
TAPE: A Transactional Application Profiling Environment

Hassan Chafi, Chi Cao Minh, Austen McDonald, Brian D. Carlstrom, JaeWoong Chung, Lance Hammond,
Christos Kozyrakis, and Kunle Olukotun

Computer Systems Laboratory
Stanford University

{hchafi, caominh, austenmc, bdc, jwchung, lance, kozyraki, kunle}@stanford.edu

Abstract

Transactional Coherence and Consistency (TCC) provides a new
parallel programming model that uses transactions as the basic unit
of parallel work and communication. TCC simplifies the develop-
ment of correct parallel code because hardware provides transac-
tion atomicity and ordering. Nevertheless, the programmer or a
dynamic compiler must still optimize the parallel code for perfor-
mance.

This paper presents TAPE, a hardware and software infrastructure
for profiling in TCC systems. TAPE extends the hardware for trans-
actional execution to identify performance impediments such as de-
pendence violations, buffer overflows, and work imbalance. It fil-
ters infrequent events to reduce resource requirements and allows
the programmer to focus on the most important bottlenecks. We
demonstrate that TAPE introduces minimal die area and perfor-
mance overhead and can be used continuously, even for production
runs. Moreover, we demonstrate how to leverage the profiling in-
formation to guide optimization for a set of parallel applications.
TAPE accurately identifies the source code location and type of
the most important bottlenecks, allowing a programmer to achieve
maximum parallel speedup with a few profiling steps.

1 Introduction

With uniprocessor systems running into instruction-level paral-
lelism (ILP) limits and fundamental VLSI constraints [4], parallel
architectures provide a realistic path toward scalable performance.
Single-chip multiprocessors (CMPs) are becoming the norm for
server, embedded, and even desktop platforms [7, 13, 18, 19]. Nev-
ertheless, the key factor limiting the potential of parallel architec-
tures is the complexity of writing correct and efficient parallel pro-
grams. Existing parallel programming models require the user to
manage concurrency directly by creating and synchronizing threads
using locks and barriers. The difficulty stems from the need to
achieve the often conflicting goals of functional correctness and
high performance. As a result, only a small fraction of program-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. ICS’05, June 20-22, Boston,
MA, USA. Copyright 2005, ACM 1-59593-167-8/06/2005...$5.00

mers develop parallel applications and few such applications reach
their full performance potential.

Transactional Coherence and Consistency (TCC) provides a new
shared-memory model that simplifies parallel application develop-
ment [11]. TCC relies on programmer-defined transactions as the
basic unit of work. A TCC-based CMP speculatively executes
transactions in parallel using local buffering. After a transaction
completes, the hardware commits all of its writes to shared mem-
ory as an atomic unit. At this point, the writes become visible to
other transactions, which may rollback due to dependency viola-
tions. TCC simplifies the development of correct parallel applica-
tions by eliminating the need for manual orchestration of threads
using locks. Programmers simply need to divide computation into
potentiallyparallel transactions and then specify any ordering de-
pendencies that must be observed between transactions. TCC hard-
ware guarantees correct synchronization by automatically restarting
transactions on dependency violations.

Even though developing a correct parallel program with TCC is
easy, it may need performance tuning. An application may fail
to achieve the expected parallel speedup due to impediments such
as transactional buffer overflows which cause serialization of par-
allel regions, dependency violations which trigger transaction re-
execution, workload imbalances, and overheads due to TCC API
primitives. To fulfill the potential of the TCC model, it should be
easy for a programmer to identify and remove these performance
bottlenecks.

In this paper, we present TAPE, a hardware-enabled profiling en-
vironment for TCC. TAPE builds on the existing hardware support
for transactional execution to detect and track performance bottle-
necks. It also identifies their location in the program source code
and communicates them to the programmer or a profile-driven com-
piler. TAPE uses a set of hardware filters to aggregate profiling
data, filter out infrequent events, and direct the programmer to the
most critical performance bottlenecks. Using a set of parallel pro-
grams, we demonstrate that TAPE exhibits the following desired
attributes [26]:

• Expressiveness: It tracks all types of performance bottle-
necks for parallel programs in a TCC system.

• Accuracy: It accurately identifies the source of the bottleneck
in terms of source code line and object address. It also tracks
the severity of the problem in terms of frequency and overall
impact on performance.

• Usability: By guiding the programmer to the source code
location of the most critical bottlenecks, TAPE allows perfor-
mance optimization within a few guided steps.

Figure 1. a) The transaction cycle (time flows downward); and
b) the diagram of a TCC-enabled CMP.

• Low Overhead: The aggressive filtering and aggregation al-
lows TAPE to introduce negligible cost in terms of perfor-
mance and die overhead. Hence, profiling can be enabled
continuously, even for production runs.

Overall, the proposed profiling scheme complements the correct-
ness advantages of TCC programming with simple and guided per-
formance tuning.

The rest of this paper is organized as follows. Section 2 provides
an overview of TCC hardware and software. Section 3 introduces
the four bottlenecks that reduce the performance of TCC programs.
In Section 4, we present the profiling hardware. Section 5 evaluates
the hardware by using it to optimize nine applications on a TCC-
based CMP. Section 6 discusses related work, and we conclude in
Section 7.

2 TCC Overview

A TCC program consists of a sequence of transactions. The hard-
ware supports a shared-memory communication model with coher-
ence and consistency maintained at transaction boundaries. Pro-
cessors in a TCC-based CMP speculatively execute transactions at
all times, using the cycle illustrated in Figure 1a on the hardware
depicted in Figure 1b.

A transaction is a sequence of instructions guaranteed to execute
and complete only as an atomic unit. Each transaction buffers its
write-set locally during execution and commits this set to shared
memory atomically. Once execution is complete, the processor asks
for permission to commit by requesting a commit token from an
arbiter. After the token is granted, the processor uses the network
to broadcast its write-set to the rest of the system.

