
ABSTRACT
Transactional Coherence and Consistency (TCC) offers a way to 
simplify parallel programming by executing all code within trans-
actions. In TCC systems, transactions serve as the fundamental 
unit of parallel work, communication and coherence. As each 
transaction completes, it writes all of its newly produced state to 
shared memory atomically, while restarting other processors that 
have speculatively read stale data. With this mechanism, a TCC-
based system automatically handles data synchronization correctly, 
without programmer intervention. To gain the benefits of TCC, 
programs must be decomposed into transactions. We describe two 
basic programming language constructs for decomposing programs 
into transactions, a loop conversion syntax and a general transac-
tion-forking mechanism. With these constructs, writing correct par-
allel programs requires only small, incremental changes to correct 
sequential programs. The performance of these programs may then 
easily be optimized, based on feedback from real program execu-
tion, using a few simple techniques.

Categories and Subject Descriptors
C.5.0 [Computer System Implementation]: General.
D.1.3 [Programming Techniques]: Concurrent Programming 

— parallel programming.

General Terms
Performance, Design, Languages.

Keywords
Transactions, feedback optimization, multiprocessor architecture.

1. INTRODUCTION
With uniprocessor systems running into instruction-level parallel-
ism (ILP) limits and fundamental VLSI constraints [2], parallel ar-
chitectures provide a realistic path towards scalable performance by 
allowing one to take advantage of thread-level parallelism (TLP) in 
more explicitly distributed architectures. Single-board and single-
chip multiprocessors are becoming the norm for server [18, 31] and 
embedded [5] computing, and are starting to appear even on desk-

top platforms. Multiprocessor systems provide a good match to the 
coarse-grain parallelism available in applications such as enterprise 
services, bio-computing, telecommunications, and multimedia. 
Nevertheless, the key factor limiting the potential of parallel archi-
tectures is the complexity of parallel application development.

Existing parallel programming approaches require the programmer 
to manage concurrency directly by creating and synchronizing par-
allel threads. The difficulty stems from the need to achieve the often 
conflicting goals of functional correctness and high performance. 
With shared memory systems [25], a small number of coarse-grain 
locks makes it simpler to correctly sequence accesses to variables 
shared among parallel threads. On the other hand, more numerous 
fine-grain locks often allow higher performance by reducing the 
amount of time wasted by threads as they compete for access to the 
same variables, although the larger number of locks used usually 
incurs more locking overhead. A similar trade-off exists with mes-
sage-passing programming [10]. High performance requires early 
scheduling of all communication events, while correct execution 
requires a programmer to carefully match send and receive requests 
across threads, even for applications with dynamic and unpredict-
able communication patterns. Managing this trade-off makes paral-
lel programming more time-consuming and error-prone than writ-
ing an equivalent sequential program.

This paper introduces parallel programming techniques for transac-
tional coherence and consistency (TCC) systems [12]. TCC relies 
on programmer-defined transactions as the basic unit of parallel 
work, communication, memory coherence, memory consistency, 
and error recovery. TCC hardware speculatively executes trans-
actions in parallel using local buffering. After a transaction com-
pletes, the hardware commits all its writes to shared memory as 
an atomic unit. At this point, the writes become visible to other 
transactions, which may rollback due to dependency violations. 
TCC simplifies parallel hardware design by eliminating the need 
for cache line ownership tracking in the cache coherence protocol. 
It also replaces the need for numerous small, low latency messages 
for cache coherence with fewer large, high-bandwidth messages for 
atomic commit.

TCC simplifies parallel programming by eliminating the need for 
manual orchestration of parallelism using locks or messages. Pro-
grammers simply need to divide computation into potentially par-
allel transactions and then specify any ordering dependencies that 
must be observed between those transactions  ̓commits. TCC hard-
ware guarantees correct synchronization always occurs by auto-
matically restarting transactions on dependency violations. There-
fore, decomposing code into transactions is primarily a matter of 
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performance tuning, and not a matter of correct-
ness. The use of a single abstraction for paral-
lelism, communication, and synchronization 
also simplifies performance tuning by allowing 
programmers to use simple transaction statistics 
(violations, buffer requirements, overheads) to 
identify and remove performance bottlenecks. 

To our knowledge, this work is the first proposal 
for parallel programming using transactions as 
the central programmer abstraction for both par-
allelism and synchronization in a shared mem-
ory system, completely eliminating the need for 
locks and allowing for much more automated 
sequencing of parallel code regions. The spe-
cific contributions of this paper are:

Transactional programming constructs: We 
identify two methods for defining transac-
tions and specifying commit orders. The first 
one is appropriate for loop-based code, while 
the second one resembles general thread 
forking. The constructs can express ordered, partially ordered, 
and unordered commit successions. We show that the two con-
structs can express the parallelism in a diverse set of C and Java 
applications, ranging from array computations to an online serv-
er benchmark. 

Transactional performance tuning: We show how the program-
mer can tune application performance using feedback on trans-
action behavior (violations, buffering requirements, overheads) 
obtained during initial, unoptimized runs of the program. We 
propose a set of simple source code optimizations that can lead 
to additional performance improvements without affecting ap-
plication correctness.

High application performance: We use simulation to demon-
strate that, despite its simplicity, parallel programming with 
TCC allows excellent speedups for chip multiprocessor (CMP) 
across a range of 4–32 processors and board-level symmetric 
multiprocessor (SMP) systems for 4–8. 

The rest of the paper is organized as follows. Section 2 provides an 
overview of the operation of a TCC-based parallel system. Section 
3 introduces TCC programming techniques, and discusses correct-
ness and performance tuning. In Section 4, we demonstrate the use 
of the programming techniques in parallelizing a diverse set of ap-
plications. Section 5 discusses related work and we conclude in 
Section 6.

2. TCC HARDWARE OVERVIEW
Processors operating in a TCC-based multiprocessor continually 
execute speculative transactions, using a cycle illustrated in Fig-
ure 1a on multiprocessor hardware with additions similar to those 
depicted in Figure 1b. A transaction is a sequence of instructions 
marked by software that is guaranteed to execute and complete 
only as an atomic unit. Each transaction produces a block of writes 
which are buffered locally while the transaction executes and are 
then committed to shared memory only as an atomic unit, after the 
transaction completes. Once the transaction is complete, hardware 
must arbitrate system-wide for the permission to commit its writes. 

•

•

•

After this permission is granted, the processor can take advantage 
of high-bandwidth system interconnect to broadcast all writes for 
the entire transaction out as one large packet to the rest of the sys-
tem. Meanwhile, the local caches in other processors snoop on 
these store packets to maintain coherence in the system. Snoop-
ing also allows them to detect when they have used data that has 
subsequently been modified by another processor — a dependence 
violation. Combining all writes from the entire transaction together 
minimizes the latency sensitivity of this scheme, because fewer in-
terprocessor messages and arbitrations are required, and because 
flushing out the writes is a one-way operation. At the same time, the 
commit operation can also be leveraged to provide inherent syn-
chronization and a greatly simplified consistency protocol, since 
we have to control only the ordering between entire transactions 
instead of individual loads and stores. 

