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Abstract

Transactional memory (TM) provides an easy-to-use and
high-performance parallel programming model for the up-
coming chip-multiprocessor systems. Several researchers
have proposed alternative hardware and software TM im-
plementations. However, the lack of transaction-based pro-
grams makes it difficult to understand the merits of each
proposal and to tune future TM implementations to the com-
mon case behavior of real application.

This work addresses this problem by analyzing the com-
mon case transactional behavior for 35 multithreaded pro-
grams from a wide range of application domains. We iden-
tify transactions within the source code by mapping existing
primitives for parallelism and synchronization management
to transaction boundaries. The analysis covers basic char-
acteristics such as transaction length, distribution of read-
set and write-set size, and the frequency of nesting and I/O
operations. The measured characteristics provide key in-
sights into the design of efficient TM systems for both non-
blocking synchronization and speculative parallelization.

1. Introduction

With most hardware vendors shipping chip-
multiprocessors (CMPs) for the desktop, embedded,
and server markets [15, 16, 24], mainstream applications
must become concurrent to take advantage of the multiple
cores [38]. Traditionally, programmers have associated
locks with shared data in order to synchronize concurrent
accesses. However, locks have well-known software
engineering issues that make parallel programming too
complicated for the average developer [39]. The program-
mer must choose between the easy-to-use coarse-grain
locking that leads to unnecessary blocking and the scalable
fine-grain locking that requires complex coding conven-
tions to avoid deadlocks, priority inversion, or convoying.

Moreover, lock-based code does not automatically compose
and is not robust to hardware or software failures.

Transactional Memory (TM) [14] provides an alternative
model for concurrency management. A TM system oper-
ates on shared data using sequences of instructions (transac-
tions) which execute in an atomic and isolated manner [8].
Transactional memory simplifies parallel programming by
providing non-blocking synchronization with easy-to-write,
coarse-grain transactions by virtue of optimistic concur-
rency [17]. It also allows for speculative parallelization
of sequential code [9]. Furthermore, transactional code is
composable and robust in the face of failures.

The significant advantages of the TM model have moti-
vated several proposals for hardware-based [29, 23, 2, 25]
or software-only [34, 12, 13, 22, 31, 32] implementations.
Some proposals advocate continuous transactional execu-
tion in parallel systems [10, 18]. The various TM designs
suggest different tradeoffs in the mechanisms used to track
transactional state and detect conflicts, the size and loca-
tion of buffers, and the overheads associated with basic
operations. At this point, however, there is not enough
transaction-based software to properly evaluate the merit of
each proposal. System designers need transactional code to
tune their TM designs to the common case behavior of real
applications. At the same time, application developers are
waiting for efficient and complete TM system before they
port a significant volume of applications to the new concur-
rency model.

This paper attempts to break the deadlock. We study a
wide range of existing multithreaded applications and ana-
lyze the likely common-case behavior of their future trans-
actional versions. The basic premise of our approach is that
the high-level parallelism and synchronization characteris-
tics in an application are unlikely to change significantly
regardless of the mechanism used to manage them (locks
or transactions). Our study involves 35 multithreaded pro-
grams from a wide range of applications domains, written
in four parallel programming models. To define transac-



tion boundaries in the source code, we examine the prim-
itives used for concurrency control in each parallel model
and re-cast their meaning in a transactional context for both
non-blocking synchronization and speculative paralleliza-
tion. Then, we trace and analyze each application to mea-
sure basic characteristics such as the transaction length, the
read-set and write-set size, and the frequency of nested
transactions and I/O operations. The characteristics provide
key insights into the common case support necessary to im-
plement an efficient TM system.

The major observations from our analysis are:

• Transactions are mostly short. Hence, the fixed over-
heads associated with starting and ending transactions
must be minimized. Short transactions also allow us
to handle interrupts and context switches efficiently
without the need for complex hardware mechanisms
for TM virtualization.

• The read-sets and write-sets for most transactions fit
in L1-sized buffers. However, read-/write- set buffer-
ing in L2-sized buffers is necessary to avoid frequent
overflows on the longer transactions, especially in the
case of speculative parallelism. If L2 caches can store
transaction read-/write- sets, complex hardware mech-
anisms for TM virtualization can be replaced by sim-
ple, software-only alternatives.

• When used for non-blocking synchronization, many
transactions access a large number of unique addresses
compared to their length. Hence, the overhead of
buffering, committing, or rolling back per unique ad-
dress must be minimized. This issue is not aggravated
when transactions are used continuously or when they
support speculative parallelization.

• Nested transactions occur in system code but rarely in
user code. Since the nesting depth is low, hardware
support for nested transactions can be limited to a cou-
ple of nesting levels.

• I/O operations within transactions are also rare. The
observed I/O patterns are easy to handle through I/O
buffering techniques.

The rest of the paper is organized as follows. Section 2
summarizes transactional memory and discusses the major
design tradeoffs that motivate this study. In Section 3, we
present our experimental methodology for analyzing mul-
tithreaded applications within a transactional context. Sec-
tion 4 and 5 present our analysis results when transactions
are used for non-blocking synchronization and speculative
parallelization respectively. We conclude the paper in Sec-
tion 6.

