
ABSTRACT
Transactional Coherence and Consistency (TCC) offers a way to
simplify parallel programming by executing all code within trans-
actions. In TCC systems, transactions serve as the fundamental
unit of parallel work, communication and coherence. As each
transaction completes, it writes all of its newly produced state to
shared memory atomically, while restarting other processors that
have speculatively read stale data. With this mechanism, a TCC-
based system automatically handles data synchronization correctly,
without programmer intervention. To gain the benefits of TCC,
programs must be decomposed into transactions. We describe two
basic programming language constructs for decomposing programs
into transactions, a loop conversion syntax and a general transac-
tion-forking mechanism. With these constructs, writing correct par-
allel programs requires only small, incremental changes to correct
sequential programs. The performance of these programs may then
easily be optimized, based on feedback from real program execu-
tion, using a few simple techniques.

Categories and Subject Descriptors
C.5.0 [Computer System Implementation]: General.
D.1.3 [Programming Techniques]: Concurrent Programming

— parallel programming.

General Terms
Performance, Design, Languages.

Keywords
Transactions, feedback optimization, multiprocessor architecture.

1. INTRODUCTION
With uniprocessor systems running into instruction-level parallel-
ism (ILP) limits and fundamental VLSI constraints [2], parallel ar-
chitectures provide a realistic path towards scalable performance by
allowing one to take advantage of thread-level parallelism (TLP) in
more explicitly distributed architectures. Single-board and single-
chip multiprocessors are becoming the norm for server [18, 31] and
embedded [5] computing, and are starting to appear even on desk-

top platforms. Multiprocessor systems provide a good match to the
coarse-grain parallelism available in applications such as enterprise
services, bio-computing, telecommunications, and multimedia.
Nevertheless, the key factor limiting the potential of parallel archi-
tectures is the complexity of parallel application development.

Existing parallel programming approaches require the programmer
to manage concurrency directly by creating and synchronizing par-
allel threads. The difficulty stems from the need to achieve the often
conflicting goals of functional correctness and high performance.
With shared memory systems [25], a small number of coarse-grain
locks makes it simpler to correctly sequence accesses to variables
shared among parallel threads. On the other hand, more numerous
fine-grain locks often allow higher performance by reducing the
amount of time wasted by threads as they compete for access to the
same variables, although the larger number of locks used usually
incurs more locking overhead. A similar trade-off exists with mes-
sage-passing programming [10]. High performance requires early
scheduling of all communication events, while correct execution
requires a programmer to carefully match send and receive requests
across threads, even for applications with dynamic and unpredict-
able communication patterns. Managing this trade-off makes paral-
lel programming more time-consuming and error-prone than writ-
ing an equivalent sequential program.

This paper introduces parallel programming techniques for transac-
tional coherence and consistency (TCC) systems [12]. TCC relies
on programmer-defined transactions as the basic unit of parallel
work, communication, memory coherence, memory consistency,
and error recovery. TCC hardware speculatively executes trans-
actions in parallel using local buffering. After a transaction com-
pletes, the hardware commits all its writes to shared memory as
an atomic unit. At this point, the writes become visible to other
transactions, which may rollback due to dependency violations.
TCC simplifies parallel hardware design by eliminating the need
for cache line ownership tracking in the cache coherence protocol.
It also replaces the need for numerous small, low latency messages
for cache coherence with fewer large, high-bandwidth messages for
atomic commit.

TCC simplifies parallel programming by eliminating the need for
manual orchestration of parallelism using locks or messages. Pro-
grammers simply need to divide computation into potentially par-
allel transactions and then specify any ordering dependencies that
must be observed between those transactions ̓commits. TCC hard-
ware guarantees correct synchronization always occurs by auto-
matically restarting transactions on dependency violations. There-
fore, decomposing code into transactions is primarily a matter of

Programming with
Transactional Coherence and Consistency (TCC)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASPLOSʼ04, October 7–13, 2004, Boston, Massachusetts, USA.
Copyright 2004 ACM 1-58113-804-0/04/0010...$5.00.

Lance Hammond, Brian D. Carlstrom, Vicky Wong, Ben Hertzberg, Mike Chen,
Christos Kozyrakis, and Kunle Olukotun

Computer Systems Laboratory
Stanford University
Stanford, CA 94305

{lance, bdc, vicwong, elektrik, broccoli, kozyraki, kunle}@stanford.edu

performance tuning, and not a matter of correct-
ness. The use of a single abstraction for paral-
lelism, communication, and synchronization
also simplifies performance tuning by allowing
programmers to use simple transaction statistics
(violations, buffer requirements, overheads) to
identify and remove performance bottlenecks.

To our knowledge, this work is the first proposal
for parallel programming using transactions as
the central programmer abstraction for both par-
allelism and synchronization in a shared mem-
ory system, completely eliminating the need for
locks and allowing for much more automated
sequencing of parallel code regions. The spe-
cific contributions of this paper are:

Transactional programming constructs: We
identify two methods for defining transac-
tions and specifying commit orders. The first
one is appropriate for loop-based code, while
the second one resembles general thread
forking. The constructs can express ordered, partially ordered,
and unordered commit successions. We show that the two con-
structs can express the parallelism in a diverse set of C and Java
applications, ranging from array computations to an online serv-
er benchmark.

Transactional performance tuning: We show how the program-
mer can tune application performance using feedback on trans-
action behavior (violations, buffering requirements, overheads)
obtained during initial, unoptimized runs of the program. We
propose a set of simple source code optimizations that can lead
to additional performance improvements without affecting ap-
plication correctness.

High application performance: We use simulation to demon-
strate that, despite its simplicity, parallel programming with
TCC allows excellent speedups for chip multiprocessor (CMP)
across a range of 4–32 processors and board-level symmetric
multiprocessor (SMP) systems for 4–8.

The rest of the paper is organized as follows. Section 2 provides an
overview of the operation of a TCC-based parallel system. Section
3 introduces TCC programming techniques, and discusses correct-
ness and performance tuning. In Section 4, we demonstrate the use
of the programming techniques in parallelizing a diverse set of ap-
plications. Section 5 discusses related work and we conclude in
Section 6.

2. TCC HARDWARE OVERVIEW
Processors operating in a TCC-based multiprocessor continually
execute speculative transactions, using a cycle illustrated in Fig-
ure 1a on multiprocessor hardware with additions similar to those
depicted in Figure 1b. A transaction is a sequence of instructions
marked by software that is guaranteed to execute and complete
only as an atomic unit. Each transaction produces a block of writes
which are buffered locally while the transaction executes and are
then committed to shared memory only as an atomic unit, after the
transaction completes. Once the transaction is complete, hardware
must arbitrate system-wide for the permission to commit its writes.

•

•

•

After this permission is granted, the processor can take advantage
of high-bandwidth system interconnect to broadcast all writes for
the entire transaction out as one large packet to the rest of the sys-
tem. Meanwhile, the local caches in other processors snoop on
these store packets to maintain coherence in the system. Snoop-
ing also allows them to detect when they have used data that has
subsequently been modified by another processor — a dependence
violation. Combining all writes from the entire transaction together
minimizes the latency sensitivity of this scheme, because fewer in-
terprocessor messages and arbitrations are required, and because
flushing out the writes is a one-way operation. At the same time, the
commit operation can also be leveraged to provide inherent syn-
chronization and a greatly simplified consistency protocol, since
we have to control only the ordering between entire transactions
instead of individual loads and stores.

This continual cycle of speculative buffering, broadcast, and (po-
tential) violations, described in further detail in [12], allows us to
replace both conventional coherence and consistence protocols:

Consistence: Instead of using rules that control ordering be-
tween individual memory reference instructions, as with most
coherence schemes, TCC just controls ordering between trans-
action commits. This can drastically reduce the number of laten-
cy-sensitive arbitration and synchronization events required by
low-level protocols in a typical multiprocessor system. Impos-
ing an order on the transaction commits and backing up uncom-
mitted transactions if they have speculatively read data modified
by other transactions effectively lets the TCC system provide an
illusion of uniprocessor execution to the sequence of memory
references generated by software. As far as the global memory
and software is concerned, all memory references from a trans-
action that commits earlier happened “before” all of the memory
references of a transaction that commits afterwards, even if their
actual execution was interleaved in time, because all writes from
a transaction become visible to other processors only at commit
time, all at once.