This continual cycle of speculative buffering, broadcast, and (po-
tential) violations, described in further detail in [12], allows us to 
replace both conventional coherence and consistence protocols:

Consistence: Instead of using rules that control ordering be-
tween individual memory reference instructions, as with most 
coherence schemes, TCC just controls ordering between trans-
action commits. This can drastically reduce the number of laten-
cy-sensitive arbitration and synchronization events required by 
low-level protocols in a typical multiprocessor system. Impos-
ing an order on the transaction commits and backing up uncom-
mitted transactions if they have speculatively read data modified 
by other transactions effectively lets the TCC system provide an 
illusion of uniprocessor execution to the sequence of memory 
references generated by software. As far as the global memory 
and software is concerned, all memory references from a trans-
action that commits earlier happened “before” all of the memory 
references of a transaction that commits afterwards, even if their 
actual execution was interleaved in time, because all writes from 
a transaction become visible to other processors only at commit 
time, all at once.

•
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Figure 1: a) A transaction cycle (time flows downwards) and 
b) a diagram of sample TCC-enabled hardware.
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Coherence: Stores are buffered and kept within the processor 
node for the duration of the transaction in order to maintain the 
atomicity of the transaction. No conventional MESI-style cache 
protocols are used to maintain lines in “shared” or “exclusive” 
states at any point in the system, so it is legal for many processor 
nodes to hold the same line simultaneously in either an unmodi-
fied or speculatively modified form. At the end of each trans-
action, the broadcast notifies all other processors about what 
state has changed during the completing transaction. During this 
process, the other processors perform conventional invalidation 
(if the commit packet contains only addresses) or update (if it 
contains addresses and data) to keep their cache state coherent. 
Simultaneously, they must determine if they may have used 
shared data too early. If they have read any data modified by the 
committing processor during their current transaction, they are 
forced to restart and update their copy of the data. This protects 
against true data dependencies. At the same time, data antide-
pendencies are handled simply by the fact that later processors 
will eventually get their own turn to flush out data to memory. 
Until that point, their “later” results are not seen by transactions 
that commit earlier (avoiding WAR dependencies) and they are 
able to freely overwrite previously modified data in a clearly se-
quenced manner (handling WAW dependencies in a legal way). 
Effectively, the simple, sequentialized consistence model allows 
the coherence model to be greatly simplified.

Transactional hardware hides many of the difficulties associated 
with parallel programming from typical programmers, but in order 
to get good performance programmers do need to keep a few basic 
goals in mind when dividing applications into transactions:

Minimize Violations: Programmers should try to avoid parallel 
transactions that read and write the same variables frequently, in 
order to avoid costly discarding of work that occurs after viola-
tions. Keeping transactions reasonably small, to minimize the 
amount of work lost when violations occur, can also help.

Minimize Transaction Overhead: On the other hand, very 
small transactions should generally be avoided when possible 
because of the overhead associated with starting, ending, and 
committing transactions.

Avoid Buffer Overflows: TCC hardware must buffer all writes 
made by a processor during a transaction. Our previous results 
in [12] indicate that most applications naturally divide into 
transactions of reasonable size, but when very large transactions 
occur it is possible to overflow the finite buffer space. While 
the system is always able to handle these situations correctly 
when they occur, simply by having the processor request access 
to the broadcast network and then hold it while writing through 
directly to memory for the remainder of the transaction, this can 
obviously have a negative impact on performance and should be 
avoided if possible.

Other than these few factors, which mostly affect performance 
tuning, programmers can generally ignore the hardware. This con-
trasts well against conventional parallel systems, where they would 
have to carefully consider issues such as the layout of data in the 
machineʼs memory, latency and bandwidth requirements for all 
communication, and other machine-specific factors that can have 
an impact on both correctness and performance. This allows them 
to focus more on writing correct code.

•

•

•

•

3. PROGRAMMING TECHNIQUES
TCC parallelization is a series of simple steps that requires only a 
few new programming constructs. This process is simpler than par-
allelization with conventional threaded models because it reduces 
the number of code transformations needed for typical paralleliza-
tion efforts. In particular, it allows programmers to make informed 
tradeoffs between programmer effort and performance. Basic par-
allelization can quickly and easily be done in a way that is guaran-
teed to be safe. Programmers can then use feedback obtained from 
violation reports produced during initial parallel program execution 
to insert program refinements and constraint relaxation in order to 
get significantly greater speedups. In a simplified form, program-
ming with TCC can be summarized as a three-step process:

Divide into Transactions: The first step in the creation of a par-
allel program using TCC is to coarsely divide the program into 
blocks of code that can run concurrently on different proces-
sors. In this respect, parallelizing for TCC is very similar to con-
ventional parallelization, which also requires that programmers 
find and mark parallel regions. However, the actual process is 
simpler with TCC because the programmer does not need to 
guarantee that parallel regions are independent, since the TCC 
hardware will catch all dependence violations during execution. 
The interface presented in this section allows programmers to 
divide their program into parallel blocks on loop iterations and 
by forking of transactions. Currently, our interface supports only 
“flat” transactions, and not “nested” ones [9].

Specify Order: The default ordering for transactions is to have 
them commit results in the same order as the original sequen-
tial program, since this guarantees that the program will execute 
correctly. However, if a programmer is able to verify that this 
commit order constraint is unnecessary, then it can be relaxed 
completely or partially in order to provide better performance. 
The interface also provides ways to specify the ordering con-
straints of the application in useful ways.

Performance Tuning: After transactions are selected and or-
dered, the program can be run in parallel. The TCC system can 
automatically provide informative feedback about where viola-
tions occur in the program, which can direct the programmer to 
perform further optimizations.

While the interface is described in C, it should be noted that these 
constructs can be readily adapted to any programming language 
(for example, we have also adapted it to Java) in order to allow it to 
take advantage of TCCʼs features.

3.1. Loop-Based Parallelization
The parallelization of loops will be introduced in the context of a 
simple sequential code segment that calculates a histogram of 1000 
integer percentages using an array of corresponding buckets:

 int* data = load_data(); /* input */
 int i, buckets[101];

 for (i = 0; i < 1000; i++) {
  buckets[data[i]]++;
 }

 print_buckets(buckets); /* output */

•

•

•



The compiler interprets this program as one transaction, so it ex-
poses no parallelism to the underlying TCC hardware. The obvious 
candidate for parallelization is the for loop.

 . . .
 t_for (i = 0; i < 1000; i++) {
 . . .

The only thing that changed is the for loop keyword, which has 
been replaced with its transactional version, t_for. With this 
small change, we now have a parallel loop that is guaranteed to 
execute the original sequential code correctly. Each iteration of the 
loop body will now become a separate transaction that will commit 
in the original sequential order, in a pattern like that in Figure 2a. 
This behavior preserves the original sequential order of the code by 
defining an ordering between the transaction commits. Although 
a later iteration may run in parallel with an earlier one, it cannot 
commit its transaction out of order. Therefore, if an earlier iteration 
updates a histogram bucket which is also updated by later itera-
tions, when the earlier iteration commits, the TCC hardware will 
catch any dependence violations with data used by the “later” par-
allel iterations and restart them, forcing them to re-execute using 
updated data in order to preserve the original sequential semantics. 
For example, there may occasionally be collisions during access 
to the histogram bins in this program. TCC will handle these auto-
matically, without any extra code. 