2. Transactional Memory

2.1 Transactional Memory Overview

With transactional memory, programmers define atomic
blocks of code (transactions) that can include unstructured
flow-control and any number of memory accesses. A TM
system executes atomic blocks in a manner that preserves
the following properties: a) atomicity: either the whole
transaction executes or none of it; b) isolation: partial mem-
ory updates are not visible to other transactions; and c) con-
sistency: there is a single order of completion for transac-
tions across the whole system [14]. TM systems achieve
high performance through optimistic concurrency [17]. A
transaction runs without acquiring locks, optimistically as-
suming no other transaction operates concurrently on the
same data. If that assumption is true by the end of its exe-
cution, the transaction commits its updates to shared mem-
ory. If interference between transactions is detected, then
the transaction aborts, its updates so far are rolled back, and
it is re-executed from scratch.

A TM system must implement the following mecha-
nisms: (1) speculative buffering of stores (write-set) until
the transaction commits; (2) conflict detection between con-
current transactions; (3) atomic commit of transaction stores
to shared memory; (4) rollback of transaction stores when
conflicts are detected. Conflict detection requires track-
ing the addresses read by each transaction (read-set). A
conflict occurs when the write-set of a committing transac-
tion overlaps with the read-set of an executing transaction.
The mechanisms can be implemented either in hardware
(HTM) [29, 23, 2, 25] or software (STM) [34, 12, 13, 22,
31, 32]. HTM minimizes the overhead of the basic mecha-
nisms, which is likely to lead to higher performance. STM
runs on stock processors and provides implementation flex-
ibility.

HTM systems implement speculative buffering in the
processor caches using a store-buffer [29, 23] or an undo-
log [2, 25]. A store-buffer allows for truly non-blocking
TM but defers all memory updates until the transaction
commits. An undo-log accelerates commits by updating
shared memory as the transaction executes, but has slower
aborts, incurs per access overheads, and introduces block-
ing and deadlock issues. Since caches have limited ca-
pacity and buffer/log overflow is possible, some HTM sys-
tems [2, 30] provide elaborate hardware mechanisms to ex-
tend the buffer/log into virtual memory (space virtualiza-
tion). The same mechanisms can be used to context switch
a thread in the middle of a transaction if an interrupt occurs
(time virtualization). Read-sets are also tracked in caches
and conflicts are detected using the cache coherence proto-
col. Transaction roll-back requires flushing the transaction
write-set and read-set from caches.



STM systems implement buffering, conflict detection,
commit, and abort entirely in software using runtime primi-
tives. Apart from defining transaction boundaries, STM re-
quires a runtime call at least once per unique address read or
written in a transaction so that read-set and write-set can be
tracked. Again, speculative buffering can be implemented
using a write-buffer [12] or an undo-log [32]. For conflict
detection, the STM runtime can either acquire read-write
locks during the transaction execution (faster detection) or
acquire write locks only and validate the version of all read
data before commit (reduced interference at increased com-
mit overhead) [12]. Read-set and write-set tracking can be
at the granularity of words, cache-lines, or objects. Commit
and abort require walking through the structures that track
read-set and write-set to validate, copy, or roll back val-
ues, depending on the implementation approach. Buffer/log
overflow cannot occur with STM as it operates on top of the
virtual memory system.

I/O calls within transactions [11] as well as the seman-
tics and support for nested transactions are topics of active
research for both HTM and STM systems.

2.2 Design Challenges & Application Characteristics

It is clear from the above overview that the design of
a transactional memory system involves a large number of
implementation decisions. As it is common with all sys-
tems, the guiding principle for making such decisiosn will
be “make the common case fast”. Designers will look at
the common values for basic characteristics of transactional
applications to select the right implementation approach for
the TM mechanisms, to size buffer components, and to tune
the overhead of basic operations. In this section, we review
the basic application characteristics for transactional mem-
ory and the implementation aspects they interact with.

Transaction Length: Short transactions make it diffi-
cult to amortize fixed overheads for starting and commit-
ting transactions. On the other hand, long transactions may
run into interrupts and require time virtualization support.
Long transactions are also more likely to cause rollbacks.
This study measures the distribution of transaction lengths
in instructions.

Read-set and Write-set Size: The common read-set and
write-set sizes dictate the necessary capacity for the buffer
used to track them. They also determine the frequency of
buffer overflows and whether a fast mechanism is necessary
for space virtualization. The granularity for tracking read-
and write-sets is also important in order to balance over-
heads against the frequency of rollbacks due to false shar-
ing. This study measures the distribution of read-/write- sets
in words, cache lines, and pages.

Read-/Write- Set to Transaction Length Ratio: The
ratio determines if any overhead per unique address read or

written in each transaction can be easily amortized. Hence,
it helps the designer tune the overhead of basic operations
like log update, validateion of a read, and the commit or
abort of a store.

Nesting Frequency: The frequency and depth of nested
transactions determines the necessary support for nesting in
HTM systems. It is also important to understand the poten-
tial performance cost from flattening nested transactions, a
common approach in current TM designs.

I/O Frequency within Transactions: Non-idempotent
I/O within a transaction can be difficult to handle as it can-
not be rolled back. Moreover, delaying I/O until the transac-
tion commits may lead to system deadlock. This study does
not implement a specific solution, but characterizes the fre-
quency and type of I/O operations within transactions.