•

Local Cache Hierarchy

Processor Core
Stores
Only

Loads and
Stores

Commits
to other nodes

Write
Buffer

DataTagVMReadRe-
name

Snooping
from other nodes

Commit Control

PhaseSequence
Node 0:
Node 1:
Node 2:

Broadcast Bus or Network

Node
#0

Figure 1: a) A transaction cycle (time flows downwards) and
b) a diagram of sample TCC-enabled hardware.

�����������
���������

��������
������

������
������

���� ���
�����

���������

������

��������
������

�����������
������

�������
����

�� ��

Coherence: Stores are buffered and kept within the processor
node for the duration of the transaction in order to maintain the
atomicity of the transaction. No conventional MESI-style cache
protocols are used to maintain lines in “shared” or “exclusive”
states at any point in the system, so it is legal for many processor
nodes to hold the same line simultaneously in either an unmodi-
fied or speculatively modified form. At the end of each trans-
action, the broadcast notifies all other processors about what
state has changed during the completing transaction. During this
process, the other processors perform conventional invalidation
(if the commit packet contains only addresses) or update (if it
contains addresses and data) to keep their cache state coherent.
Simultaneously, they must determine if they may have used
shared data too early. If they have read any data modified by the
committing processor during their current transaction, they are
forced to restart and update their copy of the data. This protects
against true data dependencies. At the same time, data antide-
pendencies are handled simply by the fact that later processors
will eventually get their own turn to flush out data to memory.
Until that point, their “later” results are not seen by transactions
that commit earlier (avoiding WAR dependencies) and they are
able to freely overwrite previously modified data in a clearly se-
quenced manner (handling WAW dependencies in a legal way).
Effectively, the simple, sequentialized consistence model allows
the coherence model to be greatly simplified.

Transactional hardware hides many of the difficulties associated
with parallel programming from typical programmers, but in order
to get good performance programmers do need to keep a few basic
goals in mind when dividing applications into transactions:

Minimize Violations: Programmers should try to avoid parallel
transactions that read and write the same variables frequently, in
order to avoid costly discarding of work that occurs after viola-
tions. Keeping transactions reasonably small, to minimize the
amount of work lost when violations occur, can also help.

Minimize Transaction Overhead: On the other hand, very
small transactions should generally be avoided when possible
because of the overhead associated with starting, ending, and
committing transactions.

Avoid Buffer Overflows: TCC hardware must buffer all writes
made by a processor during a transaction. Our previous results
in [12] indicate that most applications naturally divide into
transactions of reasonable size, but when very large transactions
occur it is possible to overflow the finite buffer space. While
the system is always able to handle these situations correctly
when they occur, simply by having the processor request access
to the broadcast network and then hold it while writing through
directly to memory for the remainder of the transaction, this can
obviously have a negative impact on performance and should be
avoided if possible.

Other than these few factors, which mostly affect performance
tuning, programmers can generally ignore the hardware. This con-
trasts well against conventional parallel systems, where they would
have to carefully consider issues such as the layout of data in the
machineʼs memory, latency and bandwidth requirements for all
communication, and other machine-specific factors that can have
an impact on both correctness and performance. This allows them
to focus more on writing correct code.

•

•

•

•

3. PROGRAMMING TECHNIQUES
TCC parallelization is a series of simple steps that requires only a
few new programming constructs. This process is simpler than par-
allelization with conventional threaded models because it reduces
the number of code transformations needed for typical paralleliza-
tion efforts. In particular, it allows programmers to make informed
tradeoffs between programmer effort and performance. Basic par-
allelization can quickly and easily be done in a way that is guaran-
teed to be safe. Programmers can then use feedback obtained from
violation reports produced during initial parallel program execution
to insert program refinements and constraint relaxation in order to
get significantly greater speedups. In a simplified form, program-
ming with TCC can be summarized as a three-step process:

Divide into Transactions: The first step in the creation of a par-
allel program using TCC is to coarsely divide the program into
blocks of code that can run concurrently on different proces-
sors. In this respect, parallelizing for TCC is very similar to con-
ventional parallelization, which also requires that programmers
find and mark parallel regions. However, the actual process is
simpler with TCC because the programmer does not need to
guarantee that parallel regions are independent, since the TCC
hardware will catch all dependence violations during execution.
The interface presented in this section allows programmers to
divide their program into parallel blocks on loop iterations and
by forking of transactions. Currently, our interface supports only
“flat” transactions, and not “nested” ones [9].

Specify Order: The default ordering for transactions is to have
them commit results in the same order as the original sequen-
tial program, since this guarantees that the program will execute
correctly. However, if a programmer is able to verify that this
commit order constraint is unnecessary, then it can be relaxed
completely or partially in order to provide better performance.
The interface also provides ways to specify the ordering con-
straints of the application in useful ways.

Performance Tuning: After transactions are selected and or-
dered, the program can be run in parallel. The TCC system can
automatically provide informative feedback about where viola-
tions occur in the program, which can direct the programmer to
perform further optimizations.

While the interface is described in C, it should be noted that these
constructs can be readily adapted to any programming language
(for example, we have also adapted it to Java) in order to allow it to
take advantage of TCCʼs features.

3.1. Loop-Based Parallelization
The parallelization of loops will be introduced in the context of a
simple sequential code segment that calculates a histogram of 1000
integer percentages using an array of corresponding buckets:

 int* data = load_data(); /* input */
 int i, buckets[101];

 for (i = 0; i < 1000; i++) {
 buckets[data[i]]++;
 }

 print_buckets(buckets); /* output */

•

•

•

The compiler interprets this program as one transaction, so it ex-
poses no parallelism to the underlying TCC hardware. The obvious
candidate for parallelization is the for loop.

 . . .
 t_for (i = 0; i < 1000; i++) {
 . . .

The only thing that changed is the for loop keyword, which has
been replaced with its transactional version, t_for. With this
small change, we now have a parallel loop that is guaranteed to
execute the original sequential code correctly. Each iteration of the
loop body will now become a separate transaction that will commit
in the original sequential order, in a pattern like that in Figure 2a.
This behavior preserves the original sequential order of the code by
defining an ordering between the transaction commits. Although
a later iteration may run in parallel with an earlier one, it cannot
commit its transaction out of order. Therefore, if an earlier iteration
updates a histogram bucket which is also updated by later itera-
tions, when the earlier iteration commits, the TCC hardware will
catch any dependence violations with data used by the “later” par-
allel iterations and restart them, forcing them to re-execute using
updated data in order to preserve the original sequential semantics.
For example, there may occasionally be collisions during access
to the histogram bins in this program. TCC will handle these auto-
matically, without any extra code.

The programmer ease-of-use of this paradigm compares favor-
ably with similar schemes previously proposed. It is similar to
the thread-level speculation (TLS) pfor construct [29], but does
not allow forwarding of modified data between active speculative
transactions. A conventionally parallelized system, however, would
require an array of locks to protect the histogram bins, resulting in
our example growing to something much uglier, with significant
locking code, like this:

 int* data = load_data();
 int i, buckets[101];

 /* Define & initialize locks */
 LOCK_TYPE bucketLock[101];
 for (i = 0; i < 101; i++) {
 LOCK_INIT(bucketLock[i]);
 }
 for (i = 0; i < 1000; i++) {
 LOCK(bucketLock[data[i]]);
 buckets[data[i]]++;
 UNLOCK(bucketLock[data[i]]);
 }
 print_buckets(buckets);

� � �

�

���

�

��� � �

��

��

��

��

��

��

��� ��� ���

��

��

����

�����

������

�����

������

���

���

���

���

���

���

���

���

Figure 2: Illustrations of scheduling for transactional loops,
chunked loops, and a simple fork example. The numbers in cʼs

transactions are sequence:phase.

