
A Scalable, Non-blocking Approach to Transactional Memory

Hassan Chafi Jared Casper Brian D. Carlstrom
Austen McDonald Chi Cao Minh Woongki Baek

Christos Kozyrakis Kunle Olukotun

Computer Systems Laboratory
Stanford University

{hchafi, jaredc, bdc, austenmc, caominh, wkbaek, kozyraki, kunle}@stanford.edu

Abstract

Transactional Memory (TM) provides mechanisms that
promise to simplify parallel programming by eliminating
the need for locks and their associated problems (dead-
lock, livelock, priority inversion, convoying). For TM to
be adopted in the long term, not only does it need to de-
liver on these promises, but it needs to scale to a high
number of processors. To date, proposals for scalable TM
have relegated livelock issues to user-level contention man-
agers. This paper presents the first scalable TM implemen-
tation for directory-based distributed shared memory sys-
tems that is livelock free without the need for user-level in-
tervention. The design is a scalable implementation of op-
timistic concurrency control that supports parallel commits
with a two-phase commit protocol, uses write-back caches,
and filters coherence messages. The scalable design is
based on Transactional Coherence and Consistency (TCC),
which supports continuous transactions and fault isolation.
A performance evaluation of the design using both scientific
and enterprise benchmarks demonstrates that the directory-
based TCC design scales efficiently for NUMA systems up
to 64 processors.

1 Introduction
The advent of CMPs has moved parallel programming

from the domain of high performance computing to the
mainstream. To address the need for a simpler parallel pro-
gramming model, Transactional Memory (TM) has been
developed and promises good parallel performance with
easy-to-write parallel code [17, 16, 14]. Unlike lock-based
synchronization, transactional memory allows for non-
blocking synchronization with coarse-grained code, dead-
lock and livelock freedom guarantees, and a higher degree
of fault atomicity between concurrent threads. Several stud-
ies have already shown that TM works well for small-scale,
bus-based systems with 8 to 16 processors [26, 32]. How-
ever, given the ever-increasing transistor densities, large-

scale multiprocessors with more than 16 processors on a
single board or even a single chip will soon be available.
As more processing elements become available, program-
mers should be able to use the same programming model
for configurations of varying scales. Hence, TM is of long-
term interest only if it scales to large-scale multiprocessors.

This paper presents the first scalable, non-blocking im-
plementation of TM that is tuned for continuous use of
transactions within parallel programs. By adopting con-
tinuous transactions, we can implement a single coher-
ence protocol and provide non-blocking synchronization,
high fault isolation, and a simple to understand consistency
model. The basis for this work is a directory-based imple-
mentation of the Transactional Coherence and Consistency
(TCC) model that defines coherence and consistency in a
shared memory system at transaction boundaries [15]. Un-
like other scalable TM proposals, we detect conflicts only
when a transaction is ready to commit in order to guarantee
livelock-freedom without intervention from user-level con-
tention managers. We are also unique in our use of lazy data
versioning which allows transactional data into the system
memory only when a transaction commits. This provides a
higher degree of fault isolation between common case trans-
actions. To make TCC scalable, we use directories to imple-
ment three techniques: a) parallel commit with a two-phase
protocol for concurrent transactions that involve data from
separate directories; b) write-back commit that communi-
cates addresses, but not data, between nodes and directo-
ries; c) all address and data communication for commit and
conflict detection only occurs between processors that may
cache shared data. We demonstrate that these techniques
allow for scalable performance.

Essentially, this work describes how to implement opti-
mistic concurrency control [21] in scalable hardware using
directories. Its major contributions are:

• We propose a scalable design for a TM system that
is non-blocking, has improved fault-isolation, and is
tuned for continuous transactional execution.



• We describe a directory implementation that reduces
commit and conflict detection overheads using a two-
phase commit scheme for parallel commit and write-
back caches. The directory also acts as a conservative
filter that reduces commit and conflict detection traffic
across the system.

• We demonstrate that the proposed TM system scales
efficiently to 64 processors in a distributed shared-
memory (DSM) environment for both scientific and
commercial workloads. Speedups with 32 processors
range from 11 to 32 and for 64 processors, speedups
range from 16 to 57. Commit overheads and interfer-
ence between concurrent transactions are not signifi-
cant bottlenecks (Less than 5% of execution time on
64 processors).

Overall, this paper shows how to scale TM to achieve
the performance expected from large-scale parallel systems
while still providing desired high-level features, such as
livelock-freedom, that make it attractive to programmers.

The rest of the paper is organized as follows. Section
2 gives an overview of the scalable protocol, and a review
of Optimistic Concurrency Control. Section 3 discusses the
protocol’s implementation. Section 4 presents our experi-
mental methodology and evaluation results. Section 5 dis-
cusses related work and Section 6 concludes the paper.

2 Protocol Overview
2.1 Optimistic Concurrency Control

Lazy transactional memory systems achieve high per-
formance through optimistic concurrency control (OCC),
which was first proposed for database systems [21]. Using
OCC, a transaction runs without acquiring locks, optimisti-
cally assuming that no other transaction operates concur-
rently on the same data. If that assumption is true by the
end of its execution, the transaction commits its updates to
shared memory. Dependency violations are checked lazily
at commit time. If conflicts between transactions are de-
tected, the non-committing transactions violate, their local
updates are rolled back, and they are re-executed. OCC
allows for non-blocking operation and performs very well
in situations where there is ample concurrency and con-
flicts between transactions are rare, which is the common
case transactional behavior of scalable multithreaded pro-
grams [8].

Execution with OCC consists of three phases:

• Execution Phase: The transaction is executed, but all
of its speculative write-state is buffered locally. This
write-state is not visible to the rest of the system.

• Validation Phase: The system ensures that the trans-
action executed correctly and is serially valid (consis-
tent). If this phase does not complete successfully the

transaction aborts and restarts. If this phase completes,
the transaction cannot be violated by other transac-
tions.

• Commit Phase: Once a transaction completes the val-
idation phase, it makes its write-state visible to the rest
of the system during the commit phase.

Kung et al.[21] outline three conditions under which
these phases may overlap in time to maintain correct trans-
actional execution. To validate a transaction, there must
be a serial ordering for all transactions running in the sys-
tem. Assume that each transaction is given a Transaction
ID (TID) at any point before its validation phase. For each
transaction with TID = j (Tj) and for all Ti with i < j
one of the following three conditions must hold:

1. Ti completes its commit phase before Tj starts its exe-
cution phase.

2. Tj did not read anything Ti wants to validate, and Ti

finished its commit phase before Tj starts its commit
phase.

3. Tj did not read nor is it trying to validate anything Ti

wants to commit, and Ti finished its execution phase
before Tj completed its execution phase.