Other processors snoop the committed write-set to maintain coher-
ence in the system. Snooping allows them to detect when they have
read data that has been modified by another transaction. This de-
pendence violation triggers the re-execution of the snooping trans-
action. The commit operation provides atomicity of execution and
inherent synchronization. TCC programs can specify ordering con-
straints, forcing transactions to commit in order to preserve sequen-
tial semantics. Alternatively, this restriction can be relaxed by us-
ing unordered transactions, allowing the hardware to more freely
schedule transaction commits.

This continual cycle of speculative buffering, broadcast, and poten-
tial violations allows us to replace both conventional coherence and
consistence protocols [12]. TCC maintains ordering between entire
transactions, unlike most consistence schemes that order individual
references. Coherence among caches is also handled at transaction
boundaries. From the programmer’s perspective, all memory ref-
erences from a committed transaction occur “before” all the mem-
ory references of a transaction that commits afterward, even if their
actual execution is interleaved in time, because all writes from a
transaction become visible only at commit time.

TCC parallelization requires using a few new programming con-
structs to identify potentially parallel transactions and specify any
commit ordering constraints [11]. Initial parallelization can easily
be done so that correctness is guaranteed. TCC hardware spec-
ulatively executes transactions, rolling back when it detects data
dependencies. There is no need for locks since transactions are
guaranteed to execute atomically. Loops are parallelized using the
t_for keyword that generates transactions from loop iterations.
TCC offers four different flavors oft_for to control how iterations
are assigned to transactions. Usingt_for creates one transaction
for each iteration, guaranteeing execution in sequential code order.
With t_for_n we specify the number of iterations each transac-
tion will execute before committing, a technique called chunking.
If ordered transactions are not required for correctness and one can
use unordered loops, thent_for_unordered (similar to DOALL)
andt_for_unordered_n, both of which allow iterations to com-
mit atomically in any order, can be used instead.

Functional parallelism is exploited using thet_fork construct,
which creates a new transaction from a function call. A function
or loop iteration can be separated into multiple transactions using
thet_commit construct, which commits the current transaction and
begins a new one for the following code. A commit must not be
inserted inside a critical section, as this will cause a race condition.

We have investigated the implementation and performance of the
TCC coherency scheme and the conventional Snoopy Cache Co-
herency (SCC) scheme in a chip multiprocessor environment [17].
We demonstrated that the performance of TCC is very competitive
with SCC and in some cases better. These results indicate that one
does not have to give up the simpler parallel programming benefits
of TCC to achieve good parallel processing performance in CMP
environments.

3 Reducing Performance Bottlenecks

The transactional model shifts the programmer’s focus from cor-
rectness to performance. Writing a correct parallel program using
TCC is simple because hardware guarantees transaction atomicity
and ordering. We have shown in previous work [12] that, after ap-
plying optimizations to create well-behaved transactions (such as
those in Figure 2a), very good performance can be achieved.

TAPE consists of a collection of hardware buffers and filters that
gather and aggregate profiling data. For each performance bottle-
neck there is a specialized buffer and filter to track it. Table 1 shows
the format of each buffer’s entries. In addition to the profiling hard-
ware, TAPE provides software tools that merge, filter and re-order
the profiling information to emphasize performance critical bottle-
necks first.

Programmers can use feedback obtained from TAPE, produced dur-
ing initial execution, to refine the program and achieve greater
speedups. In this section we identify the four fundamental per-

formance bottlenecks for transactional programs:overflows, vio-
lations, imbalances, andoverhead. For each bottleneck, we discuss
the negative impact it has on performance and how profiling can
guide the programmer to reduce this impact (see Figure 2). We
close the section by providing a simple example of how a program-
mer might use TAPE to optimize an application.

3.1 Overflows

The TCC hardware buffers read- and write-state in the L1 cache
during execution and flushes this state to memory on commit. How-
ever, transactions with a large read- and/or write-state may exceed
available buffering; this is called a capacityoverflow1 Currently
in TCC, an overflowing transaction acquires the commit token and
must flush its state. To preserve atomicity semantics, the transaction
holds the commit token until committing normally. Other overflow-
handling schemes have been proposed, namely storing speculative
state in memory [5], but overflows are costly in any proposal and
must be eliminated by programmers.

Overflows maintain correctness but they dramatically impact per-
formance. The most costly overflows are those that occur far from
a commit point because other transactions are prevented from com-
mitting for a long time (see Figure 2b). If an overflow occurs during
a parallel loop, it can lead to serialization of the entire loop; each
iteration will overflow at roughly the same point and will wait for
previous iterations to reach commit points.

Fixing overflows involves making the transactions in which they
occur small enough to fit in the L1 Cache. If the overflow occurs
inside a parallel loop, the programmer can re-chunk the loop (re-
duce then in t_for_n), or perform loop fission [23]. Overflows
occurring inside a forked region can be fixed by splitting the trans-
action into multiple smaller transactions.

Profiling hardware can assist the programmer in determining the
most costly overflows. To direct the programmer to the code that
causes an overflow, the hardware stores the program counter (PC)
of the load/store which triggered the overflow. To provide guidance
for re-chunking a parallel loop, the first iteration on which the over-
flow occurred is also reported. The hardware determines the most
costly overflows by tracking the number of times each one occurred
and the total loss incurred over all occurrences. Loss is calculated
by taking the difference between the cycle counter when the over-
flow occurred and when the transaction reaches its normal commit
point. The fields required for profiling overflows are shown in the
Overflow Table 1.

3.2 Violations

A transactional system maintains coherence usingviolations that
trigger transaction rollback and re-execution. While violations are
necessary for correctness, restarting transactions from their last
commit point will waste any completed work and decrease perfor-
mance (see Figure 2c). All violations are indicative of true sharing
between transactions. However, expensive violations that cause sig-
nificant work to be rolled back should be minimized to ensure good
parallel performance.

Minimizing expensive violations means reducing communication
or resizing transactions. To reduce communication, programmers
can privatize data and reduction variables. If transactions are re-

1Overflows caused by cache conflict misses are effectively han-
dled by a victim cache; this is the common case [17].