The programmer ease-of-use of this paradigm compares favor-
ably with similar schemes previously proposed. It is similar to 
the thread-level speculation (TLS) pfor construct [29], but does 
not allow forwarding of modified data between active speculative 
transactions. A conventionally parallelized system, however, would 
require an array of locks to protect the histogram bins, resulting in 
our example growing to something much uglier, with significant 
locking code, like this:

 int* data = load_data();
 int i, buckets[101];

 /* Define & initialize locks */
 LOCK_TYPE bucketLock[101];
 for (i = 0; i < 101; i++) {
  LOCK_INIT(bucketLock[i]);
 }
 for (i = 0; i < 1000; i++) {
  LOCK(bucketLock[data[i]]);
  buckets[data[i]]++;
  UNLOCK(bucketLock[data[i]]);
 }
 print_buckets(buckets);
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Figure 2: Illustrations of scheduling for transactional loops, 
chunked loops, and a simple fork example. The numbers in cʼs 

transactions are sequence:phase.

Unlike the TCC version, if any of this locking code is 
omitted or buggy, then the program may fail—and not 
necessarily in the same place every time—significantly 
complicating debugging. Debugging is especially hard if 
the errors only happen for patterns of memory accesses 
that occur only rarely, due to non-deterministic interpro-
cessor timing. The situation is potentially even trickier 
if multiple locks need to be held simultaneously within 
a critical region, because one must be careful to avoid 
locking sequences that may deadlock [25]. It is clear that 

TCC can both simplify the parallelization of loops and reduce the 
runtime overhead associated with conventional locking and syn-
chronization structures—since they largely disappear.

However, this simple application of TCC will not always result in 
good performance, so further modification may be desired. The first 
problem in this example stems from the size of the loop transac-
tions. We now have 1002 transactions, one for the code before the 
loop, 1000 for the loop iterations, and 1 for the code after the loop. 
However, the loop body transactions are very small. To amortize 
the overheads associated with starting and ending transactions, 
t_for can be replaced with t_for_n, where the “n” allows the 
number of iterations to be included in a transaction to be specified 
by the programmer:

. . .
t_for_n (i = 0; i < 1000; i++; 20) {
. . .

Now we we have “chunked” 1000 transactions into 50 transactions, 
each executing 20 iterations of the original loop, for a total of 52 
transactions, as is depicted in Figure 2b. This type of transformation 
is equivalent to unrolling the original loop and applying a t_for 
to the unrolled loop. A compiler or runtime environment should 
be able to perform this optimization automatically, since merging 
transactions while preserving ordering always maintains program 
correctness. By specifying the unrolling factor as a variable expres-
sion, the degree of “chunking” may even be set at run time, in re-
sponse to characteristics of the input dataset.

Although sequential ordering is generally useful because it guaran-
tees correct execution, in some cases—such as this histogram ex-
ample—it is not actually required for correctness. In this case, there 
are no dependencies among the loop transactions except through 
additions to histogram elements, which is an associative operation 
that does not demand any particular ordering. When programmers 
can determine that this is the case, they can use slight variations 
on the basic t_for construct, t_for_unordered and t_for_
unordered_n, to allow the main loop body transactions to run 
and commit in any order. While the transaction lengths are equal 
in this example, allowing unordered commits is most useful when 
the transaction lengths are dynamically variable, because it will 
decrease unnecessary time spent waiting for commit permission 
between transactions.

The test clause of any t_for_unordered has an additional 
requirement that it must be possible to determine the termination 
result in a distributed manner, so that all processors will be able 
to detect it, no matter what order they complete. For example, in a 
loop with an i++ incrementor, a test clause of “i < 1000” 
would be fine, since all processors will detect the end-of-loop con-
dition after i reaches 1000, but “i != 1000” would result in only 



a single processor detecting the termination condition because i 
would subsequently be incremented to 1001.

For loops with an indeterminate number of loop iterations, there 
is also a t_while loop structure, which is similar to a standard 
while loop, and comes in the same four flavors as t_for, with 
the same restrictions:

t_while<_mode> (i < 1000) {
 . . . is equivalent to . . .
t_for<_mode> (; i < 1000;) {

3.2. Fork-Based Parallelization
While most sequential programs can be easily divided into paral-
lel transactions using only the simple parallel loop API, there are 
some less structured programs that need to generate transactions 
in a more flexible manner. Therefore, in addition to the loop par-
allelization, the TCC programming interface provides t_fork, 
a transactional fork similar to most conventional thread creation 
APIs. The interface is centered around a standard C function that 
starts a new, parallel transaction:

void t_fork(void (*child_function_ptr)(void*),
 void *input_data,
 int child_sequence_num,
 int parent_phase_increment,
 int child_phase_increment);

/* Which forks off a child function of the form: */
void child_function(void *input_data);

This call forces the “parent” transaction to commit, to guarantee 
that we cannot roll back and “cancel” the t_fork, and then cre-
ates two completely new, parallel transactions. One (the “new par-
ent”) continues execution of the code immediately following the 
t_fork, while the other (the “child”) starts executing a child_
function-style function at child_function_ptr with the 
input pointer input_data. Other input parameters control order-
ing of forked transactions in relation to other transactions, and are 
discussed in more detail below in Section 3.3.

To demonstrate this function, consider a simple example where we 
want to simulate a two stage processor pipeline in parallel. This is 
simulated using the functions opcode = i_fetch(PC) for 
instruction fetch, increment_PC(opcode, PC) to adjust the 
PC and handle branching, and execute(opcode) to execute 
other instructions. The “child” transaction executes each instruc-
tion while the “new parent” transaction goes ahead and fetches the 
next one:

 /* Define an ID number for the EX sequence */
 #define EX_SEQ 1

 /* Initial setup */
 int PC = INITIAL_PC;
 int opcode = i_fetch(PC);

 /* Main loop */
 while (opcode != END_CODE)
 {
  t_fork(execute, &opcode, EX_SEQ, 1, 1);
  increment_PC(opcode, &PC);
  opcode = i_fetch(PC);
 }

This example creates a sequence of overlapping transactions like 
those in Figure 2c. While it is more complicated to use than the 
looping structures, t_fork gives enough flexibility to divide a 
program into transactions in virtually any way. It can even be used 
to build the various t_for and t_while constructs, although 
those are useful so often that it is helpful to have the fundamental 
constructs described previously.

3.3. Explicit Transaction Commit Ordering
When using fork-based parallelization and some loop-based paral-
lelizations, the simple “ordered” and “unordered” ordering modes 
may not be sufficient. For example, a programmer may desire a 
parallel loop that is only partially ordered, executing unordered it-
erations most of the time, but occasionally forcing one transaction 
or another to complete before others. In our experience with loop-
based TCC programming, these ordering requirements are usually 
rare, but support must be provided for the occasional exception. On 
the other hand, forked transactions usually require explicit ordering 
of some sort.

