
mum keys, and range-based sub-map views.

Determining Semantic Conflicts
The SortedMap interface extends the Map interface by both adding
new methods for dealing with sorted keys, but also by defining the

XXXXXXXXRead
Write put take poll

peek if peek returned null
Write
put
take
poll if poll returned null

Table 7. Semantic operational analysis of the Channel interface
showing the conditions under which conflicts arise with write op-
erations list on top.

Methods Read Lock Write Conflict
Read
peek if empty
Write
put if now non-empty
take
poll if empty

Table 8. Semantic locks for Channel describe empty locks that
are taken when executing operation as well as lock based conflict
detection that is done by writes at commit time.

semantics of existing methods such as entrySet to provide order-
ing. Mutable SortedMap views returned by subMap, headMap, and
tailMap also has to be considered in our analysis. In Table 4, we
perform a similar categorization of abstract data type operations as
in the last section, focusing on the new primitive operations and
on the operations with changed behavior such as entrySet. New
operations that derivative, such as firstKey, are omitted.

The categorization shows that all of the new operations are read
only. In addition to the key and size properties of Map, methods
now also read ranges of keys as well as noting the first and last
key of the SortedMap. The existing write operations put and re-
move are now updated to show their effects on ranges of keys as
well as the endpoint keys. Specifically, a put or remove operation
conflicts with any operation that reads a range of keys that includes
the key argument of the put or remove. It’s important to note that
ranges are more that just a series of keys. For example, inserting a
new key in one transaction that is within a range of keys iterated
by another transaction would violate serializability if we did not
detect the conflict. In addition to the range keys, put and remove
can affect the first and last key by respectively adding or removing
new minimum or maximum elements, thus conflicting with opera-
tions that either explicitly request these values with firstKey or
lastKey or implicitly read these values through an iterator, includ-
ing iterators of views.

Implementing Semantic Locks
Table 6 summarizes the extensions to the internal state of Trans-
actionalMap used to implement TransactionalSortedMap.
The sortedMap field is a SortedMap-typed version of the map
field from TransactionalMap. The comparator field is used
to compare keys either using the Comparator of the underlying
SortedMap if one is provided or using Comparable if the Sort-
edMap did not specify a Comparator. Note that the comparator
is established during construction and thereafter is read only so no
locks are required to protect its access.

The key-based locking of TransactionalMap is extended in
TransactionalSortedMap by key range locking, provided by
the rangeLockers field. As with key locks, writers must deter-
mine which subset of outstanding transactions conflict with their
updates. We chose a simple Set to store the range locks, meaning
updates to a key must enumerate the set to find matching ranges

Category Field Description
Commited State commited state visible to all transactions

Queue queue the underlying Queue instance
Shared Transaction State state managed by open nesting, encapsulated within TransactionalQueue

Set emptyLockers set of empty lockers
Local Transaction State state visible by the local thread

List addBuffer list of locally added elements
List removeBuffer list of locally removed elements

Table 9. Summary of TransactionalQueue state.

for conflicts. An alternative would have been to use an interval
tree to store the range locks, but the extra complexity and potential
overhead seemed unnecessary for the common case. The endpoint-
based locking of TransactionalSortedMap is provided by the
firstLockers and lastLockers fields. Like size locking, and
unlike key range locking, endpoint locking does not not require
any search for conflicting transactions, since endpoint lockers are
conflicting whenever the corresponding endpoint changes.

The local transaction state for TransactionalSortedMap
consists primarily of the rangeLocks field which allows efficient
enumeration of range locks for cleanup on commit or abort without
enumerating the potentially larger global rangeLockers field. In
addition, the sortedStoreBuffer provides a SortedMap refer-
ence to the storeBuffer field from TransactionalMap in order
to provide ordered enumeration of local changes.

As with TransactionalMap, one of the more difficult parts
of implementing TransactionalSortedMap was providing itera-
tion. In order to provide proper ordering, iterators must simultane-
ously iterate through both the sortedStoreBuffer and the underly-
ing sortedMap, while respecting ranges specified by views such as
subMap, and taking endpoint locks as necessary.

3.3 TransactionalQueue
In the database world, SQL programs can request reduced isolation
levels in order to gain more performance. Similarly, sometimes in
transactional memory it is useful to selectively reduce isolation.
One example is in creating a TransactionalQueue. The idea is
inspired by a Delaunay mesh refinement application that takes work
from a queue and may add new items during processing. Open-
nested transactions could be used to avoid conflicts by immediately
removing and adding work to the queue [19]. However, if transac-
tions abort, the new work added to the queue is invalid, but may be
impossible to recover since another transaction may have dequeued
it. Our TransactionalQueue provides the necessary functional-
ity by wrapping a Queue implementation with a Channel interface
from the util.concurrent package [20].