In measuring the above application characteristics, it is
important to understand that transactions can be used in
multiple ways. The original goal for TM has been to pro-
vide non-blocking synchronization in multiprocessor sys-
tems by implementing transactions on top of ordinary cache
coherence protocols [14]. Lately, there have been proposals
to build TM systems for continuous transaction execution
to further simplify parallel hardware and software [10, 18].
Finally, the TM mechanisms can support speculative paral-
lelization of sequential code [9]. This study measures ap-
plication characteristics under all three TM use scenarios.

3. Experimental Methodology

To provide detailed insights into the common case trans-
actional behavior of real programs, we study a large set of
existing multithreaded applications. This section describes
the experimental methodology, which includes application
selection, defining transaction boundaries in multithreaded
code, and a trace-based analysis that extracts the character-
istics discussed in Section 2.2.

3.1 Multithreaded Applications

Table 1 presents the 35 multithreaded applications we
used in this study. The applications were parallelized us-
ing four parallel programming models: Java threads [4], C
and Pthreads [19], C and OpenMP [28], and the ANL par-
allel processing macros [21]. Java is increasingly popular
and includes multithreading in the base language specifica-
tion. OpenMP is a widely adopted model based on high-
level compiler directives for semi-automatic parallelization.
Pthreads is a widely available multithreading package for
POSIX systems. Finally, the ANL macros were designed to
provide a simple, concise, and portable interface covering a
variety of parallel applications. We use the Java, Pthreads,
and ANL applications to study the use of transactions for
non-blocking synchronization (29 applications). We use the



Prog. Model Application Problem Size Source Domain/Description
MolDyn 2,048 Particles JavaGrande Scientific / Molecular Dynamics
MonteCarlo 10,000 Runs JavaGrande Scientific / Finance
RayTracer 150x150 Pixels JavaGrande Graphics / 3D Raytracer
Crypt 200,000 Bytes JavaGrande Kernel / Encryption and Decryption
LUFact 500x500 Matrix JavaGrande Kernel / Solving NxN Linear System
Series 200 Coefficients JavaGrande Kernel / First N Fourier Coefficients
SOR 1,000x1,000 Grid JavaGrande Kernel / Successive Over-Relaxation
SparseMatmul 250,000x250,000 Matrix JavaGrande Kernel / Matrix Multiplication
SPECjbb2000 8 Warehouses SPECjbb2000 Commercial / E-Commerce
PMD 18 Java Files DaCapo Commercial / Java Code Checking
HSQLDB 10 Tellers, 1,000 DaCapo Commercial / Banking with hsql database
Apache 20 Worker Threads Apache Commercial / HTTP web server
Kingate 10,000 HTTP Requests SourceForge Commercial / Web proxy
Bp-vision 384x288 Image Univ. of Chi. Machine Learning / Loopy Belief Propagation
Localize 477x177 Map CARMEN Robotics / Finding a Robot Position In a Map
Ultra Tic Tac 5x5 Board, 3 Step SourceForge AI / Tic Tac Toe Game
MPEG2 640x480 Clip MPEG S.S.G. MultiMedia / MPEG2 Decoder
AOL Server 20 Worker Threads AOL Website Commercial / HTTP web server
Equake 380K Nodes SPEComp Scientific / Seismic Wave Propagation Simulation
Art 640x480 Image SPEComp Scientific / Neural Network Simulation
CG 1400x1400 Matrix NAS Scientific / Conjugate Gradient Method
BT 12x12x12 Matrix NAS Scientific / CFD
IS 1M Keys NAS Scientific / Large-scale Integer Sort
Swim 1,900x900 Matrix SPEComp Scientific / Shallow Water Modeling
Barnes 16K Particles SPLASH-2 Scientific / Evolution of Galaxies
Mp3d 3,000 Molecules, 50 Steps SPLASH Scientific / Rarefied Hypersonic Flow
Ocean 258x258 Ocean SPLASH-2 Scientific / Eddy Currents in an Ocean Basin
Radix 1M Ints., Radix 1024 SPLASH-2 Kernel / Radix Sort
FMM 2,049 Particles SPLASH-2 Kernel / N-body Simulation
Cholesky TK23.0 SPLASH-2 Kernel / Sparse Matrix Factorization
Radiosity Room SPLASH-2 Graphics / Equilibrium of Light Distribution
FFT 256K points SPLASH-2 Kernel / 1-D version of the radix-N2 FFT
Volrend Head-Scaledown 4 SPLASH-2 Graphics / 3-D Volumn Rendering
Water-N2 512 molecules SPLASH-2 Scientific / Evolution of System of Water Molecules
Water-Spatial 512 molecules SPLASH-2 Scientific / Evolution of System of Water Molecules

Java

Pthreads

ANL Macros

OpenMP

Table 1: The 35 multithreaded applications used in this study.

six OpenMP applications to study the use of transactions for
speculative parallelization.

The selected programs cover a wide range of application
domains. Apart from scientific computations, the list in-
cludes commercial applications (web servers, web proxies,
relational databases, e-commerce systems), graphics, multi-
media, and artificial intelligence programs (machine learn-
ing, robotics, games). These important application domains
are good targets for current and future parallel systems as
they operate on increasing datasets and use seemingly par-
allel algorithms.