In order to provide ordering support, we define a simple interface 
that controls transaction ordering by assigning two parameters to 
each transaction: the sequence and phase of transactions. These are 
two numbers assigned to each transaction that control the ordering 
of transaction commits. The sequence specifies which transactions 
require that commits must be ordered in relation to each other (i.e., 
have the same sequence ID number) and which are completely 
independent in their ordering (i.e., have a different sequence ID). 
The child_sequence_num parameter in a t_fork call can 
be used to produce two sequence groups of transactions that are 
ordered independently. When this is a positive integer, a “child” 
transaction with the new sequence number is produced, while the 
“new parent” transaction continues to use the old sequence number. 
Alternatively, the “child” and “new parent” may also be kept within 
the same ordering sequence using the T_SAME_SEQUENCE con-
stant. Within each sequence, the phase indicates the relative “age” 
of each transaction. TCC hardware will only commit transactions 
in the oldest active phase (lowest value) from within any sequence 
that is executing on the system. Using this notation, an ordered loop 
is just a sequence of transactions with the phase incremented by 
one every time, while an unordered loop has transactions all with 
the same phase number.

Unlike the simpler loop constructs, a t_fork call allows com-
plete control over the phase of the subsequent new parent and 
child transactions using the parent_phase_increment and 
child_phase_increment parameters, respectively. For the 
new parent transaction, this value is always a phase increment over 
the phase of the parent. For the child, this can either be a phase 
increment over the parent, if we use the T_SAME_SEQUENCE con-
stant for selecting the sequence, or over the phase of the youngest 
active transaction already present within the childʼs sequence, if 
a sequence is explicitly supplied. For example, in the instruction 
simulator example from Section 3.2, we specified a phase incre-
ment of 1 for the “new parent” to ensure that the PC increments 
performed by the various “parent” transactions were all ordered 
properly within the parent sequence, and also specified an incre-
ment of 1 for the “children” so the various EX stages were required 
to commit their results to memory in the order they were forked 
within the separate EX_SEQ sequence.



More arbitrary phase ordering of transactions can also be imposed 
using the following two calls:

 void t_commit(int phase_increment);
 void t_wait_for_sequence(int phase_increment, 

int wait_for_sequence_num);

The t_commit routine implicitly commits the current transaction, 
and then immediately starts another on the same processor with 
a phase incremented by the phase_increment parameter. The 
most common phase_increment parameter used is 0, which 
is simply used to take a new checkpoint and to flush out the write 
buffers, at the programmerʼs request. However, it can also be used 
with a phase_increment of 1 or more in order to force an ex-
plicit transaction commit ordering. One use for this is to emulate 
a conventional barrier among all transactions within a sequence 
using transactional semantics. Unlike normal barriers, deadlock is 
not possible with this interface, as the “oldest” transaction in the se-
quence can always commit. Of course, these t_commits can still 
cause “fast” processors to stall while waiting to commit the transac-
tion following the t_commit, potentially reducing performance. 
This stall time is usually much less than that caused by conven-
tional barriers, however, due to the fact that processors only stall if 
they get more than a full transaction ahead of their slower partners. 
In essence, these “transactional barriers” automatically act like the 
speculative barriers described in [26].

The t_wait_for_sequence call performs the same func-
tion as a t_commit, but also waits for all transactions within the 
wait_for_sequence_num sequence to complete before start-
ing the next new transaction in the callerʼs sequence. This call is 
usually used to allow a “parent” sequence of transactions to wait 
for a “child” sequence to complete, similar to a thread join in 
conventional parallel programming. For example, the instruction 
simulator example from Section 3.2 requires the following code 
within the increment_PC routine to ensure that data-dependent 
branches are properly executed:

  if (opcode == ANY_BRANCH_INSTRUCTION)
 {
  t_wait_for_sequence(1, EX_SEQ);
  execute_branch(opcode, &PC);
 }
 else
  PC = PC + 1;

In this case, if the instruction is a branch, then the “parent” trans-
action sequence, which is handling the PC increments, is forced 
to wait until all previously initiated instruction simulations in the 
EX_SEQ sequence have completed, so that the branch instruction 
may only execute with the properly updated input values. For the 
common case of a non-branch instructions, however, the parent 
and child instruction sequences are allowed to commit transactions 
asynchronously, allowing us to take advantage of possible parallel 
speedup.

3.4. Performance Tuning
After a programmer divides a program into transactions with the 
fundamental TCC language constructs, most problems that occur 
will tend to be with performance, and not correctness. Since trans-
actions automatically ensure that accesses to variables occur atomi-
cally, the only two ways that a programmer can write an incorrect 

TCC program are either by relaxing commit scheduling constraints 
too much or by accidentally putting a transaction break in the mid-
dle of a critical region. The former error can be avoided simply by 
always using explicitly ordered transactions if there is any doubt 
as to whether or not transactions can be safely executed in an un-
ordered manner. Conventional parallel programming requires not 
only that one avoid breaking critical regions, but also that all criti-
cal regions be explicitly marked with locking code, a much more 
error-prone task than the TCC alternative.

Because it is very easy to get a program to at least run in parallel 
under TCC—although perhaps inefficiently—the usual way that 
TCC programs are optimized is to use actual execution to test ini-
tial parallelization attempts. Results from these initial runs can then 
provide useful feedback to aid further optimization through reports 
summarizing all violations that occur. These violation reports sum-
marize time lost to transaction pairs causing conflicts, including in-
formation about the individual load-store pairs and data addresses 
that are violating. These addresses can be fed into a symbolic de-
bugging environment like gdb to determine which variables and 
variable accesses caused the violations. This report can be summa-
rized based upon the amount of execution time lost to each viola-
tion in order to prioritize and pinpoint the most important violation 
problems. This information tells programmers exactly which vari-
ables—and even which accesses to them—are limiting parallelism, 
unlike current shared memory systems, that tend to give feedback 
mostly in terms of coherence protocol statistics. This information 
can greatly increase programmer productivity by automatically di-
recting programmers to the data dependencies that cause the most 
violations between transactions, instead of making them pore over 
all of the code in a program to determine the critical dependen-
cies manually. Just as helpful, programmers may simply choose 
to ignore minor dependencies that only occur rarely, leaving these 
unimportant dependencies for the transactional hardware to handle 
with an occasional violation when they do occur. Information about 
load imbalance is also reported in terms of the time spent waiting at 
the end of each transaction defined by the source code.