Unlike the TCC version, if any of this locking code is
omitted or buggy, then the program may fail—and not
necessarily in the same place every time—significantly
complicating debugging. Debugging is especially hard if
the errors only happen for patterns of memory accesses
that occur only rarely, due to non-deterministic interpro-
cessor timing. The situation is potentially even trickier
if multiple locks need to be held simultaneously within
a critical region, because one must be careful to avoid
locking sequences that may deadlock [25]. It is clear that

TCC can both simplify the parallelization of loops and reduce the
runtime overhead associated with conventional locking and syn-
chronization structures—since they largely disappear.

However, this simple application of TCC will not always result in
good performance, so further modification may be desired. The first
problem in this example stems from the size of the loop transac-
tions. We now have 1002 transactions, one for the code before the
loop, 1000 for the loop iterations, and 1 for the code after the loop.
However, the loop body transactions are very small. To amortize
the overheads associated with starting and ending transactions,
t_for can be replaced with t_for_n, where the “n” allows the
number of iterations to be included in a transaction to be specified
by the programmer:

. . .
t_for_n (i = 0; i < 1000; i++; 20) {
. . .

Now we we have “chunked” 1000 transactions into 50 transactions,
each executing 20 iterations of the original loop, for a total of 52
transactions, as is depicted in Figure 2b. This type of transformation
is equivalent to unrolling the original loop and applying a t_for
to the unrolled loop. A compiler or runtime environment should
be able to perform this optimization automatically, since merging
transactions while preserving ordering always maintains program
correctness. By specifying the unrolling factor as a variable expres-
sion, the degree of “chunking” may even be set at run time, in re-
sponse to characteristics of the input dataset.

Although sequential ordering is generally useful because it guaran-
tees correct execution, in some cases—such as this histogram ex-
ample—it is not actually required for correctness. In this case, there
are no dependencies among the loop transactions except through
additions to histogram elements, which is an associative operation
that does not demand any particular ordering. When programmers
can determine that this is the case, they can use slight variations
on the basic t_for construct, t_for_unordered and t_for_
unordered_n, to allow the main loop body transactions to run
and commit in any order. While the transaction lengths are equal
in this example, allowing unordered commits is most useful when
the transaction lengths are dynamically variable, because it will
decrease unnecessary time spent waiting for commit permission
between transactions.

The test clause of any t_for_unordered has an additional
requirement that it must be possible to determine the termination
result in a distributed manner, so that all processors will be able
to detect it, no matter what order they complete. For example, in a
loop with an i++ incrementor, a test clause of “i < 1000”
would be fine, since all processors will detect the end-of-loop con-
dition after i reaches 1000, but “i != 1000” would result in only

a single processor detecting the termination condition because i
would subsequently be incremented to 1001.

For loops with an indeterminate number of loop iterations, there
is also a t_while loop structure, which is similar to a standard
while loop, and comes in the same four flavors as t_for, with
the same restrictions:

t_while<_mode> (i < 1000) {
 . . . is equivalent to . . .
t_for<_mode> (; i < 1000;) {

3.2. Fork-Based Parallelization
While most sequential programs can be easily divided into paral-
lel transactions using only the simple parallel loop API, there are
some less structured programs that need to generate transactions
in a more flexible manner. Therefore, in addition to the loop par-
allelization, the TCC programming interface provides t_fork,
a transactional fork similar to most conventional thread creation
APIs. The interface is centered around a standard C function that
starts a new, parallel transaction:

void t_fork(void (*child_function_ptr)(void*),
 void *input_data,
 int child_sequence_num,
 int parent_phase_increment,
 int child_phase_increment);

/* Which forks off a child function of the form: */
void child_function(void *input_data);

This call forces the “parent” transaction to commit, to guarantee
that we cannot roll back and “cancel” the t_fork, and then cre-
ates two completely new, parallel transactions. One (the “new par-
ent”) continues execution of the code immediately following the
t_fork, while the other (the “child”) starts executing a child_
function-style function at child_function_ptr with the
input pointer input_data. Other input parameters control order-
ing of forked transactions in relation to other transactions, and are
discussed in more detail below in Section 3.3.

To demonstrate this function, consider a simple example where we
want to simulate a two stage processor pipeline in parallel. This is
simulated using the functions opcode = i_fetch(PC) for
instruction fetch, increment_PC(opcode, PC) to adjust the
PC and handle branching, and execute(opcode) to execute
other instructions. The “child” transaction executes each instruc-
tion while the “new parent” transaction goes ahead and fetches the
next one:

 /* Define an ID number for the EX sequence */
 #define EX_SEQ 1

 /* Initial setup */
 int PC = INITIAL_PC;
 int opcode = i_fetch(PC);

 /* Main loop */
 while (opcode != END_CODE)
 {
 t_fork(execute, &opcode, EX_SEQ, 1, 1);
 increment_PC(opcode, &PC);
 opcode = i_fetch(PC);
 }

This example creates a sequence of overlapping transactions like
those in Figure 2c. While it is more complicated to use than the
looping structures, t_fork gives enough flexibility to divide a
program into transactions in virtually any way. It can even be used
to build the various t_for and t_while constructs, although
those are useful so often that it is helpful to have the fundamental
constructs described previously.

3.3. Explicit Transaction Commit Ordering
When using fork-based parallelization and some loop-based paral-
lelizations, the simple “ordered” and “unordered” ordering modes
may not be sufficient. For example, a programmer may desire a
parallel loop that is only partially ordered, executing unordered it-
erations most of the time, but occasionally forcing one transaction
or another to complete before others. In our experience with loop-
based TCC programming, these ordering requirements are usually
rare, but support must be provided for the occasional exception. On
the other hand, forked transactions usually require explicit ordering
of some sort.

In order to provide ordering support, we define a simple interface
that controls transaction ordering by assigning two parameters to
each transaction: the sequence and phase of transactions. These are
two numbers assigned to each transaction that control the ordering
of transaction commits. The sequence specifies which transactions
require that commits must be ordered in relation to each other (i.e.,
have the same sequence ID number) and which are completely
independent in their ordering (i.e., have a different sequence ID).
The child_sequence_num parameter in a t_fork call can
be used to produce two sequence groups of transactions that are
ordered independently. When this is a positive integer, a “child”
transaction with the new sequence number is produced, while the
“new parent” transaction continues to use the old sequence number.
Alternatively, the “child” and “new parent” may also be kept within
the same ordering sequence using the T_SAME_SEQUENCE con-
stant. Within each sequence, the phase indicates the relative “age”
of each transaction. TCC hardware will only commit transactions
in the oldest active phase (lowest value) from within any sequence
that is executing on the system. Using this notation, an ordered loop
is just a sequence of transactions with the phase incremented by
one every time, while an unordered loop has transactions all with
the same phase number.

Unlike the simpler loop constructs, a t_fork call allows com-
plete control over the phase of the subsequent new parent and
child transactions using the parent_phase_increment and
child_phase_increment parameters, respectively. For the
new parent transaction, this value is always a phase increment over
the phase of the parent. For the child, this can either be a phase
increment over the parent, if we use the T_SAME_SEQUENCE con-
stant for selecting the sequence, or over the phase of the youngest
active transaction already present within the childʼs sequence, if
a sequence is explicitly supplied. For example, in the instruction
simulator example from Section 3.2, we specified a phase incre-
ment of 1 for the “new parent” to ensure that the PC increments
performed by the various “parent” transactions were all ordered
properly within the parent sequence, and also specified an incre-
ment of 1 for the “children” so the various EX stages were required
to commit their results to memory in the order they were forked
within the separate EX_SEQ sequence.

More arbitrary phase ordering of transactions can also be imposed
using the following two calls:

 void t_commit(int phase_increment);
 void t_wait_for_sequence(int phase_increment,

int wait_for_sequence_num);

The t_commit routine implicitly commits the current transaction,
and then immediately starts another on the same processor with
a phase incremented by the phase_increment parameter. The
most common phase_increment parameter used is 0, which
is simply used to take a new checkpoint and to flush out the write
buffers, at the programmerʼs request. However, it can also be used
with a phase_increment of 1 or more in order to force an ex-
plicit transaction commit ordering. One use for this is to emulate
a conventional barrier among all transactions within a sequence
using transactional semantics. Unlike normal barriers, deadlock is
not possible with this interface, as the “oldest” transaction in the se-
quence can always commit. Of course, these t_commits can still
cause “fast” processors to stall while waiting to commit the transac-
tion following the t_commit, potentially reducing performance.
This stall time is usually much less than that caused by conven-
tional barriers, however, due to the fact that processors only stall if
they get more than a full transaction ahead of their slower partners.
In essence, these “transactional barriers” automatically act like the
speculative barriers described in [26].