We obtained the applications from a variety of sources.
Eight of the Java programs are from the JavaGrande
benchmark suite [35], while the remaining three are from
the DaCapo benchmark suite [6] and the SPECjbb2000
benchmark [36]. The OpenMP applications are from the
SPEComp [37] and the NAS [27] benchmark suites. All
ANL applications were obtained from the SPLASH and
SPLASH-2 benchmark suites [40]. The Pthreads appli-
cations come from various sources: the Apache Software
Foundation (Apache [3]), SourceForge.net (Kingate and Ul-

tra Tic-Tac-Toe), the University of Chicago (BP-vision [7]),
the CMU Carmen project (Localize [41]), and the MPEG
Software Simulation Group (Mpeg2 [26]). The variety of
sources also implies variability in parallelization quality.
While commercial programs such as Apache or benchmark
suites are likely to be thoroughly optimized, other programs
may not be fully tuned. We believe that measuring transac-
tional behavior in the presence of such variability is actually
good as both expert and novice developers will be coding
for CMPs in the near future. Hence, we did not attempt
further optimizations on any of the applications.

3.2 Transaction Boundaries

Our analysis is based on the premise that the high-level
parallelism and synchronization patterns are unlikely to
change when applications are ported from lock-based pro-
gramming models to transactional models. After all, these
patterns depend heavily on the algorithm and on the pro-
grammer’s understanding of the algorithm. Hence, we cre-
ate transactional versions of the applications by mapping



TM System Case Abstract Threading 
Primitive

Transaction 
Mapping

Transaction 
Type

Lock BEGIN Critical
Unlock END Critical
Wait END-BEGIN Critical
Thread Create/Entry BEGIN Non-critical
Thread Exit/Join END Non-critical
Notify END-BEGIN Non-critical
I/O END-BEGIN Non-critical
Parallel Iteration Start BEGIN Critical
Parallel Iteration End END Critical

Non-blocking 
Synchronization

Continuous 
Transactions

Speculative 
Parallelization

Table 2: The mapping of multithreading primitives to
transaction BEGIN and END markers.

the threading and locking primitives in their code to BEGIN
and END (commit) markers for transactions. The mapping
is performed merely for the purpose of introducing transac-
tion boundaries in the execution trace generated by running
the original multithreaded code. Automatically translating
lock-based primitives to transactions (lock elision) and run-
ning the new code on a TM system is not always safe [5].

Table 2 summarizes the mapping between multithread-
ing primitives in the application code and transaction
boundaries. For brevity, we abstract out the differences
between similar primitives in the four programming mod-
els. For example, the abstract primitive Lock represents
the opening bracket on a synchronized block in Java,
the LOCK() macro in ANL, the pthread *lock() calls
in Pthreads (regular, read, and write locks), and the open-
ing bracket of the CRITICAL/ATOMIC pragmas and the
omp locks() call in OpenMP. Overall, we identified nine
abstract primitives that must be mapped to transactions. Our
mapping considers three TM uses: the sporadic use of trans-
actions for non-blocking synchronization, the continuous
use of transactions, and the use of transactions for specu-
lative parallelization.

For systems that use TM for non-blocking synchroniza-
tion, we map Lock and Unlock primitives to BEGIN and
END transaction markers. These markers define nested
transactions if locks are nested in the application code. We
assume a closed-nesting model, where the stores of an inner
transaction are committed to shared memory only when the
outer-most transaction commits. We also mark I/O state-
ments within transactions but these markers do not affect
the transaction boundaries. The Java conditional wait con-
struct (java.lang.Object.wait()) is an interesting
case. Java requires that a thread obtains a monitor before
it calls wait, hence wait statements are typically made
within a synchronized block. When wait is called,
the thread releases the monitor. When the thread resumes
after a matching notify, the thread re-acquires the monitor.
To reflect this properly, we map wait to an END marker
(end previous transaction) and a BEGIN marker (start new

transaction) pair.
For systems that execute transactions continuously, there

is no code execution outside transactions [10, 18]. Again,
Lock, Unlock, and wait primitives are mapped to BEGIN
and END transaction markers. We call the corresponding
transactions critical as they must be executed atomically
under all circumstances. The difference in this case is that
even the code between END and BEGIN markers defined by
locks must execute as a transaction. We call these transac-
tions non-critical as the TM system could freely split them
into multiple transactions by introducing commits to reduce
buffer pressure or for other optimizations without loss of
atomicity. Thread create/entry primitives define BEGIN
markers for non-critical transactions, while thread exit/join
primitives define END markers for non-critical transactions.
I/O statements outside of critical transactions split the cur-
rent non-critical transaction into two. In other words, each
I/O primitive is mapped to a non-critical transaction END
followed by a non-critical transaction BEGIN.

For the use of transactions for speculative parallelization,
we cast parallel loops defined through OpenMP pragmas as
speculative parallel loops. The beginning and end of an iter-
ation in a parallel loop define the BEGIN and END markers
respectively for critical transactions. I/O statements within
the iterations are marked but they do not affect transaction
boundaries.

The transaction markers that correspond to each primi-
tive in the multithreaded code were inserted in the follow-
ing way. For Java applications, we modified the just-in-
time compiler in the Jikes RVM [1] to automatically insert
the markers. The SPLASH-2 applications were also anno-
tated automatically by modifying the ANL macros. For the
OpenMP and Pthreads applications, we inserted markers in
the source code manually.