Violation and waiting reports from initial program runs might lead 
only to some fine tuning of how certain variables are used, or it 
could lead to more major code changes. A common technique is to 
simply combine small transactions into larger ones (usually using 
the _n options). The program might also need some minor code 
restructuring to remove false sharing between transactions or code 
motion to allow better partitioning of transactions in order to avoid 
load imbalance or to reduce the amount of serial code between par-
allel regions, since a TCC system is still subject to Amdahlʼs law 
speedup limitations from such code. During the course of paral-
lelizing several applications, we also found that several common 
techniques were very useful, many adapted from ones also used 
during traditional parallelization:

Reduction Privatization: Operations that reduce values to a loop-
carried sum variable are frequently used within loops that are oth-
erwise good targets for transactional parallelization. These opera-
tions show up in our statistics through frequent violations on the 
sum variable. However, many of the operations are associative, 
such as addition, multiplication, and minimum/maximum, and can 
therefore be reordered to maximize parallelism. By privatizing the 
sum variable within each processor and only combining these vari-
ables to a sequential sum after the end of the loop, significant paral-



Table 1: Key parameters of our simulations. All cycle values 
are in CPU cycles.

Sys-
tem Description

Inter-CPU 
Bandwidth

(bytes/cycle)

Commit 
Overhead

(cycles)

Violation 
Delay 

(cycles)

Ideal “Perfect” TCC multi-
processor

∞ 0 0

CMP Realistic multiproces-
sor, if on a single chip

16 5 0

SMP Realistic multiproces-
sor, if on a board

4 25 20

lelism can be exposed. This is a process that can often be automated 
in floating-point applications. The low-level runtime environment 
needs to provide only a pair of functions that return system param-
eters (int t_processor_count() and int t_proces-
sor_id()) to support this functionality.

Shared Buffer Privatization: While our TCC compilation and 
hardware could automatically privatize most stack variables, some 
loops use large temporary buffers elsewhere in memory. In these 
cases, it may be necessary to allocate N buffers for N parallel pro-
cessors in order to avoid spurious violations when unrelated vari-
ables are allocated at the same addresses within a shared buffer. 
The same techniques used to generate privatized sum variables for 
reductions can also be used to provide private temporary buffers. 
Hardware, compiler, or runtime environment support to automate 
privatization is a topic for further research. Without this support, it 
was necessary to manually privatize some buffers in our selection 
of applications.

Loop Level Adjustment: We may choose to parallelize at different 
levels of loop nests in order to take advantage of the characteristics 
that different levels may offer. Outer loops provide large granular-
ity, but can sometimes get too large, because realistic TCC systems 
have finite amounts of per-transaction buffering. Inner loops can 
often be too small to effectively use without combining iterations, 
due to startup/commit overheads. Either may have critical loop-car-
ried dependencies that prevent it from being a good target.

Loop Fusion/Fission/Renesting: In order to help make better trans-
actions, any of these common parallelizing compiler tricks that ad-
just the execution pattern of loops may prove helpful. While the 
techniques are the same, the patterns used are usually somewhat 
different, with “optimal” transaction sizes being the usual goal.

Splitting Transactions into Transactional Groups: Normally, trans-
actions do not commit results until after they complete entirely. 
While this is often desirable behavior, there are times when it is 
more helpful to break “obvious” transactions, such as loop itera-
tions, into two or more parts. This can be performed simply by us-
ing a t_commit(0) call to break the transaction into two smaller 
transactions. We call the resulting transactions, that are forced to 
execute one after another on the same processor, a “transactional 
group.” Because other, parallel transactions may commit results 
between the hardware transactions within a transactional group, 
the programmer must ensure that no t_commits are placed in the 
middle of critical regions of the code that must execute atomically, 
or incorrect execution may result. Despite this limitation, we found 
that this technique was quite helpful in solving three different kinds 
of problems. First, inserting a t_commit takes a new rollback 
checkpoint, limiting the amount of work that can be lost if a viola-
tion occurs. This can be very important for applications with long 
“obvious” transactions and frequent violations. Second, flushing 
out the write state clears the TCC write buffer associated with the 
processor. If an applicationʼs transactions tend to produce a lot of 
data, then judicious t_commit operations can prevent the system 
serialization and slowdown that would otherwise occur when write 
buffers overflow. Finally, it may be desirable to update changes to 
global memory as early as possible, and a t_commit can flush 
out new changes to the globally visible state at any point within a 
transactional group, providing a sort of “forwarding” of modified 
data to other transactions running in parallel.

4. PERFORMANCE EVALUATION 
In order to evaluate the utility of the transactional programming 
constructs, we used them to parallelize C and Java applications from 
a variety of domains. Then, we used simulation to evaluate and tune 
their performance for large and small-scale TCC systems. 

4.1. Methodology
Our evaluation infrastructure includes an execution-driven simu-
lator that models a processor that executes at a fixed rate of one 
instruction per cycle. The simulator produces an execution trace 
for all transactions in the program, including ones from sequential 
code regions, and captures statistics for all loads and stores except 
for stack references, which are guaranteed to be private within each 
transaction. We then use a trace analyzer to simulate the behavior 
of running transactions in parallel on a parameterized TCC system 
that includes multiple processors (4–32) connected through a net-
work that supports broadcasts (e.g., a bus). We do not model fur-
ther details of the core processor pipeline in this study because the 
TLP-oriented benefits of TCC parallelization are fairly orthogonal 
to the acceleration of each individual transactionʼs execution that 
occurs when using ILP techniques within individual processors. As 
a result, ILP-based execution of individual transactions faster (or 
slower) than 1.0 instructions per cycle should simply improve (or 
decrease) TCC system performance proportionally, at least until the 
available commit packet broadcast network is saturated, when no 
further improvement from either ILP or TLP is possible. In addi-
tion to varying the number of processors, we also vary the value of 
three key TCC system parameters: the amount of bandwidth avail-
able on the network, the overhead of arbitration for commit order, 
and the latency of violation recovery. Table 1 presents the values 
selected for the parameters in order to describe three potential TCC 
configurations: ideal (infinite bandwidth, zero overheads), single-
chip/CMP (high bandwidth, low overheads), and single-board/SMP 
(medium bandwidth, higher overheads). 

Table 2 presents the applications used for this study and the trans-
action programming constructs employed to parallelize them. We 
selected these applications because they represent a diverse set of 
concurrency patterns including dense loops (LUFactor), sparse 
loops (equake), task parallelism (SPECjbb), and producer-con-
sumer parallelism (MPEGdecode). This diversity is important to 
assess the usefulness and completeness of TCC programming. For 
the Java applications, we used the Kaffe JVM [38] within the ex-
ecution driven simulator.

The Kaffe JVM required some simple modifications to be trans-
action friendly. We removed Java monitors used for synchronized 



Table 2: Characteristics of applications used for our analysis.

Source
Language Benchmark Application Description Source Input

Lines of 
Code

Primary TCC
Parallelization

Java Assignment Resource allocation solver jBYTEmark [6] 51x51 array 556 Loop: 2 ordered, 9 
unordered

MolDyn N-body code modeling 
particles

Java Grande [17] 2048 particles 615 Loop: 9 unordered

LUFactor LU factorization and trian-
gular solve

jBYTEmark [6] 101x101 matrix 516 Loop: 2 ordered, 4 
unordered

RayTrace 3D ray tracer Java Grande [17] 150x150 pixel 
image

1,233 Loop: 9 unordered

SPECjbb Transaction processing 
server

SPECjbb [34] 230 iterations 
w/o random

27,249 Fork: 5 calls (one per 
transaction type)

C art Image recognition / neural 
network

SPEC2000 FP [35] ref.1 1,270 Loop: 11 unordered 
& chunked

equake Seismic wave propagation 
simulation

SPEC2000 FP [35] ref 1,513 Loop: 3 unordered

tomcatv Vectorized mesh generation SPEC95 FP [35] 256x256 346 Loop: 7 unordered
MPEGdecode Video bitstream decoding Mediabench [24] mei16v2.m2v 9,834 Fork: 1 call

Table 3: Summary of optimizations used in our applications. Results are for the 8 processor CMP configuration.