The t_wait_for_sequence call performs the same func-
tion as a t_commit, but also waits for all transactions within the
wait_for_sequence_num sequence to complete before start-
ing the next new transaction in the callerʼs sequence. This call is
usually used to allow a “parent” sequence of transactions to wait
for a “child” sequence to complete, similar to a thread join in
conventional parallel programming. For example, the instruction
simulator example from Section 3.2 requires the following code
within the increment_PC routine to ensure that data-dependent
branches are properly executed:

 if (opcode == ANY_BRANCH_INSTRUCTION)
 {
 t_wait_for_sequence(1, EX_SEQ);
 execute_branch(opcode, &PC);
 }
 else
 PC = PC + 1;

In this case, if the instruction is a branch, then the “parent” trans-
action sequence, which is handling the PC increments, is forced
to wait until all previously initiated instruction simulations in the
EX_SEQ sequence have completed, so that the branch instruction
may only execute with the properly updated input values. For the
common case of a non-branch instructions, however, the parent
and child instruction sequences are allowed to commit transactions
asynchronously, allowing us to take advantage of possible parallel
speedup.

3.4. Performance Tuning
After a programmer divides a program into transactions with the
fundamental TCC language constructs, most problems that occur
will tend to be with performance, and not correctness. Since trans-
actions automatically ensure that accesses to variables occur atomi-
cally, the only two ways that a programmer can write an incorrect

TCC program are either by relaxing commit scheduling constraints
too much or by accidentally putting a transaction break in the mid-
dle of a critical region. The former error can be avoided simply by
always using explicitly ordered transactions if there is any doubt
as to whether or not transactions can be safely executed in an un-
ordered manner. Conventional parallel programming requires not
only that one avoid breaking critical regions, but also that all criti-
cal regions be explicitly marked with locking code, a much more
error-prone task than the TCC alternative.

Because it is very easy to get a program to at least run in parallel
under TCC—although perhaps inefficiently—the usual way that
TCC programs are optimized is to use actual execution to test ini-
tial parallelization attempts. Results from these initial runs can then
provide useful feedback to aid further optimization through reports
summarizing all violations that occur. These violation reports sum-
marize time lost to transaction pairs causing conflicts, including in-
formation about the individual load-store pairs and data addresses
that are violating. These addresses can be fed into a symbolic de-
bugging environment like gdb to determine which variables and
variable accesses caused the violations. This report can be summa-
rized based upon the amount of execution time lost to each viola-
tion in order to prioritize and pinpoint the most important violation
problems. This information tells programmers exactly which vari-
ables—and even which accesses to them—are limiting parallelism,
unlike current shared memory systems, that tend to give feedback
mostly in terms of coherence protocol statistics. This information
can greatly increase programmer productivity by automatically di-
recting programmers to the data dependencies that cause the most
violations between transactions, instead of making them pore over
all of the code in a program to determine the critical dependen-
cies manually. Just as helpful, programmers may simply choose
to ignore minor dependencies that only occur rarely, leaving these
unimportant dependencies for the transactional hardware to handle
with an occasional violation when they do occur. Information about
load imbalance is also reported in terms of the time spent waiting at
the end of each transaction defined by the source code.

Violation and waiting reports from initial program runs might lead
only to some fine tuning of how certain variables are used, or it
could lead to more major code changes. A common technique is to
simply combine small transactions into larger ones (usually using
the _n options). The program might also need some minor code
restructuring to remove false sharing between transactions or code
motion to allow better partitioning of transactions in order to avoid
load imbalance or to reduce the amount of serial code between par-
allel regions, since a TCC system is still subject to Amdahlʼs law
speedup limitations from such code. During the course of paral-
lelizing several applications, we also found that several common
techniques were very useful, many adapted from ones also used
during traditional parallelization:

Reduction Privatization: Operations that reduce values to a loop-
carried sum variable are frequently used within loops that are oth-
erwise good targets for transactional parallelization. These opera-
tions show up in our statistics through frequent violations on the
sum variable. However, many of the operations are associative,
such as addition, multiplication, and minimum/maximum, and can
therefore be reordered to maximize parallelism. By privatizing the
sum variable within each processor and only combining these vari-
ables to a sequential sum after the end of the loop, significant paral-

Table 1: Key parameters of our simulations. All cycle values
are in CPU cycles.

Sys-
tem Description

Inter-CPU
Bandwidth

(bytes/cycle)

Commit
Overhead

(cycles)

Violation
Delay

(cycles)

Ideal “Perfect” TCC multi-
processor

∞ 0 0

CMP Realistic multiproces-
sor, if on a single chip

16 5 0

SMP Realistic multiproces-
sor, if on a board

4 25 20

lelism can be exposed. This is a process that can often be automated
in floating-point applications. The low-level runtime environment
needs to provide only a pair of functions that return system param-
eters (int t_processor_count() and int t_proces-
sor_id()) to support this functionality.

Shared Buffer Privatization: While our TCC compilation and
hardware could automatically privatize most stack variables, some
loops use large temporary buffers elsewhere in memory. In these
cases, it may be necessary to allocate N buffers for N parallel pro-
cessors in order to avoid spurious violations when unrelated vari-
ables are allocated at the same addresses within a shared buffer.
The same techniques used to generate privatized sum variables for
reductions can also be used to provide private temporary buffers.
Hardware, compiler, or runtime environment support to automate
privatization is a topic for further research. Without this support, it
was necessary to manually privatize some buffers in our selection
of applications.

Loop Level Adjustment: We may choose to parallelize at different
levels of loop nests in order to take advantage of the characteristics
that different levels may offer. Outer loops provide large granular-
ity, but can sometimes get too large, because realistic TCC systems
have finite amounts of per-transaction buffering. Inner loops can
often be too small to effectively use without combining iterations,
due to startup/commit overheads. Either may have critical loop-car-
ried dependencies that prevent it from being a good target.

Loop Fusion/Fission/Renesting: In order to help make better trans-
actions, any of these common parallelizing compiler tricks that ad-
just the execution pattern of loops may prove helpful. While the
techniques are the same, the patterns used are usually somewhat
different, with “optimal” transaction sizes being the usual goal.

Splitting Transactions into Transactional Groups: Normally, trans-
actions do not commit results until after they complete entirely.
While this is often desirable behavior, there are times when it is
more helpful to break “obvious” transactions, such as loop itera-
tions, into two or more parts. This can be performed simply by us-
ing a t_commit(0) call to break the transaction into two smaller
transactions. We call the resulting transactions, that are forced to
execute one after another on the same processor, a “transactional
group.” Because other, parallel transactions may commit results
between the hardware transactions within a transactional group,
the programmer must ensure that no t_commits are placed in the
middle of critical regions of the code that must execute atomically,
or incorrect execution may result. Despite this limitation, we found
that this technique was quite helpful in solving three different kinds
of problems. First, inserting a t_commit takes a new rollback
checkpoint, limiting the amount of work that can be lost if a viola-
tion occurs. This can be very important for applications with long
“obvious” transactions and frequent violations. Second, flushing
out the write state clears the TCC write buffer associated with the
processor. If an applicationʼs transactions tend to produce a lot of
data, then judicious t_commit operations can prevent the system
serialization and slowdown that would otherwise occur when write
buffers overflow. Finally, it may be desirable to update changes to
global memory as early as possible, and a t_commit can flush
out new changes to the globally visible state at any point within a
transactional group, providing a sort of “forwarding” of modified
data to other transactions running in parallel.

4. PERFORMANCE EVALUATION
In order to evaluate the utility of the transactional programming
constructs, we used them to parallelize C and Java applications from
a variety of domains. Then, we used simulation to evaluate and tune
their performance for large and small-scale TCC systems.