3.3 Trace-based Analysis

Once the transaction markers were in place, we exe-
cuted the applications on a PowerPC G5 workstation and
collected a detailed execution trace using amber, a tool in
Apple’s Computer Hardware Understanding Development
(CHUD) suite. All tracing runs used 8 threads. The trace
includes all instructions executed by the program (memory
and non-memory). However, when a multithreading prim-
itive is invoked (e.g. Lock or Unlock), the transactional
marker is emitted in the trace instead of the actual code that
corresponds to the primitive.

We analyzed the traces using a collection of scripts to ex-
tract transactional characteristics such as transaction length,
read-set and write-set sizes, read-set and write-set to trans-
action length ratio, frequency of I/O, and frequency of nest-
ing. The read-set and write-set sizes were measured in three
granularities: 4-byte words, 32-byte cache lines, and 4-



Kbyte pages. The read-set (write-set) to transaction length
ratio is calculated by dividing the read-set (write-set) size by
the number of instructions in each transaction. We perform
such calculations on individual transactions before calculat-
ing averages. For nested transactions, our scripts use a stack
to push and pop transactional contexts according to BEGIN
and END markers.

3.4 Discussion

Our methodology has certain limitations that require fur-
ther discussion. First, it is possible that when the applica-
tions are re-written for transactional memory and executed
on a TM system, some of the measured characteristics may
change. However, the existing multithreaded versions pro-
vide good indicators of where parallelism exists and where
synchronization is needed in the corresponding algorithms.
Hence, we expect that transactional behavior will at least be
similar.

Our analysis measures transactional characteristics that
are largely implementation independent. For example, we
do not attempt to measure the number of buffer overflows in
a specific HTM system. Instead, we provide the distribution
of read-set and write-set sizes from which one can easily
calculate the percentage of transactions that will overflow
for a given buffer size.

Our methodology cannot evaluate the frequency of trans-
action rollbacks for a given application. Such an analy-
sis is difficult to make outside of the scope of a specific
TM implementation (number of processors, timing of in-
struction and communication events, transaction schedul-
ing approach, conflict management techniques, etc.). Nev-
ertheless, our study indicates the potential cost of rollbacks:
the amount of work wasted is on the average proportional
to transaction length; the overhead of the rollback with an
undo-log is proportional to the write-set size; etc.

For practical reasons, we use a single dataset for each ap-
plication. For the applications evaluated for non-blocking
synchronization (Pthreads, Java, ANL), synchronization is
used only when a thread accesses potentially shared data.
Hence, excluding the percentage of time spent in transac-
tions, the rest of the transactional characteristics will proba-
bly be similar with different datasets. For applications eval-
uated for speculative parallelization, the characteristics will
remain unchanged if inner-loops are parallelized, but can
vary significantly with the data-set if outer-loops have been
chosen for parallelization. Our analysis does not separate
between truly shared and fully private addresses in the read-
sets and write-sets. An optimizing compiler may be able
to classify some addresses as thread private, which in turn
allows the TM implementation to avoid tracking them for
conflict detection.

Avg 50th % 95th % Max
Java avg 5949 149 4256 13519488

sparsematmult 2723 41 34987 53736
series 7756 97 43250 524636

Pthreads avg 879 805 1056 22591
mpeg2 93694 101327 167267 347339

ANL avg 256 114 772 16782
fft 157 157 157 157

radix 9 9 9 9

Application
Length in Instructions

Table 3: The distribution of critical transaction lengths
in instructions.

4. Analysis for Non-blocking Synchronization

This section presents our analysis results for the case of
using transactions for non-blocking synchronization with
the Java, Pthreads, and ANL applications. For each char-
acteristic analyzed, we first present the application results
and then describe a set of basic insights these results provide
into building efficient TM systems. We focus mostly on crit-
ical transactions but we also comment on non-critical trans-
actions, which are important for systems that execute trans-
actions continuously. Throughout the section, we present
tables and figures with averages taken over whole applica-
tion groups (e.g. the average of all Java programs). We also
present the most interesting outliers alongside the averages.
Outliers are not included in the group average.

4.1 Transaction Length

Table 3 presents the distribution of critical transaction
length in number of instructions. Most transactions tend to
be small with 95% of them including less than 5,000 in-
structions. However, the distribution exhibits a long tail,
and a small number of transactions become quite large.
ANL applications have the shortest transactions as they are
optimized for scalability (infrequent and short atomic re-
gions). The same behavior is observed with Pthreads pro-
grams, particularly Apache which is a well-tuned commer-
cial program. Mpeg2 is the only exception as it uses a lock
during the whole operation on a video frame slice. Most
Java programs exhibit short transactions on the average but
have a long distribution tail. The longer transactions are
partly due to the applications themselves and partly due to
the long critical regions used in Jikes RVM for scheduling,
synchronization, class loading, and memory management.

We do not present the length of non-critical transactions
due to space limitations. They are typically longer, but they
can be split at arbitrary places to avoid any issues associated
with their length.



Observations: The high frequency of very short trans-
actions (150 instructions or less) implies that the overheads
associated with TM mechanisms such as starting or com-
mitting a transaction must be very low. Otherwise, the over-
heads may cancel out any benefits from non-blocking syn-
chronization. This can be a significant challenge for STM
systems which use runtime functions at transaction bound-
aries. For HTM systems, fast register checkpointing will be
necessary to keep the transaction start overhead low. Alter-
natively, HTM systems will require compiler help to avoid
checkpointing all registers on transaction starts.