Providing the simpler Channel interface lowers the design
complexity by eliminating unnecessary Queue operations that do
not make sense for a concurrent work queue, such as random access
operations, instead only providing operations to enqueue and de-
queue elements. To improve concurrency, we do not maintain strict
ordering on the queue, so we have few semantic conflicts between
transactions. As Table 7 shows, if transactions confine themselves
to the common put and take operations, no semantic conflicts can
ever occur. The only semantic conflict we check is if a transac-
tion detects an empty Queue via a null result from peek or poll,
then we will detect a conflict if another put or offer adds a new
element.

Table 9 summarizes the internal state used to implement Trans-
actionalQueue. The queue field holds the current committed
state of in an underlying Queue instance. The emptyLockers field
tracks which transactions have noticed when the queue is empty.
The addBuffer field tracks new items that need to be added to
the queue when the parent transaction commits while the remove-

Buffer tracks removed items that should be returned to the queue
of the parent transaction aborts. While simple in construction com-
pared to the fully serializable TransactionalMap and Transac-
tionalSortedMap classes, the Delaunay example shows the ben-
efits of having a transactional aware queue that allows multiple op-
erations within a single transaction.

4. Semantics for Transactional Collection Classes
In this section we discuss the functionality necessary to implement
transactional collection classes. We refer to these mechanisms and
their use as transactional semantics. While all transactional mem-
ory systems offer an interface for denoting transactional regions,
some of them already provide elements of the transactional seman-
tics we identify.

Nested transactions: open and closed
Some systems implement flat closed-nested transactions: the child
simply runs as part of the parent without support for partial roll-
back. However to reduce lost work due to unnecessary conflicts,
our implementation needs partial rollback of the commit handlers
run as closed-nested transactions. That way, any conflicts during
update of the underlying data structure will only roll back the com-
mit handler and not the entire parent.

Open nesting is probably the most significant requirement for
semantic concurrency control. It is the enabling feature that allows
transactions to create semantic locks without retaining memory de-
pendencies that will lead to unnecessary conflicts. However, while
open-nested transactions are a necessary feature for supporting se-
mantic concurrency control, they are not sufficient without some
way of cleaning up semantic locks when the overall transaction fin-
ishes — this is the purpose of commit and abort handlers.

Commit and abort handlers
Commit and abort handlers allow code to run on the event of suc-
cessful or unsuccessful transaction outcome, respectively. Transac-
tional collection classes use these handlers to perform the required
semantic operations for commit and abort, typically writing the new
state on commit, performing compensation on abort, and releasing
semantic locks in both cases.

Commit handlers typically run in a closed-nested transaction so
that any memory conflicts detected during their updates to global
state do not cause the re-execution of the parent. Handlers execute
at the end of the parent transaction so it has visibility into the
parent’s state. This is useful for cleaning up any thread-local values.

Abort handlers typically run in an open-nested transaction. As
with commit handlers, they are nested within the parent so they
can access the parent’s state before it is rolled back. Open nesting
allows the abort handler to undo any changes performed by the
parent’s open-nested transactions; otherwise, any work done by the
abort handler would simply be rolled back along with the parent.

When a commit or abort handler is registered, it is associated
with the current level of nesting. If the nested transaction is aborted,
the handlers are simply discarded without executing — rollback
should clear the state associated with the handlers. If the nested

transaction commits, the handlers are associated with the parent
so necessary updates/compensation will happen when the parent
completes/aborts.

Discarding newly registered handlers prevents a handler from
running in unexpected situations. Since a conflict could be detected
at any time, an abort handler could be invoked at any point in the
execution of a transaction. Conceptually, this is very similar to the
problem of reentrancy of Unix signal handlers: it is difficult to in-
sure that data structure invariants hold. With signal handlers, the
approach is usually to do very little within handlers except to note
that the signal happened, letting the main flow of control in the
program address the issue. Fortunately, nested transactions and en-
capsulation can provide more guarantees about the state of objects.
If the only updates to the encapsulated state, such as the local ta-
bles and store buffers, are made with open-nested transactions, then
we can be sure that when an abort handler runs, these encapsulated
data structures are in a known state.

Discarding newly registered handlers on abort interacts with
using abort handlers for compensation of non-transactional oper-
ations. However, these operations should not have been performed
during the body of the transaction but rather during commit han-
dlers. While logically this makes sense for output operations de-
ferred to the end of the transaction, it also works for input opera-
tions as they can be performed in the commit handler of an open-
nested transaction that registers an abort handler to push back input
as needed. While handlers are not a general solution for handling
all cases of non-transactional operations, these semantics cover two
frequently cited examples of using handlers to mix I/O and trans-
actions.