4.1. Methodology
Our evaluation infrastructure includes an execution-driven simu-
lator that models a processor that executes at a fixed rate of one
instruction per cycle. The simulator produces an execution trace
for all transactions in the program, including ones from sequential
code regions, and captures statistics for all loads and stores except
for stack references, which are guaranteed to be private within each
transaction. We then use a trace analyzer to simulate the behavior
of running transactions in parallel on a parameterized TCC system
that includes multiple processors (4–32) connected through a net-
work that supports broadcasts (e.g., a bus). We do not model fur-
ther details of the core processor pipeline in this study because the
TLP-oriented benefits of TCC parallelization are fairly orthogonal
to the acceleration of each individual transactionʼs execution that
occurs when using ILP techniques within individual processors. As
a result, ILP-based execution of individual transactions faster (or
slower) than 1.0 instructions per cycle should simply improve (or
decrease) TCC system performance proportionally, at least until the
available commit packet broadcast network is saturated, when no
further improvement from either ILP or TLP is possible. In addi-
tion to varying the number of processors, we also vary the value of
three key TCC system parameters: the amount of bandwidth avail-
able on the network, the overhead of arbitration for commit order,
and the latency of violation recovery. Table 1 presents the values
selected for the parameters in order to describe three potential TCC
configurations: ideal (infinite bandwidth, zero overheads), single-
chip/CMP (high bandwidth, low overheads), and single-board/SMP
(medium bandwidth, higher overheads).

Table 2 presents the applications used for this study and the trans-
action programming constructs employed to parallelize them. We
selected these applications because they represent a diverse set of
concurrency patterns including dense loops (LUFactor), sparse
loops (equake), task parallelism (SPECjbb), and producer-con-
sumer parallelism (MPEGdecode). This diversity is important to
assess the usefulness and completeness of TCC programming. For
the Java applications, we used the Kaffe JVM [38] within the ex-
ecution driven simulator.

The Kaffe JVM required some simple modifications to be trans-
action friendly. We removed Java monitors used for synchronized

Table 2: Characteristics of applications used for our analysis.

Source
Language Benchmark Application Description Source Input

Lines of
Code

Primary TCC
Parallelization

Java Assignment Resource allocation solver jBYTEmark [6] 51x51 array 556 Loop: 2 ordered, 9
unordered

MolDyn N-body code modeling
particles

Java Grande [17] 2048 particles 615 Loop: 9 unordered

LUFactor LU factorization and trian-
gular solve

jBYTEmark [6] 101x101 matrix 516 Loop: 2 ordered, 4
unordered

RayTrace 3D ray tracer Java Grande [17] 150x150 pixel
image

1,233 Loop: 9 unordered

SPECjbb Transaction processing
server

SPECjbb [34] 230 iterations
w/o random

27,249 Fork: 5 calls (one per
transaction type)

C art Image recognition / neural
network

SPEC2000 FP [35] ref.1 1,270 Loop: 11 unordered
& chunked

equake Seismic wave propagation
simulation

SPEC2000 FP [35] ref 1,513 Loop: 3 unordered

tomcatv Vectorized mesh generation SPEC95 FP [35] 256x256 346 Loop: 7 unordered
MPEGdecode Video bitstream decoding Mediabench [24] mei16v2.m2v 9,834 Fork: 1 call

Table 3: Summary of optimizations used in our applications. Results are for the 8 processor CMP configuration.

Benchmark Optimization

Cumulative
Lines

Changed
Cumulative

Speedup
Useful

%
Wait

%
Violate

%
Idle
%

Median / Mean
Transaction Size

(instructions)

75% Write
State (64B

lines)

Assignment Base 11 2.58 32.3 11.9 51.9 4.0
850 1097

1
+ unordered 20 2.75 34.4 3.7 55.3 6.6 1
+ private reductions 32 6.46 80.8 9.7 — 9.5 1

MolDyn Base 4 5.93 74.1 8.6 1.9 15.4
76 77

0
+ unordered 8 6.33 79.1 2.0 2.0 16.8 0
+ private reductions 20 6.46 80.8 2.1 — 17.2 0

LUFactor Base 6 5.03 62.9 9.3 15.9 12.0
44 459

2
+ unordered 10 5.24 65.5 7.3 14.4 12.9 2

RayTrace Base 1 3.73 46.6 19.0 0.4 34.0
147 167

2
+ unordered 2 4.28 53.5 3.2 1.3 42.0 2
+ private reductions 6 4.48 56.0 3.4 — 40.6 2

SPECjbb Base + objCount 13 1.87 23.4 — 37.7 38.9 — 148,244 195
+ privatization 33 3.87 48.4 0.1 46.3 5.2 — 144,054 190
+ two t_commit 35 5.62 70.3 0.2 22.9 6.6 — 76,728 94

art Base (chunked loop) 11 1.05 13.1 1.8 82.4 2.8
1880

1777 33
+ private reductions 101 6.21 77.6 9.1 — 13.3 1781 33
+ loop fusion 113 6.91 86.4 0.6 — 13.0 2065 33

equake Base 6 3.60 45.6 0.4 54.0 —
130

471 2
+ t_commit 8 7.38 91.2 4.6 4.2 — 146 1
+ loop fusion 12 7.49 91.5 4.2 4.3 — 131 180 1

tomcatv Inner loop (chunked) 16 2.26 28.3 4.6 57.9 9.2 59 88 3
Outer loop 7 7.83 97.9 0.3 — 1.8 12,268 14,584 97

MPEG-decode Base + prescanning 454 5.89 73.6 17.1 0.1 9.2 — 626,060 154

objects, because transactions can be used to inherently guarantee
atomic access. We also modified memory allocation routines to
eliminate the chance of spurious violations caused by multiple pro-
cessors accidentally allocating the same portion of the heap as dif-
ferent data objects simultaneously. This just required dividing the
otherwise shared heap into separate “allocation pools” for each pro-
cessorʼs memory routines, a change that is also necessary to build
efficient non-transactional parallel memory allocation routines.

4.2. Application Studies
Table 3 presents the performance results for the 8 processor CMP
configuration. For each benchmark, it lists the number of lines
changed and the speedup over a single processor system. Figure
3 shows the same speedups graphically, along with ones for CMP
configurations with different numbers of processors. Table 3 and
Figure 4 also break down the average execution time on each pro-
cessor into time executing useful transactions, time waiting for
transactions to commit, time spent on transactions that violate, and
time idling due to lack of parallelism (i.e. sequential code). We also
list the 75th percentile of the buffer space required for a transaction
(reported in 64-byte cache lines). Most applications require less
than one Kbyte of write buffer. However, even the largest transac-
tions for an unoptimized version of SPECjbb require less than 32
KBytes, which are reasonable to implement in modern processors.
Further analysis of buffer space requirements is in [12].

Table 3 and the two figures include both the baseline results and
those after applying optimizations described in Section 3. The base-
line results show significant speedup with minimum modifications
to the sequential code, but are typically not optimal. We obtained
feedback information about transaction violations and overheads

from the baseline TCC runs and used it to focus performance tuning
on transactions with problematic behavior. The optimized applica-
tions achieve speedups ranging from 4.5 to 7.8 on an 8 processor
CMP-configuration TCC system. The main contribution of the op-
timizations was to reduce the amount of time lost to violations, to
adjust transaction sizes, and/or to limit buffer requirements. Note
that the optimizations required that less than 5% of the original
sequential source code lines be modified in all applications except
assignment and art, which required slightly more.

The following sections discuss our insights on parallelizing and
optimizing each application. The analysis is broken up into four
parts, based on input source language (Java or C) and the type of
parallelization (loop or fork) used.

4.2.1. Automatically Parallelized Java Loops
We automatically parallelized loop-based Java applications us-
ing the Jrpm dynamic compilation system [7]. Jrpm used ordered
transactional loops in all cases. After examining the initial results
from the ordered loops, we focused on the most significant loops to
determine whether they could safely be executed in an unordered
manner. Where possible and safe, we guided Jrpm to use unordered
loops for performance improvement. Finally, after successfully
parallelizing each application with Jrpm, we simulated each bench-
mark on top of the modified Kaffe JVM described in Section 4.1.