Bottleneck Field Bits in HW
Buffer

Overflow
15B

PC 61
Occurrences 18
Total Loss 25
Iteration 16

Violation
43B

Read Processor ID —∗

Read Transaction PC 61
Read PC 61
Read Iteration 32
Object Address 61
Write Transaction PC 61
Write Processor ID 17
Occurrences 15
Greatest Single Loss 32

Workload
Imbalance

16B

Transaction PC 61
Ordering Imbalance 32
Region Imbalance 32

Overhead
16B

Transaction PC 61
Useful Cycles 32
Overhead Cycles 32

Table 1. The size of each profiling data object for a 64-bit ad-
dress space: the space used in main memory (in bytes) and that
used in hardware buffers (in bits). ∗Read Processor ID is in-
ferred from the location where the profiling data is stored (see
Figure 3).

sized to commit more frequently, rollbacks will be less wasteful
because less work is discarded each time. Furthermore, committing
just after shared variables are written and/or just before they are
read results in quicker updates of shared state and earlier detection
of violations. However, programmers must be careful to balance
the elimination of violations with the overhead incurred by small
transactions (see Section 3.4).

To effectively apply these optimizations, the programmer needs to
know which two transactions and which shared object are involved
in the violation, and some measure of the amount of wasted exe-
cution. Transactions are represented by the processor or thread on
which they are running (processor ID, i.e., PID), the PC at the be-
ginning of the transaction (TPC), and the iteration of the violating
transaction’s parallel loop, for the case of a loop-based paralleliza-
tion. The data object is represented by its address and the first PC at
which it is read by the violating transaction (the read PC). This data
helps the programmer pinpoint the violation and eliminate or re-
duce its impact. Finally, waste is measured by the number of times
this violation occurred within this transaction and the greatest sin-
gle loss across those occurrences. Programmers can use this infor-
mation to judge which violations hurt performance the most. The
Violation section of Table 1 shows the fields necessary to support
violation profiling. The details of how this information is collected
and aggregated are presented in Section 4.2.

3.3 Workload Imbalances

Workload imbalances are the result of an ill-distributed workload
across transactions and processors. The most common case of im-
balance occurs with ordered transactions: a younger transaction
finishes but must wait until all older transactions commit (order-
ing imbalanceas seen in Figure 2d). Resizing transactions via re-
chunking can potentially fix the problem, but the programmer needs
to be careful not to introduce overflows. Relaxing the ordering re-

Figure 2. Illustration of the four bottlenecks in transactional execution and their impact on performance. Note that any useful
execution (white box) contributes to program completion.

striction would also eliminate the problem; however, it is not always
possible to relax ordering and maintain correctness.

Another closely related type of imbalance occurs at the end of a
parallel loop or forked region; these areregion imbalances. Proces-
sors with smaller transactions reach the end of the region quickly
and sit idle while processors with bigger transactions continue their
execution. Redistribution of the workload is necessary to fix this
type of stall.

Profiling hardware can assist the programmer in determining which
regions exhibited the most costly workload imbalances. In the case
of ordering imbalances, the hardware tracks the stall cycles due to
waiting for the commit token when older transactions have it; the
arbiter signals the processor when this is the case and these idle
cycles are accumulated in the ordering imbalance field. Once the
transaction reaches the end of the region, the region imbalance field
stores the number of cycles spent waiting for the remaining transac-
tions to commit. The Workload Imbalance section of Table 1 shows
the fields necessary to support imbalance profiling.

3.4 Overhead

Overhead in a transactional system consists of cycles due to API
instructions, the time to acquire commit permission, and the time to
flush write-state to memory. Programmers should avoid excessively
small transactions since the associated overhead is too high. This is
especially the case when usingt_for loops: if the body of the loop
is very small compared to overhead, the processor spends most of
its time executing API calls (Figure 2e).

The programmer can easily fix overhead problems by increasing the
size of the associated transactions. Unlike splitting, merging trans-
actions is always safe; however, it can introduce violations. Profil-
ing can help the programmer track transactions dominated by over-
head. For each transaction, the hardware tracks the useful and over-
head cycles during execution. The programmer is later presented
with a list of high-overhead transactions. The Overhead section of
Table 1 shows the fields necessary to support overhead profiling.

3.5 Optimization Procedure

We introduce application optimization with the following simple
example that calculates a histogram of 10,000 integer percentages

using an array of corresponding buckets:

1: int* data = load_data(); /* input */
2: int i, buckets[101];
3:
4: for (i = 0; i < 10000; i++) {
5: buckets[data[i]]++;
6: }
7:
8: print_buckets(buckets); /* output */

The compiler interprets this program as one transaction, so it ex-
poses no parallelism to the underlying TCC hardware. The obvious
candidate for parallelization is thefor loop. The programmer no-
tices that the loop body is extremely small, so she decides tochunk
the loop.

...
4: t_for_n (i = 0; i < 10000; i++; 500) {
...

Now the loop is 20 transactions that the TCC hardware attempts to
execute in parallel, with each transaction executing 500 iterations.
After running the application, the user notices that it does not speed
up as expected. The user then checks the reports generated by TAPE
for any performance bottlenecks:

OVERFLOW REPORT:

CPU Count Location Serial Time Iteration
1 9 buckets.c:5 2450 601
0 9 buckets.c:5 1794 101
...

VIOLATION REPORT:
Read Write

CPU Object Wasted Time Location Transaction
1 buckets 3204 buckets.c:5 buckets.c:4
4 buckets 3145 buckets.c:5 buckets.c:4
...

In this case, the reports suggest excessive overflows occuring at the
first and only line of the loop. The report indicates overflows oc-
cur every 100 iterations. In addition, TAPE detected the occurence
of violations as the result of contention for the histogram buckets.