Some systems use two-phase commit as part of executing com-
mit handlers. Two-phase commit breaks a transaction commit into
two parts: validation and commit. After validation is completed,
the transaction is assured that it will be able to commit. Typically
commit handlers are run in the commit phase after validation. This
guarantees that any non-transactional action such as I/O do no need
to worry that the parent will get violated after an irreversible action
is performed. Note that for our uses of semantic concurrency con-
trol, we are not performing any non-transactional operations, only
updates to data structures in memory, so that two phase commit is
not strictly required, although its presence is not a problem.

Program-directed transaction abort
Transactional memory systems can automatically abort transac-
tions with serializability conflicts. Some systems provide an inter-
face for transactions to abort themselves, perhaps if they detect a
problem with the consistency property of ACID transactions. Se-
mantic concurrency control requires the additional ability for one
transaction to abort another when semantic-level transactional con-
flicts are detected. Specifically for our proposal, an open-nested
transaction needs a way to request a reference to its top-level trans-
action than can be stored as the owner of a lock. Later if another
transaction detects a conflict with that lock, the transaction refer-
ence can be used to abort the conflicting transaction.

5. Serializability Guidelines
The most difficult part of semantic concurrency control is analyzing
the abstract data type to determine the rules for commutative oper-
ations and determining a set of semantic locks to properly preserve
commutativity. However, once this is done, we found the actual im-
plementation of semantic concurrency control via multi-level trans-
actions was fairly straightforward using a simple set of rules:

• The underlying state of the data structure should only be read
within an open-nested transaction that also takes the appropriate
semantic locks. This ensures that the parent transaction contains

no read state on the underlying state that could cause memory-
level conflicts.

• The underlying state of the data structure should only be written
by a closed-nested transaction in a commit handler. This pre-
serves isolation since semantic changes are only made globally
visible when the parent transaction commits.

• Because write operations should not modify the underlying
data structure, write operations need to store their state in a
transaction-local buffer. If semantic locks are necessary because
the write operation logically includes a read operation as well,
the locks should be taken in an open-nested transaction, as
above.

• The abort handler should clear any changes made with open-
nested transactions including releasing semantic locks and
clearing any thread-local buffers. Only one abort handler is
necessary and it should be registered by the first open-nested
transaction to commit.

• The commit handler should apply the buffered changes to the
underlying data structure. As it applies the changes, it should
check for conflicting semantic locks for the operations it is
performing. After it has applied the changes, it follows the
behavior of the abort handler, ensuring that the buffer is cleared
and that semantic locks are released. As with the abort handler,
only a single commit handler is needed, registered on the first
write operation.

Note that if we want reduced isolation, we typically violated the
second rule by allowing writes to the underlying state from within
open-nested transactions. For example, in TransactionalQueue,
take operations removed objects from the underlying queue with-
out acquiring a lock.

5.1 Discussion
Alternatives to optimistic concurrency control
Detecting conflicting changes at commit time is known as opti-
mistic concurrency control. Another approach is to detect conflicts
as soon as possible (pessimistic concurrency control). In our sys-
tem, write operations could detect conflicting semantic locks when
the operation is first performed, instead of waiting until commit.
A contention management policy can then be used to decide how
to proceed. One approach is to have the conflicting write operation
wait for the other transaction to complete. However, this leads to
the usual problems with locks, such as deadlock. The downside to
optimistic concurrency control is that it can suffer from livelock
since long-running transactions may be continuously rolled back
by shorter ones. Here again, contention management policies can
be applied to give repeatedly violated transactions priority. A dis-
cussion of contention management in transactional memory sys-
tems can be found in [11]. The choice of optimistic concurrency
control for semantic-level transactions is independent of the under-
lying concurrency control in the transactional memory system.

Redo versus undo logging
Our approach to buffering changes and replaying them at commit
time is a form of redo logging, so called because we redo the work
of the operations in the local buffer on the global state. The alter-
native is undo logging, where we update the global state in place.
If there are no conflicts, the undo log is simply dropped at com-
mit time. If there is a conflict and the transaction needs to abort,
the undo log can be used to perform the compensating actions to
roll back changes made to the global state by the aborting transac-
tion. We choose redo logging because it is a better fit to optimistic
concurrency control, since undo logging requires early conflict de-
tection since only one writer can be allowed to update a piece of

semantic state in place at a time. Note that the choice of redo ver-
sus undo logging for semantic-level transactions is independent of
the underlying logging used by the transactional memory system.