Under condition 1, there is no execution overlap: each
transaction can start executing only after the transaction be-
fore it has finished committing, yielding no concurrency
whatsoever. Under condition 2, execution can be over-
lapped, but only one transaction is allowed to commit at
a time. The original, or “small-scale”, TCC design [15],
for example, operates under condition 2: each transaction
arbitrates for a token and uses an ordered bus to ensure its
commits finish before any other transaction starts commit-
ting. The sequential commits limit concurrency and become
a serial bottleneck for the small-scale TCC system at high
processor counts. Condition 3 allows the most concurrency:
if there are no conflicts, transactions can completely over-
lap their execution and commit phases. Scalable TCC oper-
ates under condition 3 which allows parallel commits; how-
ever, this requires a more complex implementation. Fur-
thermore, additional mechanisms are required to accommo-
date the distributed nature of a large scale parallel system,
specifically its distributed memory and unordered intercon-
nection network.

2.2 Protocol Operation Overview
The small-scale TCC model buffers speculative data

while in its execution phase. During validation, the pro-
cessor requests a commit token which can only be held by
one processor at a time. Once the commit token is acquired,
the processor proceeds to flush its commit data to a shared
non-speculative cache via an ordered bus. The small-scale



Node 1

Node 2

Node 3

TCC Processor

Directory

Main Memory

CA

Node 0

In
te

rc
on

ne
ct

io
n 

N
et

w
or

k

a) Scalable TCC 
system organization

Processor

V SR7:0 SM7:0
TAG

(2-ported)
DATA

(single-ported)

D
ata 

C
ache

Load/Store 
Data ViolationLoad/Store 

Address

Snoop 
Control

Commit 
Address

Commit
Control

Commit
Data

Store
Address

FIFO

Commit

Fill 
Control

Register
Checkpoint

Commit
Address In

Commit
Data In

Refill
Data

Commit
Data Out

Commit
Address Out

D

Communication
Assist (CA)

b) TCC Processor 
details

Sharing
Vector
Writing
Vector

Figure 1. Scalable TCC Hardware: The circled parts of the
TCC processor indicate additions to the original TCC for
Scalable TCC.

TCC model works well within a chip-multiprocessor where
commit bandwidth is plentiful and latencies are low [26].
However, in a large-scale system with tens of processors,
it will perform poorly. Since commits are serialized, the
sum of all commit times places a lower bound on execution
time. Write-through commits with broadcast messages will
also cause excessive network traffic that will likely exhaust
the network bandwidth of a large-scale system.

Figure 1a shows the organization of the Scalable TCC
hardware, which is similar to many Distributed Shared
Memory (DSM) systems [23, 1, 22]. The Scalable TCC
protocol leverages the directories in the DSM system to
overcome the scaling limitations of the original TCC im-
plementation while maintaining the same execution model
from the programmer’s point of view. The directories allow
for several optimizations. First, even though each direc-
tory allows only a single transaction to commit at a time,
multiple transactions can commit in parallel to different di-
rectories. Thus, increasing the number of a directories in
the system provides a higher degree of concurrency. Par-
allel commit relies on locality of access within each trans-
action. Second, they allow for a write-back protocol that
moves data between nodes only on true sharing or cache
evictions. Finally, they allow filtering of commit traffic and
eliminate the need to broadcast invalidation messages.

Scalable TCC processors have caches that are slightly
modified from the caches in the original TCC proposal. Di-
rectories are used to track processors that may have specula-
tively read shared data. When a processor is in its validation
phase, it acquires a TID and doesn’t proceed to its commit
phase until it is guaranteed that no other processor can vio-
late it. It then sends its commit addresses only to directories
responsible for data written by the transaction. The directo-
ries generate invalidation messages to processors that were

Message Description
Load Load a cache line
TID Request Request a Transaction Identifier
Skip Message Instructs a directory to skip a given TID
NSTID Probe Probes for a Now Servicing TID
Mark Marks a line intended to be committed
Commit Instructs a directory to commit marked lines
Abort Instructs a directory to abort a given TID
Write Back Write back a committed cache line,

removing it from cache
Flush Write back a committed cache line,

leaving it in cache
Data Request Instructs a processor to flush

a given cache line to memory

Table 1. The coherence messages used in the Scalable TCC
protocol.

marked as having read what is now stale data. Processors
receiving invalidation messages then use their own tracking
facilities to determine whether to violate or simply invali-
date the line.

For our protocol to be correct under condition 3 of OCC,
two rules must be enforced. First, conflicting writes to the
same address by different transactions are serialized. Sec-
ond, a transaction with TID i (Ti) cannot commit until all
transactions with lower TIDs that could violate it have al-
ready committed. In other words, if Ti has read a word
that a transaction with a lower TID may have written, Ti

must first wait for those other transaction to commit. Each
directory requires transactions to send their commit-address
messages in the order of the transactions’ TIDs. This means
that if a directory allows T5 to send commit-address mes-
sages, then T5 can infer that transactions T0 to T4 have al-
ready communicated any commit information to this par-
ticular directory. Each directory tracks the TID currently
allowed to commit in the Now Serving TID (NSTID) regis-
ter. When a transaction has nothing to send to a particular
directory by the time it is ready to commit, it informs the
directory by sending it a Skip message that includes its TID
so that the directory knows not to wait for that particular
transaction.

Simple Commit Example Figure 2 presents a simple ex-
ample of the protocol where a transaction in processor P1
successfully commits with one directory while a second
transaction in processor P2 violates and restarts. The figure
is divided into six parts. Changes in state are circled and
events are numbered to show ordering, meaning all events
numbered ¶ can occur at the same time and an event labeled
· can only occur after all events labeled ¶. The description
makes use of Table 1 which lists the coherence messages
used to implement the protocol.

In part a, processors P1 and P2 each load a cache line
¶ and are subsequently marked as sharers by Directory 0



P1 P2

...
M O

X

Directory 0

P1 P2

...
M O

Y

NSTID: 1

NSTID: 1

TID
VendorP1 P2

Load X

Load Y

1

1

2

2

Data X

Data Y

2

2

a)

Tid:x Tid:x

P1 P2

...
M O

X

Directory 0

P1 P2

...
M O

Y

NSTID: 1

NSTID: 1

TID
VendorP1 P2

Lo
ad

 X

1

2

2

b)

Data X

Tid:1 Tid:x
Tid Req3

Tid = 1 4

5

P1 P2

...
M O

X

Directory 0

P1 P2

...
M O

Y

NSTID: 1

NSTID: 3

TID
VendorP1 P2

d)

Tid:1 Tid:2

NS
TI

D:
 1

M
ar

k 
X

Sk
ip

 2NSTID 

Probe

NSTID: 3

N
STID

: 1

1

1

2

1

2

3

4

P1 P2

...
M O

X

Directory 0

P1 P2

...
M O

Y

NSTID: 1

NSTID: 3

TID
VendorP1 P2

e)

Tid:1 Tid:2
C

om
m

it

Invalidate

1

3
P1 P2

...
M O

X

Directory 0

P1 P2

...
M O

Y

NSTID: 1

NSTID: 3

TID
VendorP1 P2

f)

Tid:1 Tid:2

Load XRe
qu

es
t X

 
W

B 
X

D
ata X

1
2

3

4

5

P1 P2

...
M O

X

Directory 0

P1 P2

...
M O

Y

Directory 1

NSTID: 1

NSTID: 2

TID
VendorP1 P2

c)

Tid:1 Tid:2

NS
TI

D 
Pr

ob
e

Skip 1

NSTID 

Probe

Tid Req

Tid = 2

11

1

1

2

3

3
2

4

Directory 1Directory 1

Directory 1Directory 1

Directory 1

2

Figure 2. Execution with the Scalable TM protocol

and Directory 1 respectively. Both processors write to data
tracked by Directory 0, but this information is not commu-
nicated to the directory until they commit.