Now the user has all the information they need to effectively opti-
mize their application. They start by reducing the degree of chunk-
ing. Guided by TAPE, they choose to chunk every 100 iterations
of the loop. However due to the occurence of expensive violations,
they decide to reduce the level of chunking even further to minimize
the probability of bucket collisions. The final optimized application
might look like this:

1: int* data = load_data(); /* input */
2: int i, buckets[101];
3:
4: t_for_n (i = 0; i < 10000; i++; 50) {
5: buckets[data[i]]++;
6: }
7:
8: print_buckets(buckets); /* output */

In general, optimizing using TAPE mirrors the steps outlined in the
above example. The programmer first runs the application and col-
lects profiling information that identifies performance bottlenecks.
Our tools combine the information from all the processors and rank
bottlenecks in order of importance (by performance cost). Next, the
programmer fixes the most important bottlenecks pinpointed by the
profiling data, using the techniques explained in this section. These
steps may be repeated a few times, as the performance bottlenecks
in the current version of the application (e.g., overflows) may be
masking additional problems (e.g., violations). Note that the pro-
grammer does not need to eliminate all bottlenecks from the pro-
gram. Typically, the optimized version of each program encounters
occasional overflows and/or violations while still achieving good
performance.

4 Profiling Hardware

In Section 3, we described the information needed to optimize par-
allel transactional applications and how profiling hardware can be
used to collect it. In this section we show how to efficiently store
and report this information to the programmer. A simple though
näıve approach would be to store an entry in memory for each bot-
tleneck occurrence. Table 3 shows the bandwidth and memory re-
quirements for such an approach2. It is clear that storing each bot-
tleneck occurrence as a separate entry would be prohibitive since
an average of 77.1 MB of main memory would be used per hour of
execution (on eight 1GHz processors).

In designing the profiling hardware we made use of two well known
application behaviors:

• Performance bottlenecks tend to exhibit temporal locality: the
most costly overflows and expensive violations occur multi-
ple times in close succession. This property makes it useful
to keep profiling data buffered and available for aggregation
as long as possible. Apart from the bandwidth savings, keep-
ing profiling data buffered can help in filtering out infrequent
bottlenecks.

• Most applications do not jump randomly from one code re-
gion to another; rather, they spend some time in each region
before jumping to the next. This property also makes the case
for buffering profiling data; however, it is clear we need to
flush the buffers occasionally in case the program moves to
another region with a new set of profiling data to record.

2The occurrence fields are not required for this approach and so
have been ignored in our computations.

The high-level architecture of TAPE is shown in Figure 3a: each
processor collects and aggregates the profiling data into hardware
buffers, one for each type of bottleneck. This data is periodically
flushed, as described in the following subsections, to a log in mem-
ory. The logs are per processor, software can then be used to merge,
and rank the data and present it to the programmer in an easy-to-
understand format, or the data can be used for profile-driven com-
pilation. In the next subsections, we describe how the profiling
hardware aggregates data for each bottleneck to produce useful and
accurate information at a fraction of the cost of the naı̈ve approach.
We focus our discussion on how the profiling hardware operates,
and leave details such as the number of entries in each buffer to
Section 5.

4.1 Overflows

As shown in Figure 3a, each processor in a TCC system has an
overflow buffer. When an overflow occurs, we record the profil-
ing information associated with it as explained in Section 3.1. To
do this, the overflow buffer is scanned to find a match between the
new overflow’s PC and those in the buffer. Overflows are consid-
ered equivalent if the most-significant 57 bits of the PCs match, be-
cause when an overflow occurs repeatedly in a loop, it often occurs
at slightly different PCs. Through experimentation with different
applications, the 57 most-significant bits seemed to be an appropri-
ate choice. However, the buffer does store all the bits of the first
overflow’s PC to insure an actual overflow address is returned to
the programmer. If a match is found, we increment the occurrence
count by one and add the new overflow’s loss to that of the one al-
ready in the buffer. When a new overflow is observed but the buffer
is full, existing entries are aged by decrementing their occurrence
count.

If the buffer fills up and a match cannot be found for the latest de-
tected overflow, the profiling hardware evicts an entry from the
buffer if that entry has been aged enough so that its occurrence
count has dropped to zero. If no such entry exists, the profiling
hardware simply discards the new overflow data. To avoid losing
data, every 1 million cycles the profiling hardware flushes the buffer
to memory if it becomes relatively full. Through experimentation,
we have observed that 75% is an acceptable threshold that maxi-
mizes temporal locality of profiling data while minimizing loss of
relevant profiling information.

4.2 Violations

Figure 3b shows a more detailed view of the violation profiling
mechanism depicted in Figure 3a. Before a transaction commits
its write-set to memory, it sends its transaction PC (TPC) and its
PID3 across the network. All other processors record this informa-
tion in case they need to track a violation. If a violation does occur,
the object address is recorded (step 1 in Figure 3b). The informa-
tion is inserted into the transaction violation buffer (TVB) with the
exception of the read PC and iteration number. The TVB is primar-
ily used to acquire a preliminary list of violations within a single
transaction. Once the transaction restarts, the read PC and itera-
tion number (if applicable) can be detected when the data object
is re-read (step 2 in Figure 3b). In our experience, most restarted
transactions read from the same addresses as during previous ex-
ecutions. On insertion into the TVB, we first search for a match,

3There is no need to record the read PID; when profiling infor-
mation is stored in memory, the region where data is written repre-
sents a unique read processor. See Figure 3.

Processor
Core

L1
Cache

Violation Filter

Overflow
Filter

Overhead
Filter

Imbalance
Filter

Network

...

P0

Pn-1

... Main
Memory

a) b)

Violation detected,
inserted into TVB.

1. Detection

On commit, violation
inserted into PVB.

3. Commit

Periodically, PVB
flushed to memory.

4. Flush

Core re-reads
object, read PC sent
to TVB.

2. Read PC

L1 Cache

Core

Violation Detection

PVB
TVB

Network

2

1

3

4

Figure 3. a) Block diagram of TAPE: each processor writes its profiling data to a separate region in main memory (profiling data
flows along the dashed lines); and b) overview of violation filter.

comparing object addresses; if one is found, we increase its occur-
rence count and update its loss count if the newly incurred loss is
greater. If no match is found, and the TVB is full, we simply discard
the new violation data. Once the transaction commits, we choose
the most expensive violation and insert it into the period violation
buffer (PVB) (step 3 in Figure 3b).