Single versus multiple handlers
Our approach uses one commit and one abort handler per parent
transaction. These handlers know how to walk the underlying lock
and buffer structures to perform the necessary work on behalf of all
previous operations to the data structure. An alternative is for each
operation to provide its own independent handlers.

Moss extends this alternative by proposing that each abort han-
dler should run in the memory context that was present at the end
of the child transaction in which it was registered, interleaved with
the undoing of the intervening memory transactions [25]. For ex-
ample, suppose we have a series of operations that make up a parent
transaction AXBY C, with A, B, and C being memory operations
and X and Y being open-nested transactions. Moss suggests that
to abort at the end of C, we should logically perform the inverse
actions C−1Y −1B−1X−1A−1 to abort. Logically, this consists of
rolling back the memory operations of C, followed by running the
abort handler for Y , followed by rolling back B, then running the
abort handler for X , and finally rolling back the memory operations
of A.

We found this extra complexity to be unnecessary for our imple-
mentation of semantic concurrency control. Moss’s semantics aim
to guarantee that the handler will always run in a well-defined con-
text known to the handler at its point of registration. However, our
guidelines give handlers similar guarantees since object-oriented
encapsulation ensures that only the transaction that registered the
handler can make updates to the state that the handler will later
access on abort.

Alternative semantic locks
In our initial categorization of Map methods into primitive and
derivative operations, we considered several methods as primitive
that semantically speaking are strictly derivative if one focuses on
correctness and not performance. After all, it is possible to build a
writable Map by subclassing AbstractMap and implementing only
the entrySet and put methods, although such an association list
style implementation would need to iterate the entrySet on get
operations, taking locks on many keys unnecessarily, compromis-
ing concurrency while maintaining correctness.

While we might seem to be contradicting our own methodology,
in fact in one considers the expected running time of operations to
be part of the semantics of an abstract data type, we are consistent.
Certainly if one is happy to have a linear cost for Map retrievals,
then it is fine to treat get as a derived operations. However, if you
expect to have close to constant cost for a Map and logarithmic
for a SortedMap, you need to follow the more typical approach
of HashMap and TreeMap and consider other methods such as
containsKey, get, size, and remove as primitive operations,
which avoids the need to iterate the entrySet for these operations.

While the semantic locks derived from the primitive methods in
Table 1 and Table 4 preserve isolation and serializability, they still
do not allow the optimal concurrency possible. One limitation is
making isEmpty a derivative method based on size, resulting in
isEmpty taking a size lock. To see why this is a problem, consider
two transactions running this code:

if (!map.isEmpty()) map.put(key, value);

These transactions should commute as long as they add different
keys, but the current implementation will cause one to abort be-
cause of the size lock. However, taking the size lock is necessary
for the similar case of two transactions running:

if (map.isEmpty()) map.put(key, value);

These put operations should not commute because a serial order-
ing would require that only one would find an empty map. The
solution is to make isEmpty a primitive operation with its own
separate semantic lock that is violated only when the size changes
to or from zero.

Note that we have focused on the third categorization for the
primitive methods in the interest of space, but that logically this
categorization is important for the derivative methods as well. This
can expose unexpected concurrency limitations. For example, a
straightforward implementation of entrySet.remove might use
size to determine if the remove operation actually found a match-
ing key, which is used to calculate the boolean return value. This
would add an unnecessary dependency on the size, which could
cause unnecessary conflicts if others concurrently added or re-
moved other keys.

Extensions to java.util.Map

C++ programmers often use idioms like if (map.size()) ...
instead of if (!map.empty()) ..., arguably because it’s easy
for a reader to miss the negation when reviewing code. Similarly,
Java programmers frequently use if (map.size() == 0) ...
instead of isEmpty. However, as noted in the previous discussion,
using size instead of isEmpty unnecessarily restricts concurrency.

Similar problems exist for Map methods that reveal more infor-
mation than strictly necessary. For example, since the write opera-
tions put and remove return the old value for a key, they effectively
read the key as well. If this return value is unused, this is an unnec-
essary limitation of semantic concurrency. To be specific, there is
no reason that two transactions that write to the same key need to
be ordered in any way. For example, it’s perfectly acceptable for
two transactions to do this:

map.put("LastModified", new Date());

These transactions can commit in any order so long as they do not
read the “LastModified” key.

The solution is to offer alternative variants to methods such
as put and remove that do not reveal unnecessary information,
allowing the caller to decide which is appropriate.

TransactionalSet and TransactionalSortedSet
We did not discuss TransactionalSet and Transactional-
SortedSet classes here because they can be built as simple wrap-
pers around the TransactionalMap and TransactionalSort-
edMap, respectively, as has been done similarly for Concurren-
tHashSet implementations built on top of ConcurrentHashMap
and even HashSet implementations around HashMap as found
in [7].