In part b, processor P1 loads another cache line from Di-
rectory 0, and then starts the commit process. It firsts sends
a TID Request message to the TID Vendor ¸, which re-
sponds with TID 1 ¹ and processor P1 records it º.

In part c, P1 communicates with Directory 0, the only
directory it wants to write to, in order to commit its write.
First, it probes this directory for its NSTID using an NSTID
Probe message ¶. In parallel, P1 sends Directory 1 a Skip
message since Directory 1 is not in its write-set, causing
Directory 1 to increase its NSTID to 2 ·. Meanwhile, P2
has also started the commit process. It requests a TID, but
can also start probing for a NSTID ¶ from Directory 0—
probing does not require the processor to have acquired a
TID. P2 receives TID 2 · and records it internally ¸.

In part d, both P1 and P2 receive answers to their NSTID
probe. P2 also sends a Skip message to Directory 1 ¶ caus-
ing the directory’s NSTID to change to 3. P2 cannot send
any commit-address messages to Directory 0 because the
NSTID answer it received is lower than its own TID. P1’s
TID, on the other hand, matches Directory 0’s NSTID, thus
it can send commit-address messages to that directory. Note
that we are able to serialize the potentially conflicting writes
from P1 and P2 to data from Directory 0. P1 sends a Mark
message ·, which causes line X to be marked as part of the
committing transaction’s write-set ¸. Without using Mark
messages, each transaction would have to complete its val-
idation phase before sending the addresses it wants to com-

mit. Mark messages allows transactions to pre-commit ad-
dresses to the subset of directories that are ready to service
the transaction. Before P1 can complete its commit, it needs
to make sure no other transactions with a lower TID can vi-
olate it. For that, it must make sure that every directory
in its read-set (0 and 1) is done with younger transactions.
Since it is currently serviced by Directory 0, it can be cer-
tain that all transactions with lower TIDs have already been
serviced by this directory. However, P1 needs to also probe
Directory 1 ¸. P1 receives NSTID 3 as the answer ¹ hence
it can be certain all transactions younger than TID 3 have
been already serviced by Directory 1. Thus, P1 cannot be
violated by commits to any directory.

In part e, P1 sends a Commit message ¶, which causes
all marked (M) lines to become owned (O) ·. Each marked
line that transitions to owned generates invalidations that
are sent to all sharers of that line except the committing
processor which becomes the new owner ¸. P2 receives
the invalidation, discards the line, and violates because its
current transaction had read it.

In part f, P2 attempts to load an owned line ¶; this causes
a data request to be sent to the owner ·; the owner then
writes back the cache line and invalidates the line in its
cache ¸. Finally, the directory forwards the data to the re-
questing processor º after marking it in the sharers list for
this line ¹.

Each commit requires the transaction to send a single
multicast skip message to the set of directories not present
in either its write- or read-sets. The transaction also com-
municates with directories in its write-set, and probes di-



P1 P2

...
M O

X

Directory 0

P1 P2

...
M O

Y

Directory 1

NSTID: 2

NSTID: 1

P1 P2

NSTID 

probe

NSTID 2

 NSTID 1

a)

Tid:1 Tid:2

P1 P2

...
M O

X

P1 P2

...
M O

Y

NSTID: 2

NSTID: 1

P1 P2

b)

Tid:1 Tid:2

b*) c*)

c)

1

N
STID

 

probe

1

Sk
ip

 1

Sk
ip

 2

1

1

2

2

3
Mark Y

Mark X

P1 P2

...
M O

X

P1 P2

...
M O

Y

NSTID: 2

NSTID: 1

P1 P2
Tid:1 Tid:2

Mark Y

Mark X

P1 P2

...
M O

X

P1 P2

...
M O

Y

NSTID: 3

NSTID: 3

P1 P2
Tid:1 Tid:2

Commit

Commit

P1 P2

...
M O

X

P1 P2

...
M O

Y

NSTID: 3

NSTID: 3

P1 P2
Tid:1 Tid:2

Commit

TID
Vendor

N
ST

ID
Pr

ob
e

NS
TI

D 
1

1

1

1

1
2

In
v.

 Y

Abort 2

2

2

1

1

1

2

2

Inv
. A

ck

3

1

3

4

3

4

Directory 0

Directory 0

Directory 0

Directory 0

Directory 1

Directory 1

Directory 1

Directory 1

2

Figure 3. Two scenarios involving a pair of transactions attempting to commit in parallel. In the top scenario they are
successful; in the bottom, they fail. Note that while the two scenarios start by generating the same messages in part a), in the
first scenario P2 is not marked as a sharer of line Y of Directory 1.

rectories in its read-set. This communication does not limit
performance scalability because limited multicast messages
are cheap in a high bandwidth interconnect and the multi-
cast is amortized over the whole transaction. Furthermore,
as we will show in Section 4, the number of directories
touched per commit is small in the common case. Even
when this is not the case, the use of larger transactions still
results in an efficient system. These observations are borne
out in the performance evaluation, which shows that this
protocol scales very well in practice.

Parallel Commit Example At any point in time, each di-
rectory can have a single transaction committing. But, since
there are many directories in the system, and not all trans-
actions write to all directories, there can be overlap. Fig-
ure 3 illustrates two possible scenarios for a pair of trans-
actions attempting to commit in parallel. Assume the two
processors have already asked for and obtained TIDs 1 and
2 respectively. In both scenarios, P1 has written data from
Directory 1, while P2 has written data from Directory 0.

In part a, each transaction sends a NSTID Probe message
to the corresponding directory and receives a satisfactory
NSTID. The necessary Skip messages have already been
sent by each processor.

Parts b and c present a successful parallel commit. P1
has accessed data in only Directory 1 and P2 has accessed
data only in Directory 0. In part b, both processors send
a Mark message to the appropriate directory ¶. There are
no additional probing messages as each processor’s read-set
includes a single directory. In part c, both processors send
their Commit messages ¶, and the two directories process
the commits concurrently by updating their NSTID and the
sharers and owner for any affected cache lines ·.

Parts b* and c* present a scenario where parallel commit
fails and P2 has to abort its transaction. P2 has read a word
from Directory 1 that P1 will attempt to commit. In part b*,
P2 has to probe Directory 1 as well because it is included
in its read-set ¶. P2 receives an answer back with NSTID
1, which is smaller than its own TID of 2, so it cannot pro-
ceed. It will have to re-probe until the NSTID it receives
is higher or equal to its own. In other words, the two com-
mits have been serialized as they both involve Directory 0.
However, the P2 commit will never occur as P1 commits
first in part c* ¶. Since P1 commits a new value for a line
speculatively read by P2, Directory 1 will send P2 an in-
validation, which will cause it to violate ·. Since P2 had
already sent a Mark message to Directory 0, it needs to send
an Abort message which causes the directory to clear all the
Marked bits. Note that if P2 had a lower TID than P1, the
two commits would still be serialized, but there would be
no violation as P2 would commit first. When P1 commits
afterward, P2 would receive the invalidation but it would
detect that the invalidation was sent from a transaction that
occurred logically after it; P2 will, nonetheless, invalidate
the target cache line.