When inserting violation data into the PVB we first search for a
match on the read PC. A single load can read different data objects
when executed in different transations, so matching on object ad-
dress can yield multiple violations with same read PC. Providing a
collection of problematic read PCs is more useful to the program-
mer than providing a collection of shared data objects touched by
the same read PC. If a match is found, we increment the occurrence
count and update the loss count in the same fashion as in the TVB.
PVB entry eviction and flushing is handled in the same way we
handle overflow buffer eviction (i.e., by aging) and flushing (i.e.,
periodically).

4.3 Workload Imbalances

The hardware includes a one-entry buffer to track workload imbal-
ance. As explained in Section 3.3, we track ordering imbalances
with the help of the arbiter, which signals the processor when a
transaction is stalled due to ordering. Any subsequent ordering im-
balance is added to a running total, which is stored in the workload
imbalance buffer. When a processor reaches the end of a parallel
region, a count of the cycles spent waiting is recorded. Upon leav-
ing this region, the profiling hardware compares the total imbalance
(ordering and region) to the total cycles spent within the current par-
allel region. If at least 5% of the total cycles is spent stalling due to
imbalance, we flush the profiling entry to memory; otherwise, the
hardware discards it.

4.4 Overhead

Overhead profiling is similar to that of workload imbalances: each
processor has a one-entry buffer storing the overhead-related infor-
mation discussed in Section 3.4. Each time a transaction commits, it
compares its overhead as a percentage of useful cycles to that stored
in the buffer. If the committing transaction’s overhead is higher, the
buffer entry is replaced with the new data. The hardware flushes
the buffer at the end of each parallel region if the overhead is more
than 5% of useful cycles.

5 Evaluation

In this section, we evaluate the profiling hardware and filtering ca-
pabilities. We use the hardware to optimize a series of applications
for a TCC-based CMP and demonstrate that it is easy to use, pro-
vides accurate information to the programmer, and incurs low exe-
cution overhead.

5.1 Evaluation Methodology

We evaluate the profiling hardware using execution-driven simula-
tion for a TCC-based CMP system. The simulator models single-
issue PowerPC processors that buffer transaction read- and write-
state in a 32-KByte, 4-way associative L1 cache; there is a perfect,
shared L2 cache. Each processor is equipped with a 16-entry victim
cache to handle associativity overflows. The processors communi-
cate over a split-transaction, fully pipelined, 16-byte bus running
at the CPU’s clock-rate. The bus is used for transaction commits
and to serve L1 cache misses from the shared L2 cache. All mem-
ory hierarchy contention and queuing for accesses and commits are
accurately modeled. The simulator captures all details of the pro-
posed hardware, including the latency for searching and inserting
profiling data into the filters and the latency/bandwidth overhead
for flushing profiling data to main memory.

The applications include nine benchmarks: one SPEC CPU95
floating-point application [21] (tomcatv), three SPEC CPU2000
floating-point applications (art, equake, and swim), two SPLASH
benchmarks [2, 22] (mp3d and radix), two JavaGrande benchmarks
[3] (lufact and moldyn), and quicksort. These applications contain
significant amounts of parallelism to exploit on a CMP. Neverthe-
less, they exhibit a wide variety of concurrency patterns: nested
loops (equake), short loops (art), completely parallel loops (lu-
fact), loops with dependencies (tomcatv), and recursion (quick-
sort). For seven of nine applications, we start with sequential code
that includes significant impediments to parallelization. The two
SPLASH applications were already parallelized, but were included
to verify that our techniques work equally well for parallel pro-
grams. In addition, parallelization with transactions often intro-
duces different trade-offs than parallelization with threads, locks,
and barriers. Overall, these nine applications exercise all potential
transactional performance bottlenecks and allow us to evaluate all
aspects of the profiling hardware.

Due to space limitations, we only present results for a TCC sys-
tem with eight processors. This is enough processors to expose
all potential problems in a parallel system (load imbalance, band-
width limitations, communication and synchronization overhead,
etc.). The results also apply to CMP configurations with 2 to 16
processors.

5.2 Optimizing Performance with Profiling

Figure 4 shows normalized execution time obtained from apply-
ing feedback-guided optimizations to the nine benchmarks. Time
is normalized to that spent running the sequential code on a single
processor. We used the TCC API summarized in Section 2 to ex-
tract transactions from loops and function calls. Initial paralleliza-
tion was intuitive: users pick regions of code they think may be
parallelizable, and convert them to transactions without worrying
about locks or data allocation and privatization. We used ordered
transactions except where noted below. Each bar is further bro-
ken down into time executing useful transactions, time spent for
L1 misses to be serviced, synchronization time due to imbalances,
communication time due to commits, and time spent on transactions
that violate. Only lufact exhibited excellent speedup with the initial
parallelization; bottlenecks diminished the benefits of parallel exe-
cution for the other applications. The remaining segments of each
bar show the execution time achieved for each application by pro-
gressively applying feedback-driven optimization. Once the imped-
iments are removed, all applications achieve significant speedups
in the range of 3.8–7.6 and, in most cases, are only limited by
the inherently sequential portion of the code (Amdhal’s law). The
speedups are similar to and sometimes better than those achieved
with highly-optimized multithreaded programs running on conven-
tional shared-memory CMPs [17].

Table 3 provides further insights into the optimization process.
Multiple steps were necessary to fully optimize most applications.
The first run typically identified overflows. Optimizing overflows
exposed violations, which were identified with a second run. De-
spite the multiple steps, the whole process from non- to near-linear
speedup took just a few hours, with every step providing significant
performance improvements. Each step was straightforward because
the profiling hardware accurately identified both the type of the bot-
tlenecks and the specific source code line or variable that caused it,
without any programmer effort. This is a significant improvement
over conventional performance debugging for multithreaded pro-
grams, where the programmer must manually instrument portions
of the code and variables that she suspects are involved with per-

No. Buffer Entries
ViolationsBenchmark Overflows TVB PVB

art 2 1 1
equake 0 3 3
lufact 0 1 1
moldyn 1 1 2
mp3d 5 1 6
quicksort 0 0 0
radix 2 1 1
swim 3 1 1
tomcatv 5 1 1

Table 2. The number of profiling buffer entries required to
track all important performance bottlenecks. Note that over-
head and imbalance buffers both have one entry.