Leaking uncommitted data
While our guidelines prevent leaking of uncommitted data between
transactions using the same transactional collection class, values
used within the class’s semantic locks, such as keys or range end-
points, can be visible to the other open-nested transactions operat-
ing on the instance. For example, if a newly allocated string is used
as a key name in a TransactionalMap, the key2lockers table
would have an entry pointing to an object that is only initialized
within the adding transaction. However, if another transaction adds
another key that hashes to the same bucket, the table will call Ob-
ject.equals to compare the new key to the existing key, which is
uninitialized from this second transaction’s point of view.

In [25], Moss proposes making object allocation and type ini-
tialization an open-nested transaction, so at least access to this un-
committed object will not violate Java type safety. However, the
constructor part of object allocation cannot be safely made part of
an open-nested transaction because it could perform arbitrary oper-

0

2

4

6

8

10

12

14

16

18

1 2 4 8 16 32

CPUs

Sp
ee

du
p

Java
Atomos Baseline
Atomos Open
Atomos Transactional

`

0

5

10

15

20

25

30

35

1 2 4 8 16 32

CPUs

Sp
ee

du
p

Java HashMap

Atomos HashMap

Atomos TransactionalMap

`

Figure 1. TestMap results show that Atomos can achieve the
scalability of Java when the concurrently accessed HashMap
is wrapped in a TransactionalMap.

0

5

10

15

20

25

30

35

1 2 4 8 16 32

CPUs

Sp
ee

du
p

Java TreeMap
Atomos TreeMap
Atomos TransactionalSortedMap

`

0

5

10

15

20

25

30

1 2 4 8 16 32

CPUs

Sp
ee

du
p

Java HashMap
Atomos HashMap
Atomos TransactionalMap

`

Figure 2. TestSortedMap results parallel TestMap showing
that TransactionalSortedMap provides similar benefits
to a concurrently accessed TreeMap.

ations that might require compensation. Moss notes that for some
common key classes such as String, it is safe and even desirable to
run the constructor as part of open-nested allocation, but this is not
a general solution.

Our proposal is to not directly insert such potentially uncommit-
ted objects into semantic locking tables but instead insert copies.
One approach would be to use existing mechanisms such as Ob-
ject.clone or Serializable to make a copy, similar to what
is proposed by Harris in [12], which uses Serializable to copy
selected state out of transactions that are about to be aborted. Alter-
natively, a new interface could be used to request a committed key
from an object, allowing it to make a selective copy of a subset of
identifying state, rather than the whole object like clone or Seri-
alizable, perhaps simply returning an already committed key.

6. Evaluation
To evaluate our transactional collection classes we use variants of a
common transactional memory micro-benchmark as well as a cus-
tom version of SPECjbb2000 designed to have higher contention.
We evaluate both traditional Java and transactional Atomos ver-
sions. The results focus on benchmark execution time, skipping
virtual machine startup. The single-processor Java version is used
as the baseline for calculating speedup.

6.1 Environment
Atomos is a transactional programming language described in [2].
It provides the necessary support for the transactional semantics
described in the previous section, allowing it to be used to evaluate
our transactional collection classes. The Java programs and Atomos
environments are both based on the Jikes Research Virtual Machine
(JikesRVM), version 2.3.4.

JikesRVM was run with an execution-driven simulator of a
PowerPC CMP system that implements the TCC continuous trans-
action architecture for evaluating Atomos as well as MESI snoopy
cache coherence for evaluating Java locking [22]. The simulator
was extended with support for closed- and open-nested transactions
as well as commit and abort handlers as described in [21]. All in-
structions, except loads and stores, have a CPI of 1.0. The memory
system models the timing of the L1 caches, the shared L2 cache,
and buses. All contention and queuing for accesses to caches and
buses is accurately modeled.

While we perform our experiments with a specific language,
virtual machine, and HTM implementation, we believe that the
observations and conclusions apply to other hardware transactional
memory systems as well.

6.2 Map and SortedMap Benchmarks
TestMap is a micro-benchmark based on a description in [1] that
performs multi-threaded access to a single Map instance. Threads
perform a mixture of operations with a breakdown of 80% lookups,
10% insertions, and 10% removals. To emulate access to the
Map from within long-running transactions, each operation is sur-
rounded by computation. There should be little semantic contention
in this benchmark but frequent memory contention within the Map
implementation such as the internal size field.