Benchmark Optimization

Cumulative
Lines 

Changed
Cumulative 

Speedup
Useful 

%
Wait 

%
Violate 

%
Idle 
%

Median / Mean 
Transaction Size 

(instructions)

75% Write 
State (64B 

lines)

Assignment Base 11 2.58 32.3 11.9 51.9 4.0
850 1097

1
+ unordered 20 2.75 34.4 3.7 55.3 6.6 1
+ private reductions 32 6.46 80.8 9.7 — 9.5 1

MolDyn Base 4 5.93 74.1 8.6 1.9 15.4
76 77

0
+ unordered 8 6.33 79.1 2.0 2.0 16.8 0
+ private reductions 20 6.46 80.8 2.1 — 17.2 0

LUFactor Base 6 5.03 62.9 9.3 15.9 12.0
44 459

2
+ unordered 10 5.24 65.5 7.3 14.4 12.9 2

RayTrace Base 1 3.73 46.6 19.0 0.4 34.0
147 167

2
+ unordered 2 4.28 53.5 3.2 1.3 42.0 2
+ private reductions 6 4.48 56.0 3.4 — 40.6 2

SPECjbb Base + objCount 13 1.87 23.4 — 37.7 38.9 — 148,244 195
+ privatization 33 3.87 48.4 0.1 46.3 5.2 — 144,054 190
+ two t_commit 35 5.62 70.3 0.2 22.9 6.6 — 76,728 94

art Base (chunked loop) 11 1.05 13.1 1.8 82.4 2.8
1880

1777 33
+ private reductions 101 6.21 77.6 9.1 — 13.3 1781 33
+ loop fusion 113 6.91 86.4 0.6 — 13.0 2065 33

equake Base 6 3.60 45.6 0.4 54.0 —
130

471 2
+ t_commit 8 7.38 91.2 4.6 4.2 — 146 1
+ loop fusion 12 7.49 91.5 4.2 4.3 — 131 180 1

tomcatv Inner loop (chunked) 16 2.26 28.3 4.6 57.9 9.2 59 88 3
Outer loop 7 7.83 97.9 0.3 — 1.8 12,268 14,584 97

MPEG-decode Base + prescanning 454 5.89 73.6 17.1 0.1 9.2 — 626,060 154



objects, because transactions can be used to inherently guarantee 
atomic access. We also modified memory allocation routines to 
eliminate the chance of spurious violations caused by multiple pro-
cessors accidentally allocating the same portion of the heap as dif-
ferent data objects simultaneously. This just required dividing the 
otherwise shared heap into separate “allocation pools” for each pro-
cessorʼs memory routines, a change that is also necessary to build 
efficient non-transactional parallel memory allocation routines.    

4.2. Application Studies
Table 3 presents the performance results for the 8 processor CMP 
configuration. For each benchmark, it lists the number of lines 
changed and the speedup over a single processor system. Figure 
3 shows the same speedups graphically, along with ones for CMP 
configurations with different numbers of processors. Table 3 and 
Figure 4 also break down the average execution time on each pro-
cessor into time executing useful transactions, time waiting for 
transactions to commit, time spent on transactions that violate, and 
time idling due to lack of parallelism (i.e. sequential code). We also 
list the 75th percentile of the buffer space required for a transaction 
(reported in 64-byte cache lines). Most applications require less 
than one Kbyte of write buffer. However, even the largest transac-
tions for an unoptimized version of SPECjbb require less than 32 
KBytes, which are reasonable to implement in modern processors. 
Further analysis of buffer space requirements is in [12].

Table 3 and the two figures include both the baseline results and 
those after applying optimizations described in Section 3. The base-
line results show significant speedup with minimum modifications 
to the sequential code, but are typically not optimal. We obtained 
feedback information about transaction violations and overheads 

from the baseline TCC runs and used it to focus performance tuning 
on transactions with problematic behavior. The optimized applica-
tions achieve speedups ranging from 4.5 to 7.8 on an 8 processor 
CMP-configuration TCC system. The main contribution of the op-
timizations was to reduce the amount of time lost to violations, to 
adjust transaction sizes, and/or to limit buffer requirements. Note 
that the optimizations required that less than 5% of the original 
sequential source code lines be modified in all applications except 
assignment and art, which required slightly more.  

The following sections discuss our insights on parallelizing and 
optimizing each application. The analysis is broken up into four 
parts, based on input source language (Java or C) and the type of 
parallelization (loop or fork) used.

4.2.1. Automatically Parallelized Java Loops
We automatically parallelized loop-based Java applications us-
ing the Jrpm dynamic compilation system [7]. Jrpm used ordered 
transactional loops in all cases. After examining the initial results 
from the ordered loops, we focused on the most significant loops to 
determine whether they could safely be executed in an unordered 
manner. Where possible and safe, we guided Jrpm to use unordered 
loops for performance improvement. Finally, after successfully 
parallelizing each application with Jrpm, we simulated each bench-
mark on top of the modified Kaffe JVM described in Section 4.1.

Assignment: This application includes largely parallel loops with 
only occasional dependencies, which are difficult to analyze stati-
cally using a conventional compiler. Most loops are 2-level nested. 
Jrpm usually generated transactions from the outer loop, because 
the inner loops were typically too small to parallelize. The baseline 
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Figure 3: Improvements in CMP configuration speedup provided by the various optimizations, for varying numbers of processors. 
The 8-processor column graphs values from column 4 of Table 3.

Figure 4: How the time breakdowns changed as optimizations were applied to the 8-processor CMP configuration. These are the 
values from columns 5–8 of Table 3, in graphical form.



speedup with ordered transactions is 2.58. Reduction privatization 
eliminates nearly all transaction violations and boosts speedup to 
6.46. Reduction privatization is even more critical for greater num-
bers of processors, as the length of the critical dependency arcs 
imposed by the unmodified reduction limits speedups to less than 3, 
no matter how many processors are used. Higher speedup cannot be 
achieved primarily due to sequential portions of the application. 

MolDyn: Moldyn includes parallel loops with infrequent dynamic 
dependencies. The most significant optimization was loop chunk-
ing due to the small size of loop iterations. Jrpm automatically per-
formed chunking in the baseline version. Unordered transactions 
and reduction privatization provide small additional benefits. 

LUFactor:This application contains many parallel loops, with two 
of them dominating the execution time. Unlike most other applica-
tions in our suite, the lengths of the transactions within each paral-
lel loop varies significantly. Both have loop-carried dependencies, 
but the distance is large enough so that it only limits performance 
for large processor counts. 