3 Implementation Details

3.1 Processor State

Figure 1b shows the details of a TCC processor. Spec-
ulative state is stored in multiple levels of data caches. We
use on chip caches because they provide high capacity with
support for fast associative searches [12, 20, 37]. It also
allows speculative and non-speculative data to dynamically
share the storage capacity available in each processor in a



flexible way. Figure 1b presents the data cache organiza-
tion for the case with word-level speculative state track-
ing. Tag bits include valid, speculatively-modified (SM),
and speculatively-read (SR) bits for each word. For a 32-bit
processor with 32-byte cache lines, 8 bits of each type are
needed per line. The SM bit indicates that the correspond-
ing word has been modified during the currently executing
transaction. Similarly, the SR bit indicates that its word has
been read by the current transaction. Line-level specula-
tive state tracking works in a similar manner but requires
only a single valid, SR, and SM bit per line. This approach
easily expands to multiple levels of private caches, with all
levels tracking this information. Long-running transactions
may overflow the limited speculative buffering hardware.
This situation can be handled using mechanisms like VTM
or XTM [31, 9]. However, recent studies have shown that,
with large private L2 caches tracking transactional state, it
is unlikely that these overflows will occur in the common
case [8]. TCC is a simpler protocol; it has fewer states (reg-
ular and transient) than MESI or other TM proposals that
extend conventional coherence protocols such as LogTM.
The use of directories is orthogonal, as it is due to the
NUMA nature of a large scale machine.

Figure 1b also uses circles to highlight the additional
modifications necessary in each processor cache for the
Scalable TCC protocol. We add a dirty bit (D) per cache
line to support the write-back protocol. We check the dirty
bit on the first speculative write in each transaction. If it is
already set, we first write back that line to a non-speculative
level of the cache hierarchy. The former non-speculative
cache is required for writeback behavior. Without it, the
speculative cache would only be delaying the writethrough
till the next speculative access to a dirty line. The only other
additions to the cache structure, compared to the small-scale
TCC protocol, is the inclusion of the Sharing Vector and the
Writing Vector, which include a bit per directory in the sys-
tem and indicated which will be involed when the transac-
tion commits. The Sharing Vector tracks the home directo-
ries for speculative data read by the current transaction. On
each load, we infer the directory number from the address
and set the corresponding bit in the vector. Similarly, the
Writing Vector tracks the home directories for speculative
data written by the current transaction.

3.2 Directory State

Figure 4 shows the directory organization for the scal-
able TCC protocol. The directory tracks information for
each cache line in the physical memory housed in the local
node. First, it tracks the nodes that have speculatively read
the cache line (sharers list). This is the set of nodes that
will be sent invalidates whenever these lines get committed.
Second, the directory tracks the owner for each cache line,
which is the last node to commit updates to the line until it

P0 P1 … PN
0x0000000
0x0000004
…
…
0x1000000
…
…

Tid<optional>Address
Sharers List

Marked Owned

NSTID

Skip Vector

Directory Controller 0

Figure 4. The directory structure for Scalable TCC.

writes it back to physical memory (eviction). The owner is
indicated by setting a single bit in the sharers list and the
Owned bit. The Marked bit is set for cache lines involved in
an ongoing commit to this directory. Finally, we include a
TID field which allows us to eliminate rare race conditions
when an unordered interconnect is used, as discussed in the
Race Elimination part of Section 3.3. Each directory also
has a NSTID register and a Skip Vector, described below.

3.3 Protocol Operation

NSTID and Skip Vector Directories control access to
a contiguous region of physical memory. At any time,
a single directory will service one transaction whose TID
is stored in the directory’s NSTID register. For example,
a directory might be serving T9; this means that only T9

can send state-altering messages to the memory region con-
trolled by that directory. If T9 has nothing to commit to that
directory, it will send a skip message with its TID attached.
This will cause the directory to mark the TID as completed.
The key point is that each directory will either service or
skip every transaction in the system. If two transactions had
an overlapping write-set, then the concerned directory will
serialize their commits.

Each directory tracks skip messages using a Skip Vector.
The Skip Vector allows the directory to buffer skip mes-
sages sent early by transactions with TIDs higher than the
one in the NSTID. Figure 5 shows how the Skip Vector is
maintained. While a directory with NSTID 0 is busy pro-
cessing commit-related messages from T0, it can receive
and process skip messages from transactions T1, T2, and
T4. Each time a skip message with TID x is received, the
directory sets the bit in location (x−NSTID) of the Skip
Vector. When the directory is finished serving T0, it marks
the first bit of the Skip Vector, and then proceeds to shift the
Skip Vector left till the first bit is no longer set. The NSTID
is increased by the number of bits shifted.

Commit Processing When a transaction is attempting to
commit, it probes all directories in its Writing and Sharing
Vector until it receives an NSTID equal or higher than its
TID. Repeated NSTID probing can be avoided by having
the directory not respond until the required TID is being
serviced. For each directory that has a satisfactory NSTID,
the transaction sends Mark messages for the corresponding
address in its write-set. We assume write-allocate caches,



i

ii

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

iii

iv

NSTID: 0

NSTID: 0

NSTID: 3

NSTID: 8

Skip message from Transaction 1,2 and 4 received

Trans. 0 commits, waiting for Inv. Acks, skip msg from 5-7

Inv. Acks arrive, now can shift Skip Vector, and skip msg 
from 9,10 arrives

Trans. 3 commits, no Inv to Ack. So shift right away

Figure 5. Skip Vector Operation. Note that bit 0 correspon-
des to the NSTID and black means the bit is set.

so the processor that marks a line is a sharer or the owner of
the line. Note that while a transaction is sending Mark mes-
sages to one directory, it may still probe other directories.
This is essential to the scalability of the design, as transac-
tions only have to wait for directories that may be serving
transactions with a lower TID. Once marking is complete
for all directories in the Writing Vector and the transaction
has received a NSTID higher than its TID for each directory
in its Sharing Vector, the transaction can commit by sending
a multicast Commit message to all these directories. Each
directory gang-upgrades Marked lines to Owned and poten-
tially generates invalidations if there are sharers other than
the committing processor for these lines. If the transaction
is violated after it has sent Mark messages to a few directo-
ries, it needs to send abort messages to all directories in the
Writing Vectors to allow gang-clearing of Mark bits.

Any processor that attempts to load a marked line will
be stalled by the corresponding directory. We could have
allowed the processor to load the value in memory at the
same time, and mark it as a sharer. We optimize for the
common case and assume commit attempts will succeed.
Thus it is best to stall the loading processor to avoid having
to subsequently invalidate it and cause a violation.