Figure 1 summarizes our results for TestMap. As expected, Java
with HashMap shows near linear scalability because the lock is
only held for a small time relative to the surrounding computation.
The Atomos HashMap result shows what happens when multiple
threads try to simultaneously access the Map instance, with scala-
bility limited as the number of processors increases because of con-
tention on the HashMap size field. Atomos results with a Trans-
actionalMap wrapped around the HashMap show how scalability
can be regained when unnecessary memory conflicts on the size
field are eliminated.

TestSortedMap is a variant of TestMap that replaces lookup
operations using Map.get with a range lookup using Sort-
edMap.subMap, taking the median key from the returned range.
As with TestMap, there is little semantic contention as the ranges
are relatively small and serve just to ensure there are not excessive
overheads from the range locking implementation.

Figure 2 shows that Java with a SortedMap scales linearly as
expected. Atomos with a plain TreeMap fails to scale because
of non-semantic conflicts due to internal operations such as red-
black tree balancing. Finally, Atomos with a Transactional-
SortedMap wrapped around a TreeMap instance regains the scala-
bility of the Java version.

TestCompound is a variant of TestMap that composes two op-
erations separated by some computation. The results are shown in
Figure 3. In the Java version, a coarse grained lock is used to ensure
that two operations act as a single compound operation. For Ato-
mos, the entire loop body, including other computation before and

0

5

10

15

20

25

30

35

1 2 4 8 16 32

CPUs

Sp
ee

du
p

Java TreeMap
Atomos TreeMap
Atomos TransactionalSortedMap

`

0

5

10

15

20

25

30

1 2 4 8 16 32

CPUs

Sp
ee

du
p

Java HashMap
Atomos HashMap
Atomos TransactionalMap

`

Figure 3. TestCompound results shows that Java scalability
is limited by use a coarse grained lock to protect a compound
operation which scales as a single Atomos transaction.

0

2

4

6

8

10

12

14

16

18

1 2 4 8 16 32

CPUs

Sp
ee

du
p

Java
Atomos Baseline
Atomos Open
Atomos Transactional

`

0

5

10

15

20

25

30

35

1 2 4 8 16 32

CPUs

Sp
ee

du
p

Java HashMap

Atomos HashMap

Atomos TransactionalMap

`

Figure 4. SPECjbb2000 results in a high-contention config-
uration caused by sharing a single warehouse.

after the compound operation, is performed as a single transaction.
In this case, the Java version scales poorly since a single lock is
held during the computation between the two operations, with little
difference to the Atomos HashMap result. However, the Transac-
tionalMap result shows that transactional collection classes can
provide both composable operations and concurrency.

6.3 SPECjbb2000
SPECjbb2000 [29] is an embarrassingly parallel Java program with
little inherent contention. As a benchmark, it focuses more on en-
suring that the underlying virtual machine and supporting system
software are scalable. There are a few shared fields and data struc-
tures in SPECjbb2000, each protected by synchronized critical
regions in the Java version. Each application thread is assigned an
independent warehouse to service TPC-C style requests, with only
a 1% chance of contention from inter-warehouse requests. Previous
results have shown that a transactional version of SPECjbb2000 can
scale as well as Java [2].

In order to make scaling performance of SPECjbb2000 more
challenging, we created a version that uses a single warehouse for
all operations. In addition, for our Atomos version of SPECjbb2000,
we do not use the Java critical regions to create transactions. Instead
we turn each of five TPC-C operations into single atomic transac-
tions. This is to emulate a first step baseline parallelization by a
novice parallel programmer. The correctness of this parallelization
is easy to reason about because all the parallel code excluding the
thread startup and loop setup is now executed within transactions.
We changed both Java and Atomos versions to use java.util col-
lection classes in place of the original binary tree implementation,
following the pattern of SPECjbb2005.

Figure 4 shows the results for our modified version of SPEC-
jbb2000. First, we see that our modifications to use a single ware-
house significantly impact the scalability of the Java version, which
usually would achieve nearly linear speedup on 32 processors. The
Atomos Baseline version with large transactions suffers even fur-
ther from a variety of conflicting memory operations.

Using techniques described in [3], we were able to identify sev-
eral global counters such as the District.nextOrder ID genera-
tor as the main sources of lost work due to conflicts. By wrapping
reads and writes to the these counters in open-nested transactions,

we were able to preserve the counter semantics while reducing lost
work as shown by the Atomos Open result.

Additional conflict analysis identified three shared Map in-
stances that were frequent sources of conflicts: Warehouse.his-
toryTable, District.orderTable, and District.newOrder-
Table. When these were wrapped with TransactionalMap and
TransactionalSortedMap as appropriate, we achieved the Ato-
mos Transactional result shown in the figure.

The use of simple open-nested counters and transactional col-
lection classes yielded a reasonable speedup for little effort. A fi-
nal analysis revealed more opportunities for improvement, such as
splitting transactions and relaxing strict isolation.