formance loss. The conventional procedure requires much higher
programmer effort and more steps, as it is difficult to associate
hardware-measured events like coherence misses and false-sharing
with problems in the source code and potential optimizations.

art, equake, moldyn, mp3d, radix, swim, and tomcatv exhibited
costly overflows and expensive violations. With these applications
we reduced loop chunking to minimize overflows while maximiz-
ing transaction size to reduce overhead. To fix violations, we priva-
tized shared variables in all applications but radix, where we split
some of its transactions to increase the frequency of communica-
tion. lufact had no overflows, but did have a few violations; how-
ever, the profiling output indicated they were infrequent and not
detrimental to performance so it has only one bar representing its
speedup. For moldyn, we initially parallelized with ordered trans-
actions, but noticed synchronization due to overflows. Without loop
fission, acceptable speedup with ordered transactions could not be
obtained so we switched to unordered after quickly verifying that
loop iterations could commit in any order and still maintain correct
program execution. All the bars in Figure 4 represent unordered
runs of moldyn. After switching to unordered execution and fix-
ing overflows we noticed excessive overhead, which we fixed using
loop chunking. Due to the unbalanced recursion in quicksort, it
exhibited workload imbalance, though it had no overflows or viola-
tions. To fix this imbalance, we switched to unordered transactions.
As in moldyn, the transactions in quicksort can commit in any or-
der.

5.3 Profiling Buffer Sizes

In addition to performance optimizations, we also determined the
profiling buffer requirements. The minimum size of each profiling
buffer (overflows, and the two violation buffers) is shown in Table
2 for each application. We determined these values by gradually re-
ducing the buffer sizes until we found the smallest value for which
no important information was lost. By important we mean informa-
tion we used to perform the optimizations described above.

The buffering requirements for these applications are small. This
fits with our intuition about these applications: they have a small
number of overflows, usually one or two per parallel region. Con-
sequently, as long as the filter collects these overflows before it
flushes to memory, it will catch the needed overflow data. Also,
each parallel region has a small number of shared variables that of-
fer potential for violations, so the Transaction Violation Buffer can
be very small. And as long as the Period Violation Buffer stores the
most expensive violations from small TVBs, it too will be small.

0

20

40

60

80

100

In
iti

al

S
te

p
1

S
te

p
2

In
iti

al

S
te

p
1

S
te

p
2

In
iti

al

In
iti

al

S
te

p
1

S
te

p
2

In
iti

al

S
te

p
1

In
iti

al

S
te

p
1

In
iti

al

S
te

p
1

S
te

p
2

In
iti

al

S
te

p
1

S
te

p
2

In
iti

al

S
te

p
1

S
te

p
2

art equake lufact moldyn mp3d quicksort radix swim tomcatv

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

 Busy L1 Miss Synchronization Communication Violations

swimradixquicksortmp3dlufact moldynart equake

Figure 4. Execution time, normalized to sequential runs, obtained using profiling hardware to optimize nine benchmark applications.
See Table 3 for details on the steps for each application.

The final design we propose is an overflow buffer of size 8, a TVB
of size 4, and a PVB of size 8, and single-entry overhead and im-
balance buffers. We chose these numbers because they were big
enough to hold all important data for our applications yet small
enough to make only a minor impact on chip area and overhead
due to searching and flushing. With these sizes, the hardware needs
only 5,075 SRAM bits and 244 CAM bits for the associative lookup
of object address in the TVB. Hence, the area overhead of the pro-
filing hardware is negligible compared to existing structures, such
as the 32KB L1 data cache. If other applications with larger buffer-
ing requirements are encountered, the buffers can be doubled or
even quadrupled in size without significant overhead, because the
current area requirements are so small.

5.4 Profiling Performance Overhead

Use of the profiling hardware described in Section 4 has a low per-
formance impact. With the buffer sizes described above, we ob-
served an average drop in execution time of 0.28% compared to run-
ning different versions of the programs without the profiling hard-
ware. The maximum slowdown was 1.84% with moldyn during
step one—after fixing overflows but before fixing violations. The
additional profiling cycles changed the scheduling of the transac-
tions and created more violations. The average additional bus band-
width needed for profiling data is only 0.076% of available band-
width (see the Filtered Bandwidth Usage field in Table 3). Overall,
the profiling hardware can always remain enabled without signifi-
cant performance loss.

The average memory usage for filtered data was 1.03 MB/hr with
eight 1GHz processors (see the Filtered Memory Usage field in
Table 3). Because our applications are relatively short, we can
continue to accumulate profiling data in memory. However, long-
running applications may continuously generate profiling data, fill-
ing an unreasonable amount of memory. To ensure that such appli-
cations do not fill memory, each data region should be of limited
size and profiling data should not be generated after the region is

filled. This is acceptable since even long-running applications gen-
erally spend their time in the same set of code regions, running the
same transactions and so the same profiling data will be collected
repeatedly. Alternatively, different schemes could be employed to
lower memory usage: increase the period between flushes or even
turning the profiling hardware on and off dynamically so that spe-
cific regions in the code can be targeted.

6 Related Work

The importance of profiling for identifying performance bottle-
necks and guiding optimizations has been long recognized. In the
single processor environment, a number of profiling systems in-
cluding specialized hardware support have been proposed. Impor-
tant profiling systems that have actually been deployed commer-
cially are the ProfileMe system from DEC [9], the VTune system
from Intel [1] and the R10K [25] profile system from MIPS. Today
all modern microprocessors include extensive hardware profiling
support for application performance tuning.