If the processor caches track speculatively read or writ-
ten data at the word level, the directories can be made to
accommodate this fine granularity conflict detection. When
transactions mark lines, word flags can be sent alongside
the Mark messages, these flags are buffered at the directory.
When invalidations are sent, these word flags are included
in the invalidating messages. A processor is cleared from
the sharers list of a particular line only when a commit to
that line causes an invalidation to be sent. In other words, a
processor does not notify the directory on evictions of non-
dirty lines (replacement hints). This may generate extra in-

validation messages, but will not cause any false violations
as each processor uses the information tracked by its cache
to determine whether to cause a violation upon receiving an
invalidation (only if that word has been speculatively read
by its current transaction).

Livelock-Free Operation and Forward-Progress guar-
antees If two transactions in the process of committing
either have a write conflict or true data dependencies, the
transaction with the lower TID always succeeds in commit-
ting. The design of the directory guarantees this behavior.
A transaction with a higher TID will not be able to write
to a directory until all transactions with lower TID have ei-
ther skipped that directory or committed. Furthermore, the
transaction cannot commit until it is sure that all directories
it has speculatively loaded from have serviced all lower-
numbered transactions that can potentially send an invali-
dation to it. This yields a livelock-free protocol that guar-
antees forward progress. Limited starvation is possible: a
starved transaction keeps its TID at violation time, thus over
time it will become the lowest TID in the system. While
long transactions that retain their TID after aging may de-
crease system performance, the programmer is still guaran-
teed correct execution. Moreover, TCC provides a profil-
ing environment, TAPE [7], which allows programmers to
quickly detect the occurrence of this rare event.

Transactions are assigned TIDs at the end of the exe-
cution phase to maximize system throughput. This may
increase the probability of starving long-running transac-
tions, but this is mitigated by allowing those transactions to
request and retain a TIDs after they violate, thus insuring
their forward-progress. TIDs are assigned by a global TID
vendor. Distributed time stamps such as in TLR [30] will
not work for our implementation since these mechanisms
do not produce a gap-free sequence of TIDs, rather only an
ordered set of globally unique timestamps.

Race Elimination Certain protocol race conditions may
occur and require attention. For example, whenever a trans-
action with a given TID commits, directories involved in
the commit have to wait for all resulting invalidations to be
acknowledged before incrementing their NSTID. This re-
solves a situation in which a transaction with TID Y is al-
lowed to commit since it received NSTID Y as an answer to
its probe before receiving an invalidation from transaction
X with X < Y .

Systems with unordered networks may introduce addi-
tional races. For example, assume Transaction 0 commits
line X and then writes back line X. Transaction 1 running
on the same processor commits a new value to the same line
X’ and writes back line X’. X and X’ have the same address
but different data. It is possible in a highly congested net-
work that the write-back X’ arrives before the write-back
of X. Both these flushes will have the same owner and may
cause memory inconsistencies. This data race is resolved by



Feature Description
CPU 1–64 single-issue PowerPC cores (32)
L1 32-KB, 32-byte cache line

4-way associative, 1 cycle latency
L2 512-KB, 32-byte cache line

8-way associative, 16 cycle latency

ICN 2D grid topology, 7-28 cycles link latency (14)

Main Memory 100 cycles latency
Directory Full-bit vector sharer list; first touch allocate;

Directory cache 10 cycle latency

Table 2. Parameters for the simulated architecture. Un-
less indicated otherwise, results assume the default values
in parentheses.

attaching a TID to each owned directory entry at the time of
commit. Write-backs get tagged at the processor with the
most recent TID that processor acquired. In our previous
example, when commit X’ is processed, the directory entry
will be tagged with TID 1. Flush X will have a TID 0 at-
tached to it; thus, it will be dropped if it arrives out of order.

One final example of a data race occurs as follows. A
processor sends a load request to a given directory. The di-
rectory satisfies the load, a separate transaction’s commit
generates an invalidate, and the invalidate arrives at the re-
questing processor before the load. To resolve this, pro-
cessors could just drop that load when it arrives. This race
condition is present in all invalidation-based protocols that
use an unordered interconnect.

4 Methodology and Evaluation
In this section we evaluate Scalable TCC. We first dis-

cuss our experimental methodology. We then introduce the
applications we use to evaluate our protocol, and finally we
present and discuss our results.

4.1 Methodology
We evaluate Scalable TCC using an execution-driven

simulator that models the PowerPC ISA. All instructions,
except loads and stores, have a CPI of 1.0. Table 2 presents
the main parameters of the simulated architecture. The
memory system models the timing of the on-chip caches,
and the interface to the communication assist and directory
cache. All contention and queuing for accesses to caches
and interconnects is accurately modeled. A simple first-
touch policy is used to map virtual pages to physical mem-
ory on the various nodes.
Applications To evaluate Scalable TCC we use a suite of
parallel applications: equake, swim, and tomcatv from the
SPEC CPU2000 FP suite[34]; barnes, radix, volrend, water-
spatial and water-nsquared from the SPLASH-2 parallel
benchmark suites[39]; and SPECjbb2000[35]. SPECjbb ex-
ecutes using the Jikes RVM [2] Java Virtual Machine. We
also include two applications from the CEARCH suite [5].

CEARCH applications are a set of new cognitive algorithms
based on probabilistic and knowledge-based reasoning and
learning. For the SPEC CPU2000, CEARCH, and SPLASH
applications, we converted the code between barrier calls
into TCC transactions, discarding any lock or unlock state-
ments. For SPECjbb2000, we converted the 5 application-
level transactions into unordered transactions.

Table 3 shows the key characteristics of our applications
executing under TCC. Transaction sizes range from two-
hundred to forty-five thousand instructions. This wide range
of transaction size provides a good evaluation of the scal-
able TCC system. The 90%-ile read-set size for all transac-
tions is less than 52 KB, while the 90%-ile write-set never
exceeds 18 KB. Table 3 also presents the ratio of operations
per word in the write-set. A high ratio implies that a trans-
action does a large amount of computation per address in
its write-set. Hence, it may be able to better amortize com-
mit latency. The ratio ranges from 2 to 180, depending on
the transaction size and the store locality exhibited in each
application. In addition to these non-architectural character-
istics, Table 3 also gives key characteristics that can be used
to understand the behavior of the directory-based cache co-
herence system, all numbers are for the 32 processor case.
We show the number of directories touched per commit, the
directory cache working set defined by the number of en-
tries which have remote sharers, and finally, the directory
occupancy defined by the number of cycles a directory is
busy servicing a commit. These results indicate good di-
rectory performance. The working set fits comfortably in
a 1MB directory cache. The directory occupancy is typi-
cally a fraction of the transaction execution time, and most
applications touch only a couple of directories per commit.

4.2 Results and Discussion

In this section, we analyze the performance of each of
the applications to quantify the effectiveness of the scalable
TCC architecture; we also explore the impact of communi-
cation latency on the performance of the applications.