Assignment: This application includes largely parallel loops with
only occasional dependencies, which are difficult to analyze stati-
cally using a conventional compiler. Most loops are 2-level nested.
Jrpm usually generated transactions from the outer loop, because
the inner loops were typically too small to parallelize. The baseline

� � �� �� � � �� �� � � �� �� � � �� �� � � �� �� � � �� �� � � �� �� � � �� �� � � �� ��
�

�

��

��

��

�
�
�
�
�
�
�

����

���������

���������

�������������

��������

���� ������

��� ������ ������� ��

�
�
�
�

�
��
�
�
��
�
��
�

�
��
�
�
�
�
��
�
�

�
�
�
�

�
��
�
�
��
�
��
�

�
��
�
�
�
�
��
�
�

�
�
�
�

�
��
�
�
��
�
��
�

�
�
�
�

�
��
�
�
��
�
��
�

�
��
�
�
�
�
��
�
�

�
�
�
�

�
��
��
�
�
��
�
�
��
�
�

�
��
�
�
�
�
�
��

�
�
�
�

�
��
�
�
�
�
��
�
�

�
��
�
�
�
�
��
�
�
��
�

�
�
�
�

�
��
�
�
�
�
�
��

�
��
�
�
�
�
��
�
�
��
�

��
�
�
��
�
�
�
�
�

�
�
��
��
�
�
�
�
�

�
�
�
�

�

����

���

����

�

�
��
�
�
�
�
�
�
�
�
��
�
��
�

������

�������

��������

����

��� ������ ������� ��

Figure 3: Improvements in CMP configuration speedup provided by the various optimizations, for varying numbers of processors.
The 8-processor column graphs values from column 4 of Table 3.

Figure 4: How the time breakdowns changed as optimizations were applied to the 8-processor CMP configuration. These are the
values from columns 5–8 of Table 3, in graphical form.

speedup with ordered transactions is 2.58. Reduction privatization
eliminates nearly all transaction violations and boosts speedup to
6.46. Reduction privatization is even more critical for greater num-
bers of processors, as the length of the critical dependency arcs
imposed by the unmodified reduction limits speedups to less than 3,
no matter how many processors are used. Higher speedup cannot be
achieved primarily due to sequential portions of the application.

MolDyn: Moldyn includes parallel loops with infrequent dynamic
dependencies. The most significant optimization was loop chunk-
ing due to the small size of loop iterations. Jrpm automatically per-
formed chunking in the baseline version. Unordered transactions
and reduction privatization provide small additional benefits.

LUFactor:This application contains many parallel loops, with two
of them dominating the execution time. Unlike most other applica-
tions in our suite, the lengths of the transactions within each paral-
lel loop varies significantly. Both have loop-carried dependencies,
but the distance is large enough so that it only limits performance
for large processor counts.

RayTrace: This application spends most of its time in a single loop.
Unordered transactions and reduction privatization provide some
improvement over the baseline speedup. Nevertheless, the overall
speedup (4.48) is limited by the large sequential code regions.

4.2.2. Java with Forking: SPECjbb
SPECjbb is a server-side Java benchmark that simulates order pro-
cessing in a 3-tier enterprise system. Its execution is divided up
into separate “warehouses,” which are essentially explicitly paral-
lel. Hence, parallelization across warehouses is trivial for all kinds
of parallel systems, including TCC. For this study, we parallelized
SPECjbb within each warehouse, which is much more difficult with
traditional means. Each warehouse involves task-queue processing
with hard-to-analyze dependencies through inventory records. The
main loop of SPECjbb for a warehouse iterates over five task types:
new orders, payments, order status, deliveries, and stock levels.
New orders and payments are weighted to occur ten times more
often than other tasks, and the actual order of transactions is ran-
domized. We parallelized this loop by generating unordered trans-
actions for each task using the fork mechanism, achieving an initial
speedup of 1.87.

Feedback-based tuning of this application consisted of several dif-
ferent steps targeting idle time reduction and removal of violations.
The first step removed some remnants of an unnecessary object
counter that caused spurious violations. We also found two key
variables that needed privatization in order to work well in an unor-
dered manner. The first was the seed to the random number genera-
tor used to generate tasks. The second was scratch-space objects,
which were reused from one task to the next in the original code
in order to avoid memory allocation. Finally, we found two oppor-
tunities where the judicious use of t_commit allowed us to split
payment and new order tasks into two transactions, one for inven-
tory processing and one for output display formatting. Because of
the large size of transactions in SPECjbb, the smaller transactions
that were created by this splitting significantly reduced the amount
of useful work that was discarded when violations did occur, a fac-
tor that was especially critical with larger numbers of processors.
Splitting also had the additional benefit of reducing write buffer
requirements for the application by about half.

4.2.3. Manually Parallelized C Loops
We parallelized three SPEC floating-point applications with loop
level parallelism. All three have nested loops of various depths that
can be parallelized using variations of t_for.

art: This program first trains a neural network and then uses it to
match images. Both of its phases iterate over a routine that includes
a five-level nested loop that computes the output of the neural net-
work. We parallelized the loops that iterate over neurons in the F1
layer because all other loop levels had limited parallelism or loop-
carried dependencies. These loops contain critical reduction vari-
ables, hence significant speedups were achieved only after privatiz-
ing reductions. Loop fusion provided some additional improvement
for an overall speedup of 6.91. The use of unordered transactions,
while possible, did not provide any significant benefits for this ap-
plication.

equake: This benchmark consists of series of loops operating on
a sparse matrix. The baseline version used unordered transactions
to automatically handle load balancing across transactions and
achieved a speedup of 3.60. The main optimization for equake was
transaction splitting, which reduced the frequency of violations, at
the cost of an increase in commit overhead due to the significantly
shorter transactions. To counter this, we fused loops together where
possible to lengthen the transactions again, achieving a slight in-
crease in performance that became more significant with larger
numbers of processors. The overall speedup was 7.49.

tomcatv: This application includes five two-level nested loops that
operate on the entire mesh. The inner loops require ordered transac-
tions to handle the loop-carried dependencies correctly, which tend
to limit performance to less than 3 no matter how many processors
are used. Outer loops, on the other hand, can be parallelized with
unordered transactions, leading to near perfect speedup. The draw-
back of outer-loop parallelization is that the large transactions need
larger write buffers, which could be an issue with larger datasets
since the size of these outer loop transactions is proportional to the
size of the input array.

4.2.4. C with Forking: MPEG-2 Decode
MPEG-2 decode exhibits non-trivial concurrency patterns with
complex dependencies. Its code iterates over frames, slices, and
macroblocks. At the macroblock level, parallelism is too fine-
grained and is better targeted by ILP techniques in each processor.
On the other hand, parallelizing at the frame level would exceed
buffer limitations in most reasonable TCC systems. Hence, we par-
allelized at the slice level, which results in very large transactions,
but ones that are still feasible because they write out only a reason-
able amount of state (less than 10KB, allocated as 64-byte lines)
and do not have any dependencies.

The primary difficulty in MPEG-2 decode is the sequential depen-
dencies due to the use of the variable-length codes in the input bit-
stream. Until a slice has been decoded, the starting position of the
next one is unknown. This behavior lends itself naturally to fork-
ing, where a serial parent does bitstream decoding and then forks a
transaction to process the decoded data for each slice. This follows
the same model as the example in Figure 2c, with the bitstream
decoding in the IF blocks and data processing in the EX blocks. To
reduce the serialization effect due to sequential bitstream decoding,
we also applied a prescan algorithm that requires the sequential

parent to identify only slice boundaries, and not fully decode the
input bitstream [4]. The overall speedup for MPEG-2 decode was
5.89, with most of the source code changes going into implement-
ing the prescanning algorithm.

4.3. Overall Performance
Figure 5 presents the best achieved speedups for three configura-
tions of a TCC system (ideal, CMP, SMP) with the number of pro-
cessors ranging from 4 to 32. Figure 6 complements these results
with the final execution time breakdown for all different processor
counts in the case of the CMP configuration.