The frequency of short transactions has implications on
time virtualization for HTM systems. The UTM [2] and
VTM [30] systems propose that I/O or timer interrups cause
a transaction to be swapped out by saving its transactional
state (read-/write- set) in special overflow buffers in vir-
tual memory. The state is restored when the transaction
resumes later. Given the overhead of saving/restoring state
and that 95% of transactions include less than 5,000 instruc-
tions, an alternative approach makes sense. On an interrupt,
we should initially wait for one of the processors to finish
its current transaction and assign it to interrupt processing.
Since most transactions are short (150 instructions), this
will likely happen quickly. If the interrupt is a real-time
one or becomes critical, we should rollback the youngest
transaction and use its processor for interrupt handling. Re-
executing some portion of a short transaction is faster than
saving and restoring state in virtual memory buffers. Sav-
ing and restoring should be reserved only for the very long
transactions that span multiple OS quanta (tens of millions
of instructions). Our data suggest that this case is extremely
rare hence it should be handled in software, using OS-
based techniques [33, 20], without the complicated hard-
ware structures discussed in [2] and [30].

4.2 Read-Set and Write-Set Sizes

Figure 1 presents the distribution of read-set and write-
set sizes for critical transactions. For 95% of transactions,
the read-set is less than 4 Kbytes and the write-set is less
than 1 Kbyte. However, we must also consider that large
read-/write- sets are typically found in longer transactions.
Figure 2 presents the normalized time spent on transactions
with read-/write- sets of a specific size. We assume that
time is proportional to the transaction length. For read-sets,
a 52-Kbyte buffer is needed to cover 80% or more of the
transaction execution time for most applications. For write-
sets, a 30-Kbyte buffer is sufficient for 80% of the transac-
tion execution time of most applications with the exception
of hsqldb. Hsqldb includes some long JDBC connections
that execute large SQL queries. We should also note from
Figures 1 and 2 that read-set and write-set sizes do not ex-
ceed 128 Kbytes. Our analysis also indicates that there is

Words/Line Lines/Page Words/Line Lines/Page
Java avg 1.7 3.7 1.7 4.3
Pthreads avg 2.0 3.8 3.5 8.5
ANL avg 2.1 6.8 2.3 7.9
sparsematmul 1.3 1.7 2.1 3.0
mpeg2 7.8 71.2 2.3 7.9

Read-Set Write-Set
Application 

Table 4: The number of words used per line and lines
used per page for the transaction read-sets and write-
sets.

significant overlap between read- and write-sets. The ratio
of their intersection divided by their union is typically 15%
to 30%. If both sets are tracked in a unified buffer such as
a data cache, large overlaps reduce the pressure on buffer
capacity.

Transaction read- and write-sets can be tracked at
the granularity of words, cache lines, or memory pages.
Coarser granularity tracking reduces overheads but may
lead to unnecessary work due to loss of accuracy. Table
4 shows the number of words used per line and the number
of lines used per page when the read-/write- sets are tracked
at line and page granularity respectively. Words are 4 bytes,
lines are 32 bytes, and pages are 4 Kbytes. For most appli-
cations, only 2 out of 8 words per cache line in the read-set
are actually used. For write-sets, the ratio is at 3 words used
per cache line. For the case of page granularity, less than 10
cache lines from the 128 per page are actually used in the
read-/write- sets. Mpeg2 is the only exception in both cases
as it exhibits very good spatial locality in its read-set and
write-set accesses.

Observations: Figure 2 shows that transaction read-
sets and write-sets are often too large to fit in small side-
buffers as in the original HTM design [14]. However,
they are within the capacity of processor caches, which
can be modified to track transaction’s read-sets and write-
sets. The majority of transactions fit in an L1 cache (16
to 32 Kbytes) but support at the L2 cache (128 Kbytes to
Mbytes) is needed to avoid overflows for the few long trans-
actions. With read-/write- set tracking in L2 caches, over-
flows will be extremely rare events. Hence, complex hard-
ware mechanisms that allow read-/write- sets to overflow
in virtual memory [2, 30] will hardly ever get used. In-
stead, it is preferable to have a simple virtualization mech-
anism that is completely software based. In the rare event
of a read-/write- set that exceeds the L2 capacity, an excep-
tion is raised and the system executes the transaction us-
ing OS-based transactional mechanisms that operate on top
of the virtual memory system without any hardware limita-
tions [33, 20].

Tracking read-/write- sets at cache line granularity [29,
2, 25] leads to significant accuracy loss and may lead to per-
formance inefficiencies: unnecessary rollbacks due to false
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Figure 1: The cumulative distribution of read-set (left) and write-set (right) sizes in Kbytes.
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Figure 2: Normalized time spent in transactions with different read-set (left) and write-set (right) sizes.

sharing as well as logging (buffer space waste) or commit-
ting (badwidth waste) more than two times the amount of
necessary data. Word granularity tracking can eliminate
these issues [23]. Page granularity tracking is simply too
wasteful to allow for good performance for most of appli-
cations.