RayTrace: This application spends most of its time in a single loop. 
Unordered transactions and reduction privatization provide some 
improvement over the baseline speedup. Nevertheless, the overall 
speedup (4.48) is limited by the large sequential code regions.  

4.2.2. Java with Forking: SPECjbb
SPECjbb is a server-side Java benchmark that simulates order pro-
cessing in a 3-tier enterprise system. Its execution is divided up 
into separate “warehouses,” which are essentially explicitly paral-
lel. Hence, parallelization across warehouses is trivial for all kinds 
of parallel systems, including TCC. For this study, we parallelized 
SPECjbb within each warehouse, which is much more difficult with 
traditional means. Each warehouse involves task-queue processing 
with hard-to-analyze dependencies through inventory records. The 
main loop of SPECjbb for a warehouse iterates over five task types: 
new orders, payments, order status, deliveries, and stock levels. 
New orders and payments are weighted to occur ten times more 
often than other tasks, and the actual order of transactions is ran-
domized. We parallelized this loop by generating unordered trans-
actions for each task using the fork mechanism, achieving an initial 
speedup of 1.87.

Feedback-based tuning of this application consisted of several dif-
ferent steps targeting idle time reduction and removal of violations. 
The first step removed some remnants of an unnecessary object 
counter that caused spurious violations. We also found two key 
variables that needed privatization in order to work well in an unor-
dered manner. The first was the seed to the random number genera-
tor used to generate tasks. The second was scratch-space objects, 
which were reused from one task to the next in the original code 
in order to avoid memory allocation. Finally, we found two oppor-
tunities where the judicious use of t_commit allowed us to split 
payment and new order tasks into two transactions, one for inven-
tory processing and one for output display formatting. Because of 
the large size of transactions in SPECjbb, the smaller transactions 
that were created by this splitting significantly reduced the amount 
of useful work that was discarded when violations did occur, a fac-
tor that was especially critical with larger numbers of processors. 
Splitting also had the additional benefit of reducing write buffer 
requirements for the application by about half.

4.2.3. Manually Parallelized C Loops
We parallelized three SPEC floating-point applications with loop 
level parallelism. All three have nested loops of various depths that 
can be parallelized using variations of t_for. 

art: This program first trains a neural network and then uses it to 
match images. Both of its phases iterate over a routine that includes 
a five-level nested loop that computes the output of the neural net-
work. We parallelized the loops that iterate over neurons in the F1 
layer because all other loop levels had limited parallelism or loop-
carried dependencies. These loops contain critical reduction vari-
ables, hence significant speedups were achieved only after privatiz-
ing reductions. Loop fusion provided some additional improvement 
for an overall speedup of 6.91. The use of unordered transactions, 
while possible, did not provide any significant benefits for this ap-
plication. 

equake: This benchmark consists of series of loops operating on 
a sparse matrix. The baseline version used unordered transactions 
to automatically handle load balancing across transactions and 
achieved a speedup of 3.60. The main optimization for equake was 
transaction splitting, which reduced the frequency of violations, at 
the cost of an increase in commit overhead due to the significantly 
shorter transactions. To counter this, we fused loops together where 
possible to lengthen the transactions again, achieving a slight in-
crease in performance that became more significant with larger 
numbers of processors. The overall speedup was 7.49. 

tomcatv: This application includes five two-level nested loops that 
operate on the entire mesh. The inner loops require ordered transac-
tions to handle the loop-carried dependencies correctly, which tend 
to limit performance to less than 3 no matter how many processors 
are used. Outer loops, on the other hand, can be parallelized with 
unordered transactions, leading to near perfect speedup. The draw-
back of outer-loop parallelization is that the large transactions need 
larger write buffers, which could be an issue with larger datasets 
since the size of these outer loop transactions is proportional to the 
size of the input array. 

4.2.4. C with Forking: MPEG-2 Decode
MPEG-2 decode exhibits non-trivial concurrency patterns with 
complex dependencies. Its code iterates over frames, slices, and 
macroblocks. At the macroblock level, parallelism is too fine-
grained and is better targeted by ILP techniques in each processor. 
On the other hand, parallelizing at the frame level would exceed 
buffer limitations in most reasonable TCC systems. Hence, we par-
allelized at the slice level, which results in very large transactions, 
but ones that are still feasible because they write out only a reason-
able amount of state (less than 10KB, allocated as 64-byte lines) 
and do not have any dependencies. 

The primary difficulty in MPEG-2 decode is the sequential depen-
dencies due to the use of the variable-length codes in the input bit-
stream. Until a slice has been decoded, the starting position of the 
next one is unknown. This behavior lends itself naturally to fork-
ing, where a serial parent does bitstream decoding and then forks a 
transaction to process the decoded data for each slice. This follows 
the same model as the example in Figure 2c, with the bitstream 
decoding in the IF blocks and data processing in the EX blocks. To 
reduce the serialization effect due to sequential bitstream decoding, 
we also applied a prescan algorithm that requires the sequential 



parent to identify only slice boundaries, and not fully decode the 
input bitstream [4]. The overall speedup for MPEG-2 decode was 
5.89, with most of the source code changes going into implement-
ing the prescanning algorithm. 

4.3. Overall Performance
Figure 5 presents the best achieved speedups for three configura-
tions of a TCC system (ideal, CMP, SMP) with the number of pro-
cessors ranging from 4 to 32. Figure 6 complements these results 
with the final execution time breakdown for all different processor 
counts in the case of the CMP configuration. 

For six out of nine benchmarks (Assignment, LUFactor, RayTrace, 
SPECjbb, tomcatv, and MPEG-2 decode), CMP performance close-
ly tracks ideal performance for all processor counts. All six applica-
tions achieve speedups of 8 or above with 16 processors. LUFactor 
and SPECjbb are limited for large processor counts by a combina-
tion of unavoidable violations and some regions that lacked enough 
parallelism for the increased processor count, causing extra proces-
sors to idle. Assignment and RayTrace are mostly limited by the 
large sequential code regions, which result in an immense amount 
of processor idle time with larger numbers of processors. On the 
other hand, tomcatv scales perfectly to 32 processors, with only 
small increases in idle and waiting time and virtually no transaction 
violations. Finally, MPEG-2 decode speedup flattens at 16 proces-
sors, because in our sample input stream there were only 16 slices 
per frame, so any additional processors were idle. Overall, these 
results demonstrate that high performance can often be achieved 
with TCC through only minor modifications to sequential code.

For MolDyn, art, and equake, the ideal configuration has a signifi-
cant advantage over the CMP configuration for the 32 processor 
case. As shown in Figure 6, the 32-processor CMP configuration 

incurs a large amount of waiting time. In this case, it is not due to 
load imbalance, but instead due to insufficient commit bandwidth. 
Too many of the 32 processors are trying to commit simultaneously 
at any point in time, resulting in serialization for access to the com-
mit network. Luckily, solving bandwidth problems like this should 
generally be straightforward within a chip, especially for TCC sys-
tems that exchange only large messages between nodes. 