In the parallel processor environment, there are fewer examples of
profiling systems. Early tools were MTOOL [10], MemSpy [15]
and Paradyn [24], which were developed to optimize parallel appli-
cations for a distributed shared memory multiprocessor. MTOOL
and MemSpy used simulation to characterize the memory hierar-
chy behavior of applications, which resulted in at least a ten times
application slowdown on a single processor. These slowdowns be-
came worse as more processors were added to the system. MemSpy
provided both data structure and procedure-level information about
cache misses, but did not provide application source line informa-
tion. Paradyn, on the other hand, detects data sharing patterns and
generates a data-centric presentation of the memory performance.
In their case study of a protein-folding application, the instrumen-
tation overhead remained a constant 2%; however, the data collec-
tion overhead grew linearly with the number of counters and timers.
Although Paradyn effectively locates memory-related bottlenecks,
detection of other degradations such as load imbalances and exces-

Benchmark Description 8P
Speedup

Unfilt. Mem. Usage
(BW Usage)

Filt. Mem. Usage
(BW Usage)

Filtering
Com-
pression
(%)

art Image recognition / neural networks.
initial 1.09 125 MB/hr (1.83%) 0.877 MB/hr (0.0128%) 99.3
+ step 1 decreased chunking to fix overflows 2.92 156 (2.27) 0.467 (.00680) 99.7
+ step 2 privatized to fix violations 7.30 48 (0.70) 1.05 (0.0153) 97.8

equake Seismic wave propagation simulation.
initial 2.87 710 (10.40) 0.711 (0.0104) 99.9
+ step 1 decreased chunking to fix overflows 3.00 273 (3.97) 0.546 (0.00795) 99.8
+ step 2 privatized to fix violations 5.90 0.6 (0.01) 0.0394 (0.000574) 93.8

lufact LU factorization and triangular solve.
initial 7.53 1.3 (0.02) 0.305 (0.00444) 77.3

moldyn N-body particle modeling.
initial unordered trans. to reduce imbalance 1.06 21 (0.30) 0.167 (0.00243) 99.2
+ step 1 decreased chunking to fix overflows 4.75 180 (2.63) 0.541 (0.00788) 99.7
+ step 2 privatized to fix violations 6.31 1.1 (0.02) 0.776 (0.0113) 29.2

mp3d Simulate rarefied hypersonic flow.
initial unordered trans. to reduce imbalance 1.05 40 (0.58) 1.85 (0.0269) 95.4
+ step 1 split transactions to fix violations 5.32 117 (1.71) 7.62 (0.111) 93.5

quicksort Quick sort.
initial 2.16 2.0 (0.03) 1.99 (0.0289) 0.0
+ step 1 unordered trans. to reduce imbalance 3.83 3.5 (0.05) 3.5 (0.05) 0.0

radix Radix sort.
initial unordered trans. to reduce imbalance 1.20 0.9 (0.01) 0.182 (0.00266) 79.0
+ step 1 decreased chunking to fix overflows 7.49 1.4 (0.02) 0.867 (0.0129) 34.8
+ step 2 privatized to fix violations 7.64 1.4 (0.02) 0.840 (0.0122) 38.3

swim Shallow water modeling.
initial 1.00 19 (0.06) 0.0256 (0.000374) 99.4
+ step 1 decreased chunking to fix overflows 3.73 21 (0.16) 0.0892 (0.00130) 99.2
+ step 2 privatized to fix violations 6.68 5 (0.00) 0.131 (0.00191) 49.5

tomcatv Vectorized mesh generation.
initial 1.48 19 (0.27) 0.204 (0.00298) 98.9
+ step 1 decreased chunking to fix overflows 4.71 21 (0.31) 0.379 (0.00552) 98.2
+ step 2 privatized to fix violations 7.16 5 (0.07) 0.571 (0.00832) 88.5

Table 3. Details on optimization steps for each application. Speedups for eight processor runs are included. Memory usage (in MB/hr)
and bandwidth requirements (in percent of available bandwidth) are reported as measured on unfiltered and filtered runs. We also
report the percentage of compression provided by the hardware filters (bigger is better, 100% maximum). Note memory usage is
based on a 1 GHz machine.

sive barrier time require the user to formulate hypotheses to guide
the tools. FlashPoint [16] makes memory system profiling more ef-
ficient by taking advantage of the programmable cache controller in
the FLASH multiprocessor [14]. By extending the cache coherence
protocol, it can provide cache miss statistics at the data structure
level with a 10% slowdown; when these statistics are augmented
with procedure information, the slowdown increases to a factor of
two. Tempest has similar functionality to FlashPoint [20].

The DIGITAL Continuous Profiling Infrastructure (DCPI) is an ex-
ample of a mutiprocessor profiling system designed to run continu-
ously on production systems [6]. Unmodified applications are sam-
pled by the DCPI programs at a high rate (over 5,200 samples/sec
per 333 MHz processor) via inter-processor interrupts, and data is
collected at a low 1–3% overhead. Unfortunately, due to sampling
errors, the accuracy of DCPI’s estimates may vary greatly, depend-
ing on the application. Moreover, it was not designed to work with
out-of-order processors.

The profiling systems discussed so far focused on identifying cache
misses as the cause of performance loss in conventional shared
memory parallel processors. However, it is often not straightfor-
ward to relate cache misses of various types (cold, capacity, con-
flict, communication, false) with the true cause of the performance
bottleneck. In contrast to these approaches, TEST [8] is a profiling
system for analyzing potential parallel decompositions of a sequen-
tial application for execution on a CMP with Thread-Level Spec-
ulation (TLS). The TEST profile analysis uses modified TLS sup-
port to provide information on speculative thread coverage, data
dependency behavior between threads and speculative buffer re-
quirements. The output of TEST is used to automatically direct
the parallelization of Java programs in a dynamic compiler envi-
ronment. The performance overheads for TEST on a range of Java
applications are between 3% and 25%.

7 Conclusions

TCC provides a new shared-memory model that relies on user-
defined transactions as the basic unit of work. It simplifies writing
correct parallel applications and allows programmers to focus on
performance issues. Nevertheless, it is important to optimize TCC
applications to avoid bottlenecks such as costlyoverflows, expen-
siveviolations, workload imbalances, and excessively small trans-
actions dominated byoverhead.