4.3 Read-/Write- Set Size to Transaction Length Ratio

Hardware and software TM systems perform basic op-
erations for each word in the read- or write- set: log an old
value in the undo-log, commit the new value to shared mem-
ory, validate a read value before commit, restore old value at
abort, etc. The overheads of such operations can be hidden
if they can be amortized across a large number of instruc-
tions in the transaction. Figure 3 presents the distribution
of write-set size (in words) to the transaction length (in in-
structions) ratio for critical transactions. A ratio of 50%
means that the transaction stores to a unique new address
every two instructions. The ratio is roughly 10% for most
transactions but some of them go as high as 25%. The rea-
son for the high ratios is that these applications perform all
updates to shared data in critical sections. For non-critical
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Figure 3: The write-set size (in words) to transaction
length (in instructions) ratio for critical transactions.

transactions, the write-set size to transaction length ratio is
typically below 10%. The reason is the lower frequency
of stores altogether and higher temporal locality for stores.
For the read-set size to transaction length ratio, we observed
similar statistics. Many critical transactions exhibit ratios of
15% up to 30%. Non-critical transactions have substantially
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Figure 4: The definition of depth, breadth, and distance
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lower ratios.
Observations: The high read-/write- set to instruction

length ratios signal potential problems for various TM im-
plementations. For HTM systems using a store buffer, the
latency of writing all stores to shared memory at commit
time may be difficult to hide. Hence, double-buffering tech-
niques may be necessary to avoid the slowdown [10]. For
HTM systems using an undo-log, log updates can be fre-
quent and may require a separate port into the cache hier-
archy to avoid stalls. For STM systems, the overhead from
lock acquisition for stores and locks or version validation
for loads may be difficult to hide if read- and write- sets are
tracked at fine granularity.

On the other hand, the above results suggest that sys-
tems that support continuous transactional execution do not
suffer any additional inefficiencies because of non-critical
transactions. The latency of mechanisms for logging, com-
mitting, validating, or rolling back transactional data is a
bigger issue with critical rather than non-critical transac-
tions.

4.4 Transaction Nesting

Nested transactions may occur in transactional programs
when they call library code that uses transactions internally.
Nested transactions also allow programmers to avoid expen-
sive rollbacks when potential conflicts are limited within
a small portion of a large transaction. A major question
for HTM implementations is how much nesting support to
provide through fast hardware. To explore this issue, we
define four characteristics of nested transactions in Figure
4. Depth refers to the level of nesting at which a transac-
tion executes (number of parents in the nested call graph).
Breadth refers to the number of nested calls each transac-
tion makes (number of immediate children in the nested call
graph). Distance is the number of instructions between the
beginning of a transaction and the beginning of one of its
children.

Table 5 presents the nesting characteristics for applica-
tions that exhibit nesting in more than 1% of their trans-

water-spatial 5.3 0.0 5.3 0.0
moldyn 0.4 0.4 0.0 0.0
raytracer 0.4 0.4 0.0 0.0
crypt 0.4 0.4 0.0 0.0
series 0.3 0.3 0.0 0.0
sor 0.4 0.4 0.0 0.0
pmd 0.5 0.5 0.0 0.0
kingate 1.3 0.0 1.3 0.0
mpeg2 20.0 20.0 0.0 0.0

Application
% Trans. 
with IO

% Trans. 
with Wr IO

% Trans. 
with Rd IO

% Trans. with 
Rd & Wr IO

Table 6: I/O frequency in critical transactions.

actions. It is immediately obvious that nesting is not
widespread. Most programmers avoid nested synchroniza-
tion either because it is difficult to code correctly with cur-
rent models or because of the obscure performance impli-
cations. Most programs in Table 5 are Java applications,
where nesting synchronization occurs in the Jikes RVM
code to support class loading (tree-like class loader) and
just-in-time compilation. Nesting depths of 1 and 2 are the
most frequent and the average breadth is 2.2.

Observations: It is difficult to draw general conclusions
on nesting from our analysis. For the specific applications,
one may be able to eliminate the need for nesting support by
recoding the Java virtual machine. For HTM systems that
automatically flatten nested transactions, the penalty for a
conflict in the inner transaction that leads to an outermost
transaction rollback will be proportional to the transaction
distance. For the Java programs we studied, the mean dis-
tance is quite high (140,000 instructions on the average).
For implementations that provide full support for nested
transactions, it seems that two levels of nesting support will
be sufficient. Such nesting support includes the ability to
track read-/write- sets and detect conflicts independently
for three transactions. The same hardware resources can
be used for double-buffering to hide commit overheads [23]

4.5 Transactions and I/O

I/O operations within a critical transaction can be prob-
lematic. Input data from external devices must be buffered
in case the transaction rolls back. Output data must also be
buffered until the transaction commits. If a single transac-
tion performs both input and output operations, deadlocks
can occur through the I/O system. Table 6 shows the per-
centage of critical transactions that include I/O operations.
Most applications have few critical transactions with I/O,
which is natural because a long I/O operation is unattractive,
and usually unnecessary, within a application-level critical
section1. Mpeg2 and Water spatial are the exceptions. The
Mpeg2 algorithm holds a lock while reading a slice from the

1We do not consider any critical sections in the operating system code
necessary to implement I/O operations.