Figure 6 shows the execution time breakdown of all the
applications running on a single processor. The execution
time is broken down into five components that indicate how
the processors spend their time. The first component is
Useful cycles, which represents the cycles spent executing
instructions that are committed. The second component,
Cache Miss, is the time spent stalling for cache misses. The
third component, Idle, is time spent waiting at barriers and
synchronization points. The fourth component, Commit, is
time spent waiting for a transaction to commit. Finally, the
fifth component, Violations, refers to time wasted due to
conflicts (not present in uniprocessor case, Figure 6). Com-
mit time, the only additional overhead of a TCC processor
is insignificant at around 1 percent on average, thus a TCC
system with one processor is equivalent to a conventional



Application

Input Trans. Trans. Trans. Ops. per Directories Working Directory
Size Wr. Set Rd. Set Word per set (Dir.) Occupancy

90th % 90th % 90th % Written commit 90th % 90th %
(Inst) (KB) (KB) 90th % 90th % (Entries) (Cycles)

barnes [39] 16,384 mol. 7,462 0.66 1.69 11.04 1 384 813
Cluster GA [5] ref 238 0.01 0.14 7.25 1 266 354
equake [34] ref 866 0.35 1.73 11.00 3 8926 485
radix [39] 1M keys 32,681 7.41 8.16 17.20 32 13725 643
SPECjbb2000 [35] 1,472 trans. 5,556 0.12 0.16 180.60 2 14422 229
SVM Classify [5] ref 13,054 0.62 9.72 84.27 2 61 248
swim [34] ref 45,876 18.00 52.00 9.60 1 941 765
tomcatv [34] ref 21,060 10.50 15.90 7.83 2 1572 426
volrend [34] ref 1,098 0.31 0.39 2.09 1 977 560
water-nsquared [39] 512 mol. 948 0.45 0.45 8.12 1 139 323
water-spatial [39] 512 mol. 7,466 1.26 1.27 23.14 2 752 312

Table 3. Applications and their scalable TM characteristic for performance. The 90th percentile transaction size in in-
structions, transaction write- and read-set sizes in KBytes, and operations per word written. We also show the number of
directories touched per commit and the 90th percentile of both the working set cached at the directory in number of entries
and the directory’s occupancy in cycles per commit

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

ba
rne

s

Clus
ter

 G
A

eq
ua

ke
rad

ix

SVM C
las

sif
y

sw
im

tom
ca

tv

vo
lre

nd

wate
r-n

sq
ua

red

wate
r-s

pa
tia

l

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

Commit
Idle
Cache Miss
Useful

Figure 6. The normalized execution time of applications
running on one processor.

uni-processor. Figure 7 shows the execution time of the
applications normalized to the single processor case as we
scale the number of processors from 8 to 64.

We see from Figure 7 that the overall performance of the
Scalable TCC architecture is good. Speedups with 32 pro-
cessors range from 11 to 32 and for 64 processors, speedups
range from 16 to 57. For most applications in our suite,
commit time is a small fraction of the overall execution
time. Looking at the applications in more detail gives us
more insight into the behavior of Scalable TCC.

barnes performs well on our system. This performance
is due to the fact that all components of the execution time
scale down with increasing processor counts. In particular,
even at high processor counts, commit time remains a small
fraction of overall execution time, indicating that the Scal-
able TCC commit protocol behaves well.

Cluster GA is a genetics algorithm. At low processor
counts, it suffers from violations which are not evenly dis-
tributed across the processors. This leads to additional load
imbalances. At high processor counts, the roughly fixed

number of cycles wasted due to violations are more evenly
distributed across the processors.

equake is a SPEC application with limited parallelism
and lots of communication. This results in transactions that
are small to avoid violations inherent to transactions that
communicate excessively. Even though small transactions
may reduce violation time, they lead to increased commit
time at high processor counts.

radix has large transactions and the operations per word
written ratio is one of the highest of the applications in our
suite, which would indicate that it should perform well in
our system. Even though radix has an extremely high num-
ber of directories touched per commit (all directories are
touched) it still performs well on our system because its
transactions are large enough to hide the extra commit time.

SPECjbb2000 scales linearly with the number of pro-
cessors due to its very limited inter-warehouse communica-
tion. This benchmark has the highest operations per word
written ratio of all studied applications; thus, it is ideal for
Scalable TCC.

SVM Classify is the best performing application. This
is due to large transactions and a large operations per word
written ratio. In a similar fashion to barnes, the Scalable
TCC commit protocol behaves very well. In particular,
commit time is non-existent, even at high processor counts,

swim and tomcatv are examples of applications with
very little communication. They exhibit large transactions
that generate large write-sets. However, these write-sets do
not require remote communication.

volrend is affected by an excessive number of commits
required to communicate flag variables to other processors.
This behavior yields a low operations per word written ratio
that limits the scalability of this application, and increases
commit time. A breakdown of this commit time (not shown)
indicates that the majority of the time is spent probing di-



8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

No
rm

al
ize

d 
Ex

ec
ut

io
n 

Ti
m

e
Useful Cache Miss Idle Commit Violations

ba
rne

s

eq
ua

ke rad
ix

sw
im

tom
ca

tv

vo
lre

nd

wate
r-n

sq
ua

red

wate
r-s

pa
tia

l

SVM Clas
sify

Clus
ter

 G
A

SPECjbb
20

00

6.
8

11
.6

32
.0

55
.3

5.
9

10
.2

18
.6

24
.7

7.
3

13
.6

25
.9

43
.9

7.
9

14
.8

30
.4

55
.3

7.
4

14
.0

24
.8

49
.1

6.
7

11
.9

17
.5

7.
0

17
.5

26
.8

5.
5

10
.6

18
.2

27
.5

8.
0

15
.8

31
.0

57
.1

8.
1

15
.6

30
.0

7.
6

14
.2

24
.6

39
.5

13
.0

24
.3

Figure 7. The performance of Scalable TCC as the processor count varies from 8 to 64 CPUs. The Execution time is
normalized to a single CPU. The numbers on the top of each bar represent the speedup achieved over a single processor.

7 14 28 7 14 28 7 14 28 7 14 28 7 14 28 7 14 28 7 14 28 7 14 28 7 14 28 7 14 28 7 14 28

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

No
rm

al
ize

d 
Ex

ec
ut

io
n 

Ti
m

e

ba
rne

s

eq
ua

ke
rad

ix
sw

im

tom
ca

tv

vo
lre

nd

wate
r-n

sq
ua

red

wate
r-s

pa
tia

l

SVM Clas
sify

Clus
ter

 G
A

SPECjbb
20

00

Useful

Idle

Violations

Cache Miss

Commit

Figure 8. The impact of communication latency for 32
processors normalized to a single processor. The X-axis is
cycles-per-hop.

rectories that are in a processor’s Sharing Vector.
Lastly, comparing water-nsquared and water-spatial is

instructive; water-spatial has larger transactions and a larger
number of operations per word written. The water-spatial
algorithm has inherently less communication and synchro-
nization. Thus, water-spatial scales better: it has less com-
mit time, less violation time, and less synchronization time.
For these applications, a breakdown of the commit time
shows similar behavior as volrend.