7. Conclusions
We believe the true promise of transactional memory is making
parallel programming easier. This means we should evaluate trans-
actional memory systems for their ability to run long transactions
scalably, not by their ability to hold their own against code with
very short transactions based on fine-grained locking paralleliza-
tions. Even if a system scales well with embarrassingly parallel ap-
plications or fine-grained transactions, it is also important to show
scalability for applications with long-running transactions access-
ing shared data, since the ultimate goal is to make parallel pro-
gramming easier by giving the programmer the perfomance of fine-
grained locking while only using coarse-grained transactions.

We have shown that semantic currency control allows us to con-
currently access data structures while preserving the isolation, and
therefore serializability, properties of transactions. We described
how we built TransactionalMap and TransactionalSort-
edMap collection classes for this purpose using the concept of
multi-level transactions built upon open nesting. We also showed,
with our TransactionalQueue, how these ideas can be used to
break the isolation property in structured ways when it is desired to
trade serializability for performance. We expect that such reusable
collection classes would be part of the standard library of a trans-
actional programming language such as Atomos.

While standard library classes are convenient for many pro-
grammers, we have shown a straightforward operational analysis
and implementation guidelines that allow programmers to safely
design their own concurrent classes, in cases where they need to
create new or augment existing data structures.

Finally, we hope that our evaluation will convince the imple-
menters of both hardware and software transactional memory sys-
tems of the benefits and need for rich transactional semantics. As
the database community has shown, there is a lot more to transac-
tional systems than simple atomicity.

Acknowledgments
This research was sponsored by the Defense Advanced Research
Projects Agency (DARPA) through the Department of the Interior
National Business Center under grant number NBCH104009. The
views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Defense Advanced Re-
search Projects Agency (DARPA) or the U.S. Government. Addi-
tional support was also available through NSF grant 0444470 and
through the MARCO Focus Center for Circuit & System Solutions
(C2S2), under contract 2003-CT-888. Brian D. Carlstrom is sup-
ported by an Intel Foundation PhD Fellowship.

References
[1] A.-R. Adl-Tabatabai, B. Lewis, V. Menon, B. R. Murphy, B. Saha,

and T. Shpeisman. Compiler and runtime support for efficient
software transactional memory. In PLDI ’06: Proceedings of the
2006 ACM SIGPLAN Conference on Programming Language Design
and Implementation, New York, NY, USA, 2006. ACM Press.

[2] B. D. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. Cao Minh,
C. Kozyrakis, and K. Olukotun. The Atomos Transactional
Programming Language. In PLDI ’06: Proceedings of the 2006
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 1–13, New York, NY, USA, June 2006. ACM
Press.

[3] H. Chafi, C. Cao Minh, A. McDonald, B. D. Carlstrom, J. Chung,
L. Hammond, C. Kozyrakis, and K. Olukotun. TAPE: A Transactional
Application Profiling Environment. In ICS ’05: Proceedings of the
19th Annual International Conference on Supercomputing, pages
199–208. June 2005.

[4] J. Chung, H. Chafi, C. Cao Minh, A. McDonald, B. D. Carlstrom,
C. Kozyrakis, and K. Olukotun. The Common Case Transactional
Behavior of Multithreaded Programs. In Proceedings of the
12th International Conference on High-Performance Computer
Architecture, February 2006.

[5] D. Dice and N. Shavit. What really makes transactions faster?
In TRANSACT: First ACM SIGPLAN Workshop on Languages,
Compilers, and Hardware Support for Transactional Computing,
2006.

[6] R. Ennals. Efficient software transactional memory. Technical Report
IRC-TR-05-051,, Intel Research Cambridge, 2005.

[7] Free Software Foundation, GNU Classpath 0.18. http://www.gnu.
org/software/classpath/, 2005.

[8] H. Garcia-Molina and K. Salem. Sagas. In SIGMOD ’87: Proceedings
of the 1987 ACM SIGMOD international conference on Management
of data, pages 249–259, New York, NY, USA, 1987. ACM Press.

[9] J. Gray. The transaction concept: Virtues and limitations. In
Proceedings of the 7th International Conference on Very Large Data
Bases, pages 144–154. IEEE Computer Society, 1981.

[10] J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[11] R. Guerraoui, M. Herlihy, M. Kapalka, and B. Pochon. Robust
Contention Management in Software Transactional Memory. In
OOPSLA 2005 Workshop on Synchronization and Concurrency in
Object-Oriented Languages (SCOOL). October 2005.

[12] T. Harris. Exceptions and side-effects in atomic blocks. In 2004
PODC Workshop on Concurrency and Synchronization in Java
Programs, July 2004.