1 2 >2 1 2 >2
moldyn 22 16 42 41 13 7 3 291889
montecarlo 14 99 0 0 0 0 14 2784
raytracer 14 36 41 23 7 4 3 99262
crypt 18 45 37 19 11 3 4 56211
lufact 18 39 38 23 11 3 5 87913
series 14 40 51 8 7 2 4 68782
sor 16 48 4 48 9 3 4 75400
sparsematmult 13 87 11 2 6 1 6 10440
specjbb 9 63 35 2 1 4 4 58855
pmd 17 19 30 52 8 4 5 659871
hsqldb 1 3 97 0 0 0 1 6538826
bp-vision 4 100 0 0 4 0 0 165
localize 2 100 0 0 2 0 0 641

(% of Total Trans)(% of Nested Trans)
Application

 % Trans 
with 

Nesting
Mean 

Distance

Nesting Depth Nesting Breadth

Table 5: The nesting characteristics of critical transactions.

video stream. Water spatial’s output operations use a lock
to print to the console. No transactions attempt to execute
both an input and an output operation.

With non-critical transactions, I/O handling is easy as we
can split transactions in any way necessary (immediately
before and after any I/O statement).

Observations: I/O is unlikely to be a serious roadblock
to transactional memory. I/O is rare within critical transac-
tions and the deadlock scenario that cannot be handled by
buffering I/O does not occur in practice.

5. Analysis for Speculative Parallelization

Apart from facilitating non-blocking synchronization,
TM allows for speculative parallelization of sequential pro-
grams [9]. Speculative parallelization provides an attrac-
tive programming model as it eliminates the burden of de-
veloping a provably correct parallel program. Instead, the
programmer merely identifies potentially parallel regions in
sequential code. Hardware executes these regions optimisti-
cally in parallel and resolves dynamically any dependencies
based on the sequential semantics of the original code. Nev-
ertheless, using TM for speculative parallelism may lead to
significantly different common case behavior than that pre-
sented in Section 4. To identify the major trends, we study
the six OpenMP applications in Table 1 after remapping the
iterations from parallel loops in OpenMP into critical trans-
actions for speculative parallelization. In other words, we
assume an OpenMP-like, directive-based model for specu-
lative loop parallelization.

Table 7 presents the transaction length statistics. The
applications fall into two categories: those with specula-

Avg 50th % 95th % Max
equake 244 9 1134 40750634

art 70062948 71978851 74117449 74824088
is 129 3 3 19844217

swim 62130 68467 91296 91296
cg 521 6 691 18949151
bt 40796 8106 35531 13091051

Length in Instructions
Application

Table 7: Transaction length statistics for speculative
parallelization.

tive parallelism in inner loops (Equake, Is, Cg) that leads
to short transactions and those with speculative parallelism
from outer loops (Art, Swim, Bt) that leads to significantly
longer transactions. For Art in particular, transactions in-
clude tens of millions of instructions. Figure 5 presents
the transaction read-set and write-set distributions. Appli-
cations with long transactions generate significantly larger
read-sets and write-sets than those in Section 4 (200 Kbytes
to 2 Mbytes). On the other hand, all speculatively paral-
lelized applications exhibit low read-/write- set to transac-
tion length ratios (10% or less) due to high temporal local-
ity in large transactions. None of these applications include
noticeable nesting or I/O operations within critical transac-
tions.

Observations: The main conclusion is that using TM for
speculative parallelization requires larger buffers to track
read-sets and write-sets. L1-sized buffers can be too small
for several applications and may lead to frequent overflows.
If L1-sized buffers are used, fast TM virtualization tech-
niques will be critical. On the other hand, L2-sized buffers
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Figure 5: The cumulative distribution of read-set (left) and write-set (right) sizes for speculative parallelization.

are sufficient to eliminate overflows for most applications.
Alternatively, one can conclude that speculative paralleliza-
tion with TM suggests parallelizing the inner loops instead
of the outer loops, as in the conventional wisdom with cur-
rent systems. Since the read-/write- set to transaction length
ratios are lower than with non-blocking synchronization,
the use of TM for speculative parallelization does not place
any additional requirements on the mechanisms for buffer-
ing, commit, and rollback.

6. Conclusions and Future Work

We studied a set of existing multithreaded applica-
tions in order to characterize their common case behav-
ior with transactional memory systems. The analysis in-
volves mapping parallelism and synchronization primitives
in the source code to transaction boundaries. We measure
basic characteristics such as the distribution of transaction
lengths, read-set and write-set sizes, and the frequency of
nested transactions and I/O operations. These characteris-
tics provide key insights into the design of efficient TM sys-
tems for both non-blocking synchronization and speculative
parallelization.

Our analysis indicates the following trends. Most trans-
actions are small, hence the fixed overheads associated with
starting and ending transactions must be minimized. In-
terrupts and contexts switches can be handled with sim-
ple software mechanisms. The read-sets and write-sets
for most transactions fit in L1 caches. Long transactions,
particularly from speculative parallelization, require read-
/write-set buffering in the L2 cache as well. Since L2 over-
flows will be rare, complex hardware mechanisms for TM
virtualization are unnecessary and should be replaced by

software-only alternatives. Continuous transaction execu-
tion and speculative parallelization with transactions do not
require lower overheads per address read or written than
what is needed for non-blocking synchronization. Nested
transactions occur mostly in system code and limited hard-
ware support is likely to be sufficient. I/O operations within
transactions are also rare. The observed I/O patterns are
easy to handle through I/O buffering techniques.
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