Figure 8 shows the impact of varying the communication
latency for 32 processors. The degree to which an applica-

0

0.025

0.05

0.075

0.1

0.125

0.15

barn
es

Cluste
r G

A

eq
uak

e
rad

ix

SVM C
las

sif
y

sw
im

tomca
tv

vo
lre

nd

wate
r-n

sq
uare

d

wate
r-s

pati
al

B
yt

es
 p

er
 in

st
r.

Overhead
Miss
Write-back
Shared

0.26

Figure 9. Remote traffic bandwidth for 32 processors.

tion’s performance is affected is determined by the number
of remote loads and commits. For example, equake has a
significant amount of remote load misses, and so increasing
the latency to 28 cycles per link increases the execution time
by 50%; likewise, volrend, which has a significant amount
of commit time, sees the same level of degradation. In con-
trast to these applications, SPECjbb2000 and swim, which
do not have significant remote load misses or commit time,
suffer almost no performance degradation with increasing
communication latency.

Finally, Figure 9 shows the traffic produced and con-
sumed on average at each directory in the system at 32 pro-
cessors. We report this traffic in terms of bytes per instruc-
tion. The total traffic, including data, address, and control,
in bytes per instructions ranges between 0.01 to 0.26 bytes
per instruction. With processors executing at 2 GHz, the to-



tal bandwidth ranges from 2.5 MBps for swim to 160 MBps
for barnes, which is within the bandwidth range of com-
modity cluster interconnects such as Infiniband [18]. Ad-
ditionally, large transactions and a high ratio of operations
per word written yields low overhead. Comparing the traffic
in Figure 9 for the SPLASH-2 benchmarks (barnes, radix,
and water) to the published traffic numbers suggests that our
numbers are within the published range (sometimes better,
sometimes worse). Minor differences can be accounted for
by the differences in architectural parameters such as cache
sizes, block sizes, and the use of TCC versus conventional
DSM cache coherence protocols [39].

5 Related Work

There have been a number of proposals for transac-
tional memory (TM) that expand on the early work by
Knight [19], Herlihy [17] and Stone [38]. Researchers have
shown that transactional execution provides good perfor-
mance with simple parallel code [30, 15, 3, 31, 27]. Some
early transactional memory schemes hid transactions from
programmers by performing lock-elision on conventional
code [29, 30, 25], while more recent schemes propose trans-
actions as the programming model [15, 3, 27].

In general, TM proposals can be classified by the poli-
cies they use for data version management and conflict de-
tection [27]. The data version management policy speci-
fies how to handle both new data, which becomes visible
if the transaction commits, and old data, which should be
retained if the transaction aborts. TM systems with eager
version management store the new value in place (and must
restore the old value if the transaction aborts) while systems
with lazy version management buffer the new value until the
transaction commits. Conflict detection can also be han-
dled eagerly by preemptively detecting potential overlaps
between the reads and writes of different transactions as
they occur or lazily by detecting these conflicts only when
a transaction is ready to commit.

Transactional memory proposals that use eager version
management, such as LogTM, write to memory directly.
This improves the performance of commits, which are more
frequent than aborts; however, it may also incur additional
violations not incurred by lazy versioning [6], and provides
lower fault isolation [3, 27]. In the event of a fault, this pol-
icy would leave the memory in an inconsistent state. More-
over, conflicts are detected eagerly as transactions execute
loads and stores [3, 27], which could lead to livelock. The
solution proposed to the livelock problem is to employ a
user-level contention manager to force the application to
deal with livelock issues.

In TCC, transactions run continuously so all executed
code is part of some transaction. Continuous transactions
provide a uniform consistency model that is easy for pro-
grammers to reason about. In contrast to other TM propos-

als, TCC uses lazy conflict detection and version manage-
ment which guarantees forward progress without applica-
tion intervention. TCC keeps speculative updates stored in a
write-buffer until commit to guarantee isolation of the trans-
actions even in the face of hardware faults (this is similar to
some other proposals [30, 3]). On abort, all that is required
is to invalidate this buffer, which results in very low abort
overhead. TCC postpones conflict detection until a trans-
action commits, which guarantees livelock-free operation
without application-level intervention [15]. Even though
commits are more costly with lazy version management and
conflict detection, we have shown that it is still possible to
achieve excellent parallel performance with these policies.

TCC has been heavily influenced by work on Thread-
Level Speculation (TLS) [33, 13, 37, 20, 28, 11]. The ba-
sic difference is that TLS attempts optimistic concurrency
within the semantics of a sequential program and communi-
cates speculative state, while TCC provides optimistic con-
currency with parallel algorithms and only communicates
committed state. Nevertheless, similar hardware mecha-
nisms can support both models [14]. Both TLS and trans-
actional memory proposals have explored scalable imple-
mentations by modifying existing directory-based coher-
ence [1, 22, 4]. The TLS proposals provide scalability but
are limited to sequential program semantics [10, 36]. The
scalable transactional memory system in [27] provides users
with no guarantee for livelock-free operation.

In a similar manner to this proposal, Token Coher-
ence [24] makes use of limited broadcast with small im-
pact on the overall bandwidth requirements of the system.
The excellent performance of both Scalable TCC and Token
Coherence demonstrates that limited use of broadcast is not
incompatible with scalability.

6 Conclusions

This paper presents a scalable TM architecture for
directory-based, distributed shared memory (DSM) systems
based on TCC. This is the first scalable implementation of
a livelock-free hardware transactional memory system for
continuous transactional execution. The system does not re-
quire user-level contention managers to provide its livelock-
free guarantees. The architecture is based on a directory de-
sign that provides support for parallel commit, write-back
caches, and coherence traffic filtering. Through execution-
driven simulation, we demonstrated that the proposed de-
sign scales efficiently through 64 processors for both scien-
tific and enterprise applications. Speedups with 32 proces-
sors range from 11 to 32 and for 64 processors, speedups
range from 16 to 57. The ability to commit multiple trans-
actions in parallel allows the design to avoid performance
losses due to commit serialization.

Overall, our performance evaluation of the Scalable TCC
architecture shows that it is possible to retain the parallel



programming benefits of TCC and still provide scalable per-
formance for a wide range of applications. We find that the
commit behavior of most applications works quite well with
the Scalable TCC commit protocol.

7 Acknowledgments
Effort sponsored by National Science Foundation

Grant CCF-0444470 and the Defense Advanced Research
Projects Agency (DARPA) through the Department of
the Interior National Business Center under grant number
NBCH104009. The views and conclusions contained in this
document are those of the authors and should not be inter-
preted as representing the official policies, either expressed
or implied, of the Defense Advanced Research Projects
Agency (DARPA) or the U.S. Government.

References
[1] A. Agarwal et al. The MIT Alewife Machine: Architecture and Per-

formance. In Proc. of the 22nd Annual Intl. Symp. on Computer
Architecture (ISCA’95), pages 2–13, 1995.

[2] B. Alpern and other. The Jalapeño virtual machine. IBM Systems
Journal, 39(1):211–238, 2000.