[13] T. Harris and K. Fraser. Language support for lightweight trans-
actions. In OOPSLA ’03: Proceedings of the 18th annual ACM
SIGPLAN conference on Object-oriented programing, systems, lan-
guages, and applications, pages 388–402. ACM Press, 2003.

[14] M. Herlihy, V. Luchangco, M. Moir, and I. William N. Scherer.
Software transactional memory for dynamic-sized data structures. In
PODC ’03: Proceedings of the twenty-second annual symposium on

Principles of distributed computing, pages 92–101, New York, NY,
USA, July 2003. ACM Press.

[15] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In Proceedings of the 20th
International Symposium on Computer Architecture, pages 289–300,
1993.

[16] Java Specification Request (JSR) 166: Concurrency Utilities,
September 2004.

[17] R. Kalla, B. Sinharoy, and J. Tendler. Simultaneous multi-threading
implementation in POWER5. In Conference Record of Hot Chips 15
Symposium, Stanford, CA, August 2003.

[18] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way
multithreaded Sparc processor. IEEE MICRO Magazine, 25(2):21–
29, March–April 2005.

[19] M. Kulkarni, L. P. Chew, and K. Pingali. Using Transactions in
Delaunay Mesh Generation. In Workshop on Transactional Memory
Workloads, June 2006.

[20] D. Lea. package util.concurrent. http://gee.cs.oswego.edu/dl,
May 2004.

[21] A. McDonald, J. Chung, B. D. Carlstrom, C. Cao Minh, H. Chafi,
C. Kozyrakis, and K. Olukotun. Architectural Semantics for Practical
Transactional Memory. In ISCA ’06: Proceedings of the 33rd annual
international symposium on Computer Architecture, pages 53–65,
Washington, DC, USA, June 2006. IEEE Computer Society.

[22] A. McDonald, J. Chung, H. Chafi, C. Cao Minh, B. D. Carlstrom,
L. Hammond, C. Kozyrakis, and K. Olukotun. Characterization of
TCC on Chip-Multiprocessors. In PACT ’05: Proceedings of the 14th
International Conference on Parallel Architectures and Compilation
Techniques, pages 63–74, Washington, DC, USA, September 2005.
IEEE Computer Society.

[23] M. M. Michael and M. L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In PODC ’96:
Proceedings of the fifteenth annual ACM symposium on Principles of
distributed computing, pages 267–275, New York, NY, USA, 1996.
ACM Press.

[24] J. E. B. Moss. Nested Transactions: An Approach to Reliable
Distributed Computing. PhD thesis, Massachusetts Institute of
Technology, Cambridge, MA, USA, April 1981.

[25] J. E. B. Moss. Open Nested Transactions: Semantics and Support. In
Poster at the 4th Workshop on Memory Performance Issues (WMPI-
2006). February 2006.

[26] J. E. B. Moss, N. D. Griffeth, and M. H. Graham. Abstraction in
recovery management. In SIGMOD ’86: Proceedings of the 1986
ACM SIGMOD international conference on Management of data,
pages 72–83, New York, NY, USA, 1986. ACM Press.

[27] P. M. Schwarz and A. Z. Spector. Synchronizing shared abstract
types. ACM Transactions on Computer Systems, 2(3):223–250, 1984.

[28] N. Shavit and D. Touitou. Software transactional memory. In
Proceedings of the 14th Annual ACM Symposium on Principles
of Distributed Computing, pages 204–213, Ottawa, Canada, August
1995.

[29] Standard Performance Evaluation Corporation, SPECjbb2000 Bench-
mark. http://www.spec.org/jbb2000/, 2000.

[30] I. L. Trager. Trends in systems aspects of database management.
In Proceedings of the 2nd International Conference on Databases.
Wiley & Sons, 1983.

[31] W. Weihl and B. Liskov. Specification and implementation of
resilient, atomic data types. In SIGPLAN ’83: Proceedings of the
1983 ACM SIGPLAN symposium on Programming language issues
in software systems, pages 53–64, New York, NY, USA, 1983. ACM
Press.

[32] G. Weikum and H.-J. Schek. Architectural issues of transaction
management in multi-layered systems. In VLDB ’84: Proceedings
of the 10th International Conference on Very Large Data Bases,
pages 454–465, San Francisco, CA, USA, 1984. Morgan Kaufmann
Publishers Inc.

[33] C. Zilles and L. Baugh. Extending hardware transactional memory to
support non-busy waiting and non-transactional actions. In TRANS-
ACT: First ACM SIGPLAN Workshop on Languages, Compilers, and
Hardware Support for Transactional Computing, 2006.