For six out of nine benchmarks (Assignment, LUFactor, RayTrace,
SPECjbb, tomcatv, and MPEG-2 decode), CMP performance close-
ly tracks ideal performance for all processor counts. All six applica-
tions achieve speedups of 8 or above with 16 processors. LUFactor
and SPECjbb are limited for large processor counts by a combina-
tion of unavoidable violations and some regions that lacked enough
parallelism for the increased processor count, causing extra proces-
sors to idle. Assignment and RayTrace are mostly limited by the
large sequential code regions, which result in an immense amount
of processor idle time with larger numbers of processors. On the
other hand, tomcatv scales perfectly to 32 processors, with only
small increases in idle and waiting time and virtually no transaction
violations. Finally, MPEG-2 decode speedup flattens at 16 proces-
sors, because in our sample input stream there were only 16 slices
per frame, so any additional processors were idle. Overall, these
results demonstrate that high performance can often be achieved
with TCC through only minor modifications to sequential code.

For MolDyn, art, and equake, the ideal configuration has a signifi-
cant advantage over the CMP configuration for the 32 processor
case. As shown in Figure 6, the 32-processor CMP configuration

incurs a large amount of waiting time. In this case, it is not due to
load imbalance, but instead due to insufficient commit bandwidth.
Too many of the 32 processors are trying to commit simultaneously
at any point in time, resulting in serialization for access to the com-
mit network. Luckily, solving bandwidth problems like this should
generally be straightforward within a chip, especially for TCC sys-
tems that exchange only large messages between nodes.

The SMP TCC configuration achieves good speedups for 4–8 pro-
cessors across the board, but exhibits little benefit with more pro-
cessors for most applications. Of our applications, only assignment,
SPECjbb, and tomcatv managed to use the additional processors
to significant advantage, with SPECjbb notably almost completely
unaffected by the configuration limits. This is actually a promising
result, as online server applications like SPECjbb would probably
be the primary application class that might drive the development of
TCC on systems larger than CMPs. For the rest of the applications,
the major bottleneck is again commit bandwidth, as four bytes per
cycle is often too little for communicating between 16–32 parallel
transactions. However, with higher commit bandwidth, the SMP
configuration could achieve speedups similar to the CMP one, since
the higher overheads incurred by board-level arbitration had much
less effect on the overall speedup than the commit bandwidth.

5. RELATED WORK
TCC builds on ideas from previous hardware-based transaction
work, designs for hardware thread-level speculation, database
transaction processing, software-only transactional memory, and
other forms of transactional programming, generally from the area
of reliability research. This section discusses related work from
these varied fields, focusing mostly on issues relating to parallel
application development.

Figure 5: Overall speedup obtained in different hardware configurations.

Figure 6: Breakdown of how different numbers of parallel processors spent their time, in the CMP configuration.

� � �� �� � � �� �� � � �� �� � � �� �� � � �� �� � � �� �� � � �� �� � � �� �� � � �� ��
�

����

���

����

�

�
��
�
�
�
�
�
�
�
�
��
�
��
�

������

�������

��������

����

��� ������ ������� ��

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32
0

8

16

24

32

Sp
ee
du
p

SMP

CMP

Ideal

art equake tomcatv mpeg-decodeSPECjbbRayTraceLUFactorMolDynAssignment

Previous Hardware Transaction Proposals: Transactions have been
used in previous proposals to allow execution through locks or past
barriers in order to reduce the pressure for optimal placement of
synchronization primitives in conventional multithreaded code [15,
20, 26, 30]. TCC improves on this work by using transactions all
the time. In addition to simplifying hardware by eliminating con-
ventional cache coherence, it completely eliminates the need for
conventional locks and barriers in the application code, using the
abstraction of transactions to describe all synchronization.

Thread-level Speculation (TLS): Several groups have demonstrated
speculative parallelization of sequential code using TLS hardware
[11, 22, 33, 36]. Even though TCC draws upon TLS work, TCC
differs in two basic ways. From the hardware perspective, TLS lay-
ers speculative execution of threads on top of a conventional cache
coherence and consistency protocol, and generally allows specu-
lative threads to communicate results to other speculative threads
continuously. On the other hand, TCC completely replaces the un-
derlying coherence and consistency protocol, and allows transac-
tions to make their write state visible only at commit time, which
should generally make it scalable to larger numbers of processors.
From the software perspective, TLS always requires that threads
commit in a single, predefined order [29], while TCC allows pro-
grammers to have full control over transaction sequencing, so that
they can specify no or partial ordering for transaction commit.
The similarity of support for speculation in TCC and TLS leads to
similar issues during performance tuning. Techniques for minimiz-
ing data dependencies and optimizing transaction size to deal with
overheads and buffering requirements, much like those we used
with TCC-based parallelization, have also been considered in the
context of TLS in [27, 37].

Database Transaction Processing: The usefulness of transactions
as an abstraction for concurrency, atomicity, consistency, and isola-
tion has been extensively studied by the database community [9].
TCC borrows the notion of transactions from databases in order to
simplify the development of general parallel programs. However,
database transactions are typically heavyweight and are only used
in large transaction processing systems. In contrast, TCC transac-
tions are lightweight, have direct hardware support, and are fully
visible to application programmers. Nevertheless, the speculative
execution of transactions in TCC is based on the idea of optimistic
concurrency control from databases [23].

Software-only Transactional Memory: Several researchers have ex-
plored software-only transactional memory or transactional data-
structures [13, 14, 32]. The focus of this work has been to replace
locks with non-blocking primitives implemented with software
buffering or versioning. In contrast, our transactions execute at all
times and are accelerated by direct hardware support. In addition,
TCC transactions provide memory consistency similar to that of
lazy and delayed consistency models [8, 19, 21], which postpone
communicating and processing of consistency events until release
points in the program code.

Transactional Programming for Reliability: The Tran-C program-
ming language in the IBM Encina system includes built-in trans-
actional semantics [16]. However, Tran-C uses transactions for
application-level failure atomicity and recovery. For parallel pro-
gramming, Tran-C relies on conventional threads with locks and
mutexes. In a similar vein, the Java language provides the “try-

catch-finally” programming construct which allows programmers
to specify application level error detection and recovery code [3].
Oplinger and Lam used this construct along with TLS mechanisms
to provide a low-overhead transactional programming model for
error recovery [28]. In contrast to these efforts, TCCʼs all-trans-
actional approach provides a unified approach for both optimistic
parallelism and failure atomicity, an area of further research for us.
The use of a single abstraction for both goals greatly simplifies ap-
plication development.

6. CONCLUSIONS
We have shown that by using TCC, it is possible to parallelize a
wide range of applications with a few simple programming lan-
guage constructs. Instead of using explicit synchronization with
locks, these constructs rely instead on the atomic property of
transactions to guarantee exclusive access to shared variables.
Furthermore, because TCC allows for speculative transactions, the
programmer does not have to guarantee that the transactions are
independent to get correct program behavior. On the other hand,
one aspect of transaction programming that the programmer must
specify for correct program operation is the commit ordering of
transactions (ordered, unordered or partially ordered); however, we
view this as the key insight that programmers should be able to
provide when parallelizing programs. Of course, one can always
retain ordered transactions for safety purposes if there is ever any
uncertainty. Furthermore, we believe that reasoning about transac-
tion order is much simpler than reasoning about individual loads
and stores, which is required with programming for conventional
memory consistency models [1].

Improving the parallel performance of an application is a key com-
ponent of parallel programming, and is often required for TCC pro-
grams. However, unlike conventional shared memory parallel pro-
graming, where performance improvement is largely a process of
trial and error, we expect TCC systems to provide specific perfor-
mance feedback in the form of transaction rollback statistics. These
statistics are much more meaningful to the programmer than cache
misses would be in a conventional shared memory multiproces-
sor because they are associated with programmer-defined transac-
tions and variables. We have shown that these statistics can be used
to direct the use of programming optimization techniques such as
loop chunking, reduction and buffer privatization, and transaction
splitting to improve TCC application performance significantly.
The performance we have obtained with these optimizations over
a wide range of applications is excellent, and demonstrates both
the programming ease and performance potential of TCC. Also,
although we performed these optimizations manually, since many
require only fairly mechanical adjustments to code that can be pin-
pointed by feedback, we expect that most will eventually be ap-
plied automatically by either a static or dynamic compiler, which
will further reduce the burden on the programmer.