We propose TAPE, a hardware and software profiling environment
to help programmers achieve good parallel performance from their
applications in a few guided steps. TAPE builds on the hardware
for transaction execution, adding a set of hardware filters that ag-
gregate profiling data, filtering out infrequent events. Software pro-
cesses the profiling information to emphasize critical bottlenecks.
Using the proposed infrastructure, we optimized a series of bench-
mark applications, achieving an increase in speedup from an aver-
age of 1.5× to an average of 6.5× on 8 processors. Moreover, we
demonstrate that TAPE exhibits all the desired attributes of profil-
ing systems, namelyusability, accuracy, expressiveness, and low
overhead. Specifically, the die area and performance overheads of
TAPE are low enough to allow for continuous profiling even on
production runs, so you can “leave the TAPE on” all the time.

8 Acknowledgements

This research was sponsored by the Defense Advanced Research
Projects Agency (DARPA) through the Department of the Interior
National Business Center under grant number NBCH104009.

The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the offi-
cial policies, either expressed or implied, of the Defense Advanced
Research Projects Agency (DARPA) or the U.S. Government.

9 References

[1] Intel Corporation, VTune: a visual tuning environment.
http://support.intel.com/support/performancetools/vtune/.

[2] Stanford Parallel Applications for Shared Memory, SPLASH.
http://www-flash.stanford.edu/apps/SPLASH/.

[3] Java Grande Forum, Java Grande Benchmark Suite.
http://www.epcc.ed.ac.uk/javagrande/, 2000.

[4] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock
rate versus IPC: the end of the road for conventional microarchitec-
tures. InISCA-27: Proceedings of the 27th International Symposium
on Computer Architecture, pages 248–259, 2000.

[5] C. S. Ananian, K. Asanović, B. C. Kuszmaul, C. E. Leiserson, and
S. Lie. Unbounded Transactional Memory. InHPCA’05: Proceedings
of the 11th International Symposium on High-Performance Computer
Architecture, pages 316–327, Feb. 2005.

[6] J. M. Anderson et al. Continuous profiling: where have all the cycles
gone? InSOSP-XVI: Proceedings of the sixteenth ACM symposium on
Operating systems principles, 1997.

[7] Broadcom Corporation. The Broadcom BCM-1250 Multiprocessor.
In Presentation at 2002 Embedded Processor Forum, April 2002.

[8] M. Chen and K. Olukotun. TEST: a tracer for extracting speculative
threads. InCGO ’03: Proceedings of the international symposium on
Code generation and optimization, pages 301–312. IEEE Computer
Society, 2003.

[9] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and G. Z.

Chrysos. ProfileMe : Hardware support for instruction-level profiling
on out-of-order processors. InMICRO’97: International Symposium
on Microarchitecture, pages 292–302, 1997.

[10] A. J. Goldberg and J. L. Hennessy. Performance debugging shared
memory multiprocessor programs with MTOOL. InSupercomputing
’91: Proceedings of the 1991 ACM/IEEE conference on Supercomput-
ing, pages 481–490. ACM Press, 1991.

[11] L. Hammond, B. D. Carlstrom, V. Wong, B. Hertzberg, M. Chen,
C. Kozyrakis, , and K. Olukotun. Programming with transactional
coherence and consistency. InASPLOS-XI: Proceedings of the 11th
Intl. Conference on Arch. Support for Programming Languages and
Operating Systems, Oct. 2004.

[12] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Oluko-
tun. Transactional memory coherence and consistency. InISCA-31:
Proceedings of the 31st International Symposium on Computer Archi-
tecture, pages 102–113, June 2004.

[13] P. Kongetira. A 32-way multithreaded Sparc processor. InConference
Record of Hot Chips 16, Stanford, CA, August 2004.

[14] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Ghara-
chorloo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta,
M. Rosenblum, and J. Hennessy. The Stanford FLASH multiproces-
sor. InISCA-21: Proceedings of the 21st International Symposium on
Computer Architecture, pages 302–313, 1994.

[15] M. Martonosi, A. Gupta, and T. Anderson. MemSpy: analyzing mem-
ory system bottlenecks in programs. InSIGMETRICS ’92/PERFOR-
MANCE ’92: Proceedings of the 1992 ACM SIGMETRICS joint inter-
national conference on Measurement and modeling of computer sys-
tems, pages 1–12. ACM Press, 1992.

[16] M. Martonosi, D. Ofelt, and M. Heinrich. Integrating performance
monitoring and communication in parallel computers. InMeasure-
ment and Modeling of Computer Systems, pages 138–147, 1996.

[17] A. McDonald et al. Characterization of TCC on Chip-
Multiprocessors. InPACT-XIV: The Fourteenth International Con-
ference on Parallel Architectures and Compilation Techniques, Sept.
2005.

[18] J. T. R. Kalla, B. Sinharoy. Simultaneous multi-threading implementa-
tion in POWER5. InConference Record of Hot Chips 15 Symposium,
Stanford, CA, August 2003.

[19] R. Raman. UltraSparc Gemini: Dual CPU processor. InConference
Record of Hot Chips 15 Symposium, Palo Alto, CA, August 2003.

[20] S. K. Reinhardt, R. W. Pfile, and D. A. Wood. Hardware support for
flexible distributed shared memory.IEEE Transactions on Computers,
47(10):1056–1072, 1998.

[21] Standard Performance Evaluation Corporation, SPEC CPU Bench-
marks. http://www.specbench.org/, 1995–2000.

[22] S.Woo, M. Ohara, E. Torrie, J.P.Singh, and A. Gupta. The SPLASH2
programs: Characterization and methodological considerations. In
ISCA-22: Proceedings of the 22nd International Symposium on Com-
puter Architecture, pages 24–36, June 1995.

[23] M. Wolfe. High-Performance Compilers for Parallel Computing.
Addison-Wesley, 1995.

[24] Z. Xu, J. R. Larus, and B. P. Miller. Shared-memory performance pro-
filing. In PPoPP-VI: Proceedings of the sixth ACM SIGPLAN sym-
posium on Principles and practice of parallel programming, pages
240–251, 1997.

[25] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz. Performance anal-
ysis using the MIPS R10000 performance counters. 1996.

[26] C. B. Zilles and G. S. Sohi. A programmable co-processor for profil-
ing. In HPCA-7: Proceedings of the 7th International Symposium on
High-Performance Computer Architecture, pages 241–253, 2001.