The SMP TCC configuration achieves good speedups for 4–8 pro-
cessors across the board, but exhibits little benefit with more pro-
cessors for most applications. Of our applications, only assignment, 
SPECjbb, and tomcatv managed to use the additional processors 
to significant advantage, with SPECjbb notably almost completely 
unaffected by the configuration limits. This is actually a promising 
result, as online server applications like SPECjbb would probably 
be the primary application class that might drive the development of 
TCC on systems larger than CMPs. For the rest of the applications, 
the major bottleneck is again commit bandwidth, as four bytes per 
cycle is often too little for communicating between 16–32 parallel 
transactions. However, with higher commit bandwidth, the SMP 
configuration could achieve speedups similar to the CMP one, since 
the higher overheads incurred by board-level arbitration had much 
less effect on the overall speedup than the commit bandwidth.

5. RELATED WORK
TCC builds on ideas from previous hardware-based transaction 
work, designs for hardware thread-level speculation, database 
transaction processing, software-only transactional memory, and 
other forms of transactional programming, generally from the area 
of reliability research. This section discusses related work from 
these varied fields, focusing mostly on issues relating to parallel 
application development.  

Figure 5: Overall speedup obtained in different hardware configurations.

Figure 6: Breakdown of how different numbers of parallel processors spent their time, in the CMP configuration.
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Previous Hardware Transaction Proposals: Transactions have been 
used in previous proposals to allow execution through locks or past 
barriers in order to reduce the pressure for optimal placement of 
synchronization primitives in conventional multithreaded code [15, 
20, 26, 30]. TCC improves on this work by using transactions all 
the time. In addition to simplifying hardware by eliminating con-
ventional cache coherence, it completely eliminates the need for 
conventional locks and barriers in the application code, using the 
abstraction of transactions to describe all synchronization. 

Thread-level Speculation (TLS): Several groups have demonstrated 
speculative parallelization of sequential code using TLS hardware 
[11, 22, 33, 36]. Even though TCC draws upon TLS work, TCC 
differs in two basic ways. From the hardware perspective, TLS lay-
ers speculative execution of threads on top of a conventional cache 
coherence and consistency protocol, and generally allows specu-
lative threads to communicate results to other speculative threads 
continuously. On the other hand, TCC completely replaces the un-
derlying coherence and consistency protocol, and allows transac-
tions to make their write state visible only at commit time, which 
should generally make it scalable to larger numbers of processors. 
From the software perspective, TLS always requires that threads 
commit in a single, predefined order [29], while TCC allows pro-
grammers to have full control over transaction sequencing, so that 
they can specify no or partial ordering for transaction commit. 
The similarity of support for speculation in TCC and TLS leads to 
similar issues during performance tuning. Techniques for minimiz-
ing data dependencies and optimizing transaction size to deal with 
overheads and buffering requirements, much like those we used 
with TCC-based parallelization, have also been considered in the 
context of TLS in [27, 37].

Database Transaction Processing: The usefulness of transactions 
as an abstraction for concurrency, atomicity, consistency, and isola-
tion has been extensively studied by the database community [9]. 
TCC borrows the notion of transactions from databases in order to 
simplify the development of general parallel programs. However, 
database transactions are typically heavyweight and are only used 
in large transaction processing systems. In contrast, TCC transac-
tions are lightweight, have direct hardware support, and are fully 
visible to application programmers. Nevertheless, the speculative 
execution of transactions in TCC is based on the idea of optimistic 
concurrency control from databases [23]. 

Software-only Transactional Memory: Several researchers have ex-
plored software-only transactional memory or transactional data-
structures [13, 14, 32]. The focus of this work has been to replace 
locks with non-blocking primitives implemented with software 
buffering or versioning. In contrast, our transactions execute at all 
times and are accelerated by direct hardware support. In addition, 
TCC transactions provide memory consistency similar to that of 
lazy and delayed consistency models [8, 19, 21], which postpone 
communicating and processing of consistency events until release 
points in the program code.

Transactional Programming for Reliability: The Tran-C program-
ming language in the IBM Encina system includes built-in trans-
actional semantics [16]. However, Tran-C uses transactions for 
application-level failure atomicity and recovery. For parallel pro-
gramming, Tran-C relies on conventional threads with locks and 
mutexes. In a similar vein, the Java language provides the “try-

catch-finally” programming construct which allows programmers 
to specify application level error detection and recovery code [3]. 
Oplinger and Lam used this construct along with TLS mechanisms 
to provide a low-overhead transactional programming model for 
error recovery [28]. In contrast to these efforts, TCCʼs all-trans-
actional approach provides a unified approach for both optimistic 
parallelism and failure atomicity, an area of further research for us. 
The use of a single abstraction for both goals greatly simplifies ap-
plication development.  

6. CONCLUSIONS
We have shown that by using TCC, it is possible to parallelize a 
wide range of applications with a few simple programming lan-
guage constructs. Instead of using explicit synchronization with 
locks, these constructs rely instead on the atomic property of 
transactions to guarantee exclusive access to shared variables. 
Furthermore, because TCC allows for speculative transactions, the 
programmer does not have to guarantee that the transactions are 
independent to get correct program behavior. On the other hand, 
one aspect of transaction programming that the programmer must 
specify for correct program operation is the commit ordering of 
transactions (ordered, unordered or partially ordered); however, we 
view this as the key insight that programmers should be able to 
provide when parallelizing programs. Of course, one can always 
retain ordered transactions for safety purposes if there is ever any 
uncertainty. Furthermore, we believe that reasoning about transac-
tion order is much simpler than reasoning about individual loads 
and stores, which is required with programming for conventional 
memory consistency models [1].

Improving the parallel performance of an application is a key com-
ponent of parallel programming, and is often required for TCC pro-
grams. However, unlike conventional shared memory parallel pro-
graming, where performance improvement is largely a process of 
trial and error, we expect TCC systems to provide specific perfor-
mance feedback in the form of transaction rollback statistics. These 
statistics are much more meaningful to the programmer than cache 
misses would be in a conventional shared memory multiproces-
sor because they are associated with programmer-defined transac-
tions and variables. We have shown that these statistics can be used 
to direct the use of programming optimization techniques such as 
loop chunking, reduction and buffer privatization, and transaction 
splitting to improve TCC application performance significantly. 
The performance we have obtained with these optimizations over 
a wide range of applications is excellent, and demonstrates both 
the programming ease and performance potential of TCC. Also, 
although we performed these optimizations manually, since many 
require only fairly mechanical adjustments to code that can be pin-
pointed by feedback, we expect that most will eventually be ap-
plied automatically by either a static or dynamic compiler, which 
will further reduce the burden on the programmer.

Finally, we view the use of TCC hardware and TCC programming 
language support as a synergy of hardware and software that will 
provide a much gentler transition from sequential programming to 
parallel programming than that provided by any previous parallel 
programming paradigm. As a result, TCC hardware and software 
will be an important catalyst in transforming parallel processing 
for speedup of individual applications from a niche activity to a 
widespread technique.
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