Finally, we view the use of TCC hardware and TCC programming
language support as a synergy of hardware and software that will
provide a much gentler transition from sequential programming to
parallel programming than that provided by any previous parallel
programming paradigm. As a result, TCC hardware and software
will be an important catalyst in transforming parallel processing
for speedup of individual applications from a niche activity to a
widespread technique.

7. ACKNOWLEDGEMENTS
This work was supported by NSF grant CCR-0220138 and DARPA
PCA program grants F29601-01-2-0085 and F29601-03-2-0117.

8. REFERENCES
[1] S. V. Adve and K. Gharachorloo, “Shared Memory Consistency

Models: A Tutorial,” IEEE Computer, Vol. 29 No. 12, pp. 66–76,
December 1996.

[2] V. Agarwal, S. Hrisikesh, D. Burger, and S. Keckler, “Clock Rate
vs IPC: The End of Road for Conventional Microarchitectures,”
27th Intl. Symposium on Computer Architecture, pp. 248–259,
Vancouver, Canada, June 2000.

[3] K. Arnold, J. Gosling, and D. Holmes, The Java Programming
Language, Third Edition, Addison-Wesley Professional, 2000.

[4] A. Bilas, J. Fritts, and J. P. Singh, “Real-time parallel MPEG2
decoding in software,” Proc. 11th International Parallel Processing
Symposium, Geneva, Switzerland, 1997.

[5] Broadcom Corp., “The Broadcom BCM-1250 Multiprocessor,”
Presentation at 2002 Embedded Processor Forum, April 2002.

[6] Byte Magazine, jBYTEmark Benchmark, http://www.byte.com,
CMP Media LLC, 1999.

[7] M. K. Chen and K. Olukotun, “The Jrpm System for Dynamically
Parallelizing Java Programs,” Proceedings of the 30th International
Symposium on Computer Architecture (ISCA-30), pp. 434–445,
June 2003.

[8] M. Dubois, et. al., “Delayed Consistency and Its Effects on the
Miss Rate of Parallel Programs,” Proceedings of Supercomputing
ʼ91, November 1991.

[9] J. Gray and A. Reuter, Transaction Processing: Concepts and
Techniques, Morgan Kaufmann, 1993.

[10] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable
Parallel Programming with the Message Passing Interface, MIT
Press, 1994.

[11] L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Chen, and K.
Olukotun, “The Stanford Hydra CMP,” IEEE MICRO Magazine,
pp. 71–84, March-April 2000.

[12] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K.
Olukotun, “Transactional Memory Coherence and Consistency,”
Proceedings of the 31st Annual Symposium on Computer
Architecture (ISCA-31), pp. 102–113, June 2004.

[13] T. Harris and K. Fraser, “Language Support for Lightweight
Transactions,” 18th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA-
2003), October 2003.

[14] M. P. Herlihy, V. Luchangco, M. Moir, and W. M. Scherer,
“Software Transactional Memory for Dynamic-sized Data
Structures,” Proceedings of the 22nd Annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing
(PODC), July 2003.

[15] M. Herlihy and J. Moss, “Transactional Memory: Architectural
Support for Lock-Free Data Structures,” Proceedings of the 20th
International Symposium on Computer Architecture (ISCA-20), pp.
289-300, 1993.

[16] IBM Corporation, Encina Transactional-C Programmer s̓ Guide
and Reference for AIX, SC23-2465-02, 1994.

[17] Java Grande Forum, Java Grande Benchmark Suite, http://www.
epcc.ed.ac.uk/javagrande/, 2000.

[18] R. Kalla, B. Sinharoy, and J. Tendler, “Simultaneous Multi-
threading Implementation in POWER5,” Conference Record of
Hot Chips 15 Symposium, Palo Alto, CA, August 2003.

[19] P. Keleher, A. L. Cox, and W. Zwaenepoel, “Lazy Release
Consistency for Software Distributed Shared Memory,”
Proceedings of the Fifth International Symposium on High-
Performance Computer Architecture, pp. 279–283, Orlando, FL,

1999.
[20] T. Knight, “An Architecture for Mostly Functional Languages,”

Proceedings of the 1986 ACM Conference on Lisp and Functional
Programming, August 1986.

[21] L. I. Kontothanassis, M. L. Scott, and R. Bianchini, “Lazy
Release Consistency for Hardware-Coherent Multiprocessors,”
Proceedings of Supercomputing ʼ95, San Diego, CA, Dec. 1995.

[22] V. Krishnan and J. Torrellas, “A Chip Multiprocessor Architecture
with Speculative Multithreading,” IEEE Transactions on
Computers, Special Issue on Multithreaded Architecture, Vol. 48
No. 9, pp. 866–880, September 1999.

[23] H. T. Kung and J. T. Robinson, “On Optimistic Methods for
Concurrency Control,” ACM Transactions on Database Systems,
Vol. 6 No. 2, June 1981.

[24] C. Lee, M. Potkonjak, and W. Mangione-Smith, “MediaBench:
A tool for evaluating and synthesizing multimedia and
communication systems,” Proceedings of the 30th Annual
International Symposium on Microarchitecture (MICRO-97),
Research Triangle Park, NC, December 1997.

[25] B. Lewis and D.J. Berg, Multithreaded Programming with
Pthreads, Prentice Hall, 1998.

[26] J. Martinez and J. Torrellas, “Speculative Synchronization:
Applying Thread-Level Speculation to Parallel Applications,”
Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS-X), pp. 18–29, October 2002.

[27] K. Olukotun, L. Hammond, and M. Willey, “Improving the
Performance of Speculatively Parallel Applications on the Hydra
CMP,” Proceedings of the 1999 ACM International Conference on
Supercomputing (ICS-99), pp. 21–30, Rhodes, Greece, June 1999.

[28] J. Oplinger and M. S. Lam, “Enhancing Software Reliability
with Speculative Threads,” Proceedings of the 10th International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-X), pp. 184–196, October 2002.

[29] M. K. Prabhu and K. Olukotun, “Using Thread-Level Speculation
to Simplify Manual Parallelization,” Proceedings of the Principles
and Practice of Parallel Programming (PPoPP), pp. 1–12, June
2003.

[30] R. Rajwar and J. Goodman, “Transactional Lock-Free Execution
of Lock-Based Programs,” Proceedings of the 10th International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-X), pp. 5–17, October 2002.

[31] R. Raman, “UltraSparc Gemini: Dual CPU Processor,” Conference
Record of Hot Chips 15 Symposium, Palo Alto, CA, August 2003.

[32] N. Shavit and S. Touitou, “Software Transactional Memory,”
Proceedings of the 14th Annual ACM Symposium on Principles
of Distributed Computing, pp. 204–213, Ottawa, Canada, August
20–23, 1995.

[33] G. Sohi, S. Breach, and T. Vijaykumar, “Multiscalar processors,”
Proceedings of the 22nd Annual International Symposium on
Computer Architecture, pp. 414–425, Santa Margherita Ligure,
Italy, June 1995.

[34] Standard Performance Evaluation Corporation, SPECjbb2000
v1.01, http://www.spec.org/jbb2000/, Warrenton, VA, 2000.

[35] Standard Performance Evaluation Corporation, SPEC*, http://
www.specbench.org/, Warrenton, VA, 1995–2000.

[36] J. Steffan and T. Mowry, “The Potential for Using Thread-
Level Data Speculation to Facilitate Automatic Parallelization,”
Proceedings of the Fourth International Symposium on High-
Performance Computer Architecture, pp. 2–13, Las Vegas,
Nevada, 1998.

[37] T.N. Vijaykumar and G. S. Sohi, “Task Selection for a Multiscalar
Processor,” Proceedings of the 31st International Symposium on
Microarchitecture (MICRO-31), pp. 81–92, December 1998.

[38] T. Wilkinson, Kaffe Virtual Machine, http://kaffe.org, 1997–2002.