[3] C. S. Ananian et al. Unbounded Transactional Memory. In Proc.
of the 11th Intl. Symp. on High-Performance Computer Architecture
(HPCA’05), San Franscisco, California, February 2005.

[4] L. A. Barroso et al. Piranha: A scalable architecture based on single-
chip multiprocessing. In Proc. of the 27th Annual Intl. Symp. on
Computer Architecture, Vancouver, Canada, June 2000.

[5] CEARCH Kernels. http://cearch.east.isi.edu/.
[6] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval. Bulk disambiguation

of speculative threads in multiprocessors. In ISCA ’06: Proc. of the
33rd Intl. Symp. on Computer Architecture, pages 227–238, 2006.

[7] H. Chafi et al. TAPE: A Transactional Application Profiling Envi-
ronment. In ICS ’05: Proc. of the 19th Annual Intl. Conf. on Super-
computing, pages 199–208. June 2005.

[8] J. Chung et al. The Common Case Transactional Behavior of Mul-
tithreaded Programs. In Proc. of the 12th Intl. Conf. on High-
Performance Computer Architecture, February 2006.

[9] J. Chung et al. Tradeoffs in transactional memory virtualization. In
ASPLOS-XII: Proc. of the 12th Intl. Conf. on Architectural support
for programming languages and operating systems. Oct 2006.

[10] M. Cintra, J. F. Martı́nez, and J. Torrellas. Architectural Support for
Scalable Speculative Parallelization in Shared-memory Multiproces-
sors. In Proc. of the 27th Intl. Symp. on Comp. Arch., June 2000.

[11] M. J. Garzarán et al. Tradeoffs in buffering memory state for thread-
level speculation in multiprocessors. In HPCA ’03: Proc. of the 9th
Intl. Symp. on High-Performance Computer Architecture, page 191,
February 2003.

[12] S. Gopal, T. Vijaykumar, J. E. Smith, and G. S. Sohi. Specula-
tive versioning cache. In Proc. of the Fourth Intl. Symp. on High-
Performance Computer Architecture, February 1998.

[13] L. Hammond et al. Data speculation support for a chip multipro-
cessor. In Proc. of the 8th Intl. Conf. on Architecture Support for
Programming Languages and Operating Systems, October 1998.

[14] L. Hammond et al. Programming with transactional coherence and
consistency (TCC). In ASPLOS-XI: Proc. of the 11th Intl. Conf. on
Architectural support for programming languages and operating sys-
tems, pages 1–13, October 2004.

[15] L. Hammond et al. Transactional memory coherence and consis-
tency. In Proc. of the 31st Intl. Symp. on Computer Architecture,
pages 102–113, June 2004.

[16] T. Harris and K. Fraser. Language support for lightweight transac-
tions. In OOPSLA ’03: Proc. of the 18th annual ACM SIGPLAN

Conf. on Object-oriented programing, systems, languages, and ap-
plications, pages 388–402, 2003.

[17] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In Proc. of the 20th Intl. Symp.
on Computer Architecture, pages 289–300, 1993.

[18] Infiniband Trade Association, InfiniBand.
http://www.infinibandta.org/.

[19] T. Knight. An architecture for mostly functional languages. In LFP
’86: Proc. of the 1986 ACM Conf. on LISP and functional program-
ming, pages 105–112, August 1986.

[20] V. Krishnan and J. Torrellas. A chip multiprocessor architecture with
speculative multithreading. IEEE Transactions on Computers, Spe-
cial Issue on Multithreaded Architecture, September 1999.

[21] H. T. Kung and J. T. Robinson. On optimistic methods for concur-
rency control. ACM Trans. on Database Systems, 6(2), June 1981.

[22] J. Laudon and D. Lenoski. The SGI Origin: a ccNUMA highly scal-
able server. In ISCA ’97: Proc. of the 24th annual Intl. Symp. on
Computer architecture, pages 241–251, 1997.

[23] D. Lenoski et al. The stanford dash multiprocessor. Computer,
25(3):63–79, 1992.

[24] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token coherence:
Decoupling performance and correctness. In Proc. of the 30th Intl.
Symp. on Computer Architecture, pages 182–193, June 2003.

[25] J. F. Martı́nez and J. Torrellas. Speculative synchronization: apply-
ing thread-level speculation to explicitly parallel applications. In
ASPLOS-X: Proc. of the 10th Intl. Conf. on Architectural support
for programming languages and operating systems, October 2002.

[26] A. McDonald et al. Characterization of TCC on Chip-
Multiprocessors. In PACT ’05: Proc. of the 14th Intl. Conf. on Par-
allel Architectures and Compilation Techniques, September 2005.

[27] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood.
LogTM: Log-Based Transactional Memory. In 12th Intl. Conf. on
High-Performance Computer Architecture, February 2006.

[28] M. Prvulovic et al. Removing architectural bottlenecks to the scala-
bility of speculative parallelization. In Proc. of the 28th Intl. Symp.
on Computer architecture, 2001.

[29] R. Rajwar and J. R. Goodman. Speculative Lock Elision: Enabling
Highly Concurrent Multithreaded Execution. In MICRO 34: Proc. of
the 34th annual ACM/IEEE Intl. Symp. on Microarchitecture, 2001.

[30] R. Rajwar and J. R. Goodman. Transactional lock-free execution of
lock-based programs. In ASPLOS-X: Proc. of the 10th Intl. Conf.
on Architectural support for programming languages and operating
systems, pages 5–17, October 2002.

[31] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing Transactional Mem-
ory. In ISCA ’05: Proc. of the 32nd Annual Intl. Symp. on Computer
Architecture, pages 494–505, June 2005.

[32] B. Saha et al. A high performance software transactional memory
system for a multi-core runtime. In PPoPP ’06: Proc. of the eleventh
ACM SIGPLAN Symp. on Principles and practice of parallel pro-
gramming, March 2006.

[33] G. S. Sohi, S. E. Breach, and T. Vijaykumar. Multiscalar processors.
In Proc. of the 22nd Annual Intl. Symp. on Comp. Arch., June 1995.

[34] Standard Performance Evaluation Corporation, SPEC CPU Bench-
marks. http://www.specbench.org/, 1995–2000.

[35] Standard Performance Evaluation Corporation, SPECjbb2000
Benchmark. http://www.spec.org/jbb2000/, 2000.

[36] J. G. Steffan et al. A Scalable Approach to Thread-level Speculation.
In Proc. of the 27th Intl. Symp. on Computer Architecture, June 2000.

[37] J. G. Steffan and T. C. Mowry. The potential for using thread-level
data speculation to facilitate automatic parallelization. In HPCA ’98:
Proc. of the 4th Intl. Symp. on High-Performance Comp. Arch., 1998.

[38] J. M. Stone, H. S. Stone, P. Heidelberger, and J. Turek. Multiple
Reservations and the Oklahoma Update. IEEE Parallel and Dis-
tributed Technology, 01(4):58–71, November 1993.

[39] S. C. Woo et al. The SPLASH2 Programs: Characterization and
Methodological Considerations. In Proc. of the 22nd Intl. Symp. on
Computer Architecture, pages 24–36, June 1995